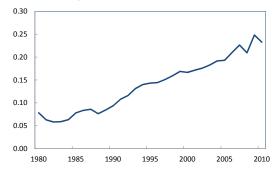
Sudden Stops, Limited Enforcement and Optimal Reserves

Yun Jung Kim

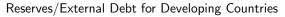

May 2014

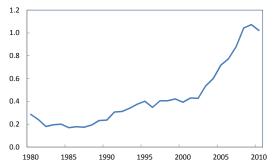
A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

May 2014

1 / 28

Reserve Accumulation in Developing Countries




Reserves/GDP for Developing Countries

• There has been a dramatic increase in reserve accumulation by developing countries since the 1990s.

→ Ξ →

Reserve Accumulation in Developing Countries

- It is even more dramatic, compared with short-term external debt: Reserves/ST debt is over 2.
- Greenspan-Guidotti rule (most widely-used standard of reserve adequacy): full coverage of total short-term external debt.

Accumulation of International Reserves

- Often explained by precautionary motive to insure against capital flow volatility.
- Can we quantify the level of reserves that can be justified as an insurance against capital flow volatility?
- Existing work
 - Takes as given the country's external debt, and solve for optimal insurance: Jeanne and Ranciere (2011), Aizenman and Lee (2005), Caballero and Panageas (2004), Lee (2004)

 \rightarrow However, sovereign debt and reserves are jointly determined.

• Treats reserve accumulation and less outstanding debt as substitutes: Durdu et al. (2009), Mendoza (2010)

 \rightarrow Sovereign countries accumulate both external debt and reserves.

(日) (同) (日) (日) (日)

External Debt and Reserves

- Need to analyze endogenous debt and reserve choices
 - Default risk is important for sovereign debt.
- With limited enforcement of sovereign debt, reserves tend to reduce sustainable debt levels.
 - Reduce the cost of exclusion after default, by providing insurance when the country has no access to international credit market.
 - Smooth by defaulting rather than having reserves
 - Alfaro and Kanczuk (2007) find that optimal reserves are close to zero.

External Debt and Reserves

• To justify reserve accumulation, need additional benefit of reserves.

- Bianchi et al. (2013) introduce long-duration bonds.
- Consequence of policy to maintain external surpluses and undervalued exchange rates (Dooley et al. 2003).
- Reserves are perceived as a tool to reduce the incidence of international crisis.
- Recent empirical literature emphasizes the role of reserves in preventing a sudden stop crisis, rather than being a buffer to absorb shock to capital flow volatility.
 - Garcia and Soto (2004), Bussiere and Mulder (1999), Calvo et. al. (2012), Cavallo and Frankel (2008).

(日) (同) (日) (日) (日)

Probability of a Sudden Stop

 Probit Estimation of the Probability of a Sudden Stop, 1975-2005 (34 Emerging Market Countries)

	(1)	(2)	(3)
	0 0 0 ***	0 154	0.017
Debt/GDP	0.669***	0.154	0.017
_ /	(0.207)	(0.310)	(0.390)
Reserves/Debt	-0.457	-1.215**	-1.436**
	(0.359)	(0.542)	(0.726)
REER Overvaluation	0.009***	0.009***	0.008**
	(0.003)	(0.003)	(0.004)
KA Openness	0.052	0.012	-0.024
	(0.049)	(0.065)	(0.085)
Country Effects	No	Yes	Yes
Year Effects	No	No	Yes
Observations	831	629	607

This Paper

- Quantify the level of reserves that can be justified as an insurance against sudden stops,
 - Taking default risk into consideration opportunity costs of reserves are also endogenously determined in the model.
 - Also incorporating endogenous sudden stop risk.
- Intertemporal optimization problem of the government in a small open economy that has willingness-to-pay problem and is also hit by "sudden stops."
 - Default: Willingness-to-pay crisis, mainly driven by the ratio of total debt to GDP ratio.
 - SS: Liquidity crisis, mainly driven by external factors, but incidence can be reduced by accumulating reserves.

(日) (同) (日) (日) (日)

Benefits and Costs of Reserves

- Benefits of reserves:
 - Allow the country to smooth consumption in crises
 - Lower the probability of a sudden stop.
- Costs of reserves:
 - Yield a lower return than the interest rate on external liabilities.
 - Reduce sustainable debt levels (increases default premium).
- Quantitative question!

- A small open endowment economy that borrows funds from competitive risk-neutral foreign creditors.
- Subject to sudden stop shocks. In a sudden stop, the country cannot borrow and suffer income loss. The probability of a sudden stop P_s depends on reserves/debt. Exits sudden stop with probability θ^s
- May choose to default on its external debt. If defaults, the country is excluded from international credit markets and suffer income loss. It regains access with probability θ.
- The country can use reserves as buffer to smooth consumption even when it cannot issue new debt.

(日) (同) (日) (日) (日)

- Timing: Learns income and sudden stop shocks, decides whether to default on its debt, then chooses levels of borrowing and reserves.
- Default/Repayment decision:

$$W(B, A, y, s) = \max_{d \in \{0,1\}} \{ (1-d) W^R(B, A, y, s) + dW^D(A, y, s) \}$$

• Value of repayment:

$$W^{R}(B, A, y, s) = \max_{B', A'} u(c) + \beta E_{y', s'|y, s} \left[W(B', A', y', s') \right]$$

where $c = (1 - s\lambda^{s})y - B + A + (1 - s)qB' - \frac{A'}{(1+r)}$.

 $s \in \{0, 1\}$. s = 1 denotes a sudden stop.

(승규) (승규

Model

• The continuation value for the normal period (s = 0) and for a sudden stop (s = 1) can be written, respectively, as

$$s = 0 \quad : \quad \int_{y'} \left[(1 - p'_s(A'/B')) W(B', A', y', 0) + p'_s(A'/B') W(B', A', y', 1) \right] f(y', y) dy'$$

$$s = 1 \quad : \quad \int_{y'} \left[\theta^s W(0, A', y', 0) + (1 - \theta^s) W(0, A', y', 1) \right] f(y', y) dy'$$

where $p'_s(A'/B')$ is the next period's probability of a sudden stop which is decreasing in (A'/B'), and θ^s is the probability of exiting a sudden stop episode.

Model

• The value of default is

$$W^{D}(A, y, s) = \max_{A'} u \left((1 - \lambda^{d})(1 - s\lambda^{s})y + A - \frac{A'}{(1 + r)} \right) \\ + \beta E_{y', s'|y, s} \left[\theta W(0, A', y', s') + (1 - \theta) W^{D}(A', y', s') \right]$$

where $\boldsymbol{\theta}$ is the probability of exiting default penalty phase.

• The continuation values

$$\begin{split} s &= 0 \quad : \quad \int_{y'} \{\theta W(0,A',y',0) + (1-\theta) W^D(A',y',0)\} f(y',y) dy' \\ s &= 1 \quad : \quad \int_{y'} \{\theta [\theta^s W(0,A',y',0) + (1-\theta^s) W(0,A',y',1)] \\ &\quad + (1-\theta) [\theta^s W^D(A',y',0) + (1-\theta^s) W^D(A',y',1)]\} f(y',y) dy' \end{split}$$

(日)

Foreign Lenders' Problem

• The bond price schedule is given by

$$q(B', A', y, 0) = \frac{E_{y', s'|y, s}(1 - D(B', A', y', s'))}{1 + r}$$

$$= \frac{\int_{y'} \left[(1 - p'_s(A'/B'))(1 - D(B',A',y',0)) + p'_s(A'/B')(1 - D(B',A',y',1)) \right] f(y',y) dy'}{1 + r}$$

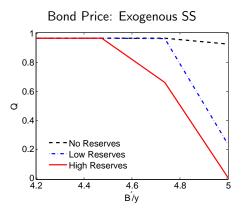
<ロト </p>

Calibration

- Preferences: $u(c) = \frac{c^{1-s}-1}{1-s}$, Endowment: $\ln(y_t) = \rho \ln(y_{t-1}) + \varepsilon_t$, $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$.
- $p_s(A/B) = \Phi(m \omega(A/B))$, where $\Phi(\cdot)$ is the cdf of the standard normal distribution: Jeanne and Ranciere (2011)
- Paremeters:

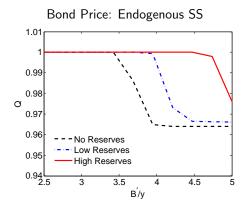
Risk aversion (s)	2	Literature
Discount factor (β)	0.95	Assumption
Income autocorrelation coefficient (ρ)	0.945	Argentina data
Standard deviation of innovations (σ)	0.025	Argentina data
Risk-free rate (r)	0.00	Assumtpion
Income loss in crises (λ, λ^s)	0.10	Output drop 10%
Probability of Reentry (θ, θ^s)	0.10	Avg. exclusion 2.5 years
Probability of entering a sudden stop (p_s)		
m	-1.8	Prob(SS Reserve = 0) = 12.9%
ω	0.2	Prob(SS) = 7.4%

・日・ ・ 四・ ・ 田・ ・ 田・

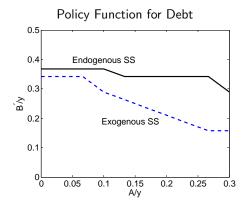

Simulation Results

• Comparison of Statistics

	No Reserves	Reserves		
	No SS	No SS	Exogenous SS	Endogenous SS
mean(B/y)	50.15	49.81	36.32	26.20
mean(A/y)	-	0.00	1.74	24.01
prob(default)	0.00	0.00	1.41	0.00
prob(SS)	-	-	7.41	7.40

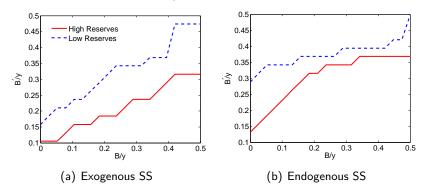

- Exogenous SS: smooth by defaulting rather than having reserves.
- When the sudden stop probability depends on reserves, benefit of holding reserves outweighs cost.
 - With plausible calibration, it is possible to generate reserve level which is close to the levels observed in the data: 34 Emerging Market Countries in 2010: Mean *A*/*Y*: 23%, Mean *A*/*B*: 1.02%

Reserve and Debt Sustainability


- Reserves make default less costly, thus default is chosen more often when the level of reserves is high.
- Reserves reduce debt sustainability.

Reserve and Debt Sustainability

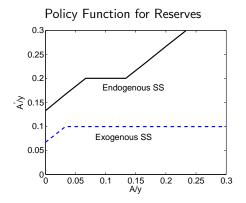
• When the sudden stop probability depends on reserves, debt sustainability sometimes even increases with reserves: Reserves reduce the probability of a sudden stop in which default is chosen more often than normal times.


Debt Choice Comparison

- Next period debt drops as reserves increase.
- It falls more rapidly in the exogenous SS case.

.∃ >

Debt Choice Comparison



Policy Function for Debt

- Holding reserves reduces the next period debt levels.
- Difference is larger for the exogenous SS case.

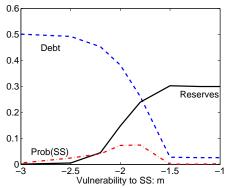
< ∃ >

Reserve Choice Comparison

• The optimal level of reserves is higher when the sudden stop probability depends on reserves.

★ ∃ ► ★

Role of Default

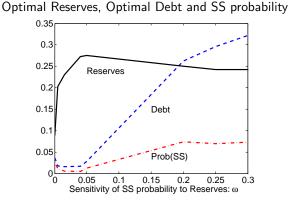

• Simulation Results with No Default Option

	No Default		Default Possible	
	Exogenous Endogenous		Exogenous	Endogenous
	SS	SS	SS	SS
mean(B/y)	30.01	0.00	36.32	26.20
mean (A/y)	0.00	3.36	1.74	24.01
prob(SS)	7.67	0.00	7.41	7.40

- Without limited enforcement, debt and reserves are substitutes. Only NFA position matters.
- Financing reserves by borrowing is more costly when default option is not available.
- With additional benefit of reserves in reducing the SS probability, the country reduces debt down to zero in no-default case.

Sensitivity Analysis: Vulnerability to Sudden Stop

Optimal Reserves, Optimal Debt and SS probability

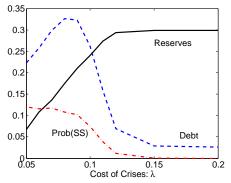


More vulnerable countries tend to accumulate more reserves and less debt.

May 2014

23 / 28

Sensitivity Analysis: Effectiveness of reserve in reducing SS

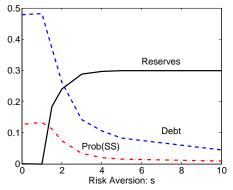

 Optimal reserves increase with ω. The relationship is not monotonic, as a low probability of sudden stop can be achieved with less reserves for higher ω.

May 2014

24 / 28

Sensitivity Analysis: Cost of Crises

Optimal Reserves, Optimal Debt and SS probability



 The level of optimal reserves increases as output loss in crises becomes more severe.

E ▶.

Sensitivity Analysis: Risk Aversion

• The level of optimal reserves increases as risk aversion increases, with milder impact for s larger than 3

< ∃ > <

Model vs. Data

- Average reserves/GDP ratio is 23.3% in 2010 for 34 emerging market countries: Mostly in line with the model
- It is 35.5% in Asia. Seems excessive?
 - 42.5% in Malaysia, 52.6% in Thailand, 28.7% in Korea, 48.2% in China
- Hard to be justified even considering high output cost of the Asian Crisis in the late 1990s
 - Malaysia: 17%, Thailand: 17%, Korea: 14%
- There must be other reasons.

A (10) A (10) A (10)

Summary and Extensions

- A quantitative model with limited enforcement and sudden stop can generate levels of reserves and debt recently observed in data.
- Extension: Micro-foundation about sudden stop probability
 - Endogenize creditors' problems and explain sudden stops
- Extension: Private borrowing and reserves
 - It is often the private sector who has short-term foreign liabilities and who needs insurance. The government often steps in when a crisis is near or after a crisis occurs.
 - Dominguez (2011) shows, empirically, countries with higher private-sector liabilities hold greater reserves. However, the interplay between private external debt and government reserves has never been explored theoretically.
- Dynamic context

(日) (同) (日) (日) (日)