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Abstract

Since Diebold and Li (2006) showed the outstanding performance of a dynamic
Nelson-Sieglel model (DNSM) in forecasting the yield curve, the DNSM has been
widely used in many macro and finance area. Because of its parsimonious but flex-
ible model specification the Bayesian model-averaging method based on the Bayes
factor typically gives a weight of nearly one on the DNSM excluding a standard
arbitrage-free affine term structure model (ATSM). Nevertheless, the ATSM has
been also commonly used because it provides plenty of economically interpretable
outcomes such as term premium and model-implied term structure of real in-
terest rates. Meanwhile, the random-walk (RW) is often used as a benchmark
in out-of-sample forecasting comparison. Despite the popularity of these three
frameworks, none of them dominates the others across all maturities and forecast
horizons. This fact indicates that those models are potentially misspecified. In
this paper we investigate whether combining the possibly misspecified models in
a linear form suggested by Geweke and Amisano (2011) and Waggoner and Zha
(2012) help improve the predictive accuracy. For this we compare out-of sam-
ple prediction performance from the merged models with a constant model weight
with those of the three individual prediction models and the merged models with a
Markov-switching model weight for eight different maturities and forecast horizons
of 1, 3, 6 and 12 months. We find that overall the constant mixture model is most
supported. In particular, the constant mixture model consistently forecasts better
than the individual prediction models across all maturities and forecast horizons.
(JEL G12, C11, F37)
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1 Introduction

Forecasting the yield curve is extremely important for financial portfolio risk manage-

ment, monetary policy, business cycle analysis and so forth. In previous literatures

three classes of yield curve prediction models have been widely used. One is arbitrage-

free affine term structure models, which are a theoretical approach1. This approach

provides many economically interpretable outcomes such as term premium and term

structure of real interest rates. Despite that, this class of models is known to be diffi-

cult to estimate because of the nonlinearity and irregular likelihood surface. Another is

a purely statistical approach, which is a dynamic version of the Nelson-Siegel model2.

Since this modeling approach is parsimonious but flexible for fitting the yield curve,

overall its forecasting performance is better than the theoretical approach. The other

is the random-walk model (RWM), and it is often used as a benchmark in forecasting

ability comparison.

Interestingly, beating the RWM is a challenging task although DNSM or ATSM

can be better at some particular maturities and forecast horizons. None of the three

alternative models uniformly outperforms at all maturities and forecast horizons. For

example, Diebold and Li (2006) finds that the three-factor DNSM (DNSM(3))’s 1-month-

ahead forecasts outperform those of the RWM at short maturities, but for long-term bond

yields the random-walk dominates the DNSM(3). Zantedeschi et al. (2011) confirm that

the RWM forecasts better in the short run whereas at three- and six-step-ahead forecast

horizons the predictions from their DNSM with time-varying factorloadings are much

improved. The forecasts from the ATSM estimated by Moench (2008) are found to

be more accurate than those from the RWM only for the 6-month yield. Using an

ATSM Carrieroa and Giacomini (2011) produce 1-step-ahead forecasts and find positive

prediction gains against the RWM for intermediate and long maturities, not for short

maturities.

These mixed results for out-of-sample prediction comparison strongly indicate that

1For example, Moench (2008), Christensen, Diebold, and Rudebusch (2011), Chib and Kang (2013),
Almeida and Vicenteb (2008), and Carrieroa and Giacomini (2011)

2For example, Diebold and Li (2006), De Pooter (2007), and Zantedeschi, Damien, and Polson (2011)
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all prediction models are potentially somewhat misspecified. Our goal of this paper

is to investigate whether it is possible to improve the out-of-sample prediction perfor-

mance when all alternative models are potentially misspecified. In a Bayesian context a

standard way to consider the model uncertainty is using the Bayesian model-averaging

method based on the marginal likelihood computation. However, the Bayesian model

averaging typically gives a weight of nearly one on the DNSM excluding the ATSM and

RWM.

As an alternative way to consider the model misspecifications we take the pool-

ing method recently suggested by Geweke and Amisano (2011) and Waggoner and Zha

(2012). The key idea of their approach is to construct the one-step ahead predictive

density as a linear combination of the predictive densities obtained from each of al-

ternative prediction models. In this paper the three individual yield curve prediction

models and mixture models of two or three of the prediction models are compared in

terms of out-of-sample predictive accuracy. Further, the model weights are specified to

be constant or Markov-switching over time. Using these mixture models we forecast the

monthly yields with eight different maturities over the forecast horizons of one through

twelve months, and conduct model comparison based on the predictive accuracy.

The key finding of our empirical work is that the predictive gains from the pooling

method are surprisingly substantial. In particular, the constant mixture model of the

three prediction models consistently forecasts better than each of them over all maturities

and forecast horizons. This finding implies that all three alternatives are operative over

time, and so ATSM and RWM are never negligible in forecasting unlike in the Bayesian

model averaging.

The rest of the paper is organized as follows. Section 2 describes our econometric

models. Section 3 discusses the Bayesian estimation procedure. Section 4 presents the

empirical results. Section 5 concludes. The Appendices provide details for the model

derivation and the estimation method.
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2 Econometric Methodology

In this section we illustrate our statistical method using an example of two prediction

models, M1 and M2. Let Θ1 and Θ2 be the set of parameters in M1 and M2, re-

spectively. The τ -period bond yield at time t is denoted by yt(τ) and the vector of

yields with N different maturities at time t is yt = (yt(τ1), yt(τ2), .., yt(τN)). We let

Y o
t = {yo1, . . . , yot } denote the observed yield curve data up to time t. Then Geweke and

Amisano (2011) study predictive densities of the form

w1 × p(yt|Y o
t−1,Θ1,M1) + (1− w1)× p(yt|Y o

t−1,Θ2,M2) (2.1)

with w1 ∈ [0, 1] is the model weight on M1. Waggoner and Zha (2012) extend Geweke

and Amisano (2011)’s approach and allow the model weights to vary over time. Then

w1 in equation (2.1) is replaced by w1,st ∈ [0, 1] where st takes either 1 or 2 following a

first-order two-state Markov process with constant transition probabilities

qij = Pr [st = j|st−1 = i] , i, j = 1, 2

By doing this they consider the case that the relative importance of each of the prediction

models can change over time. The resulting predictive density conditioned on the regime

st is given by

w1,st × p(yt|Y o
t−1,Θ1,M1) + (1− w1,st)× p(yt|Y o

t−1,Θ2,M2)

On letting the model specific parameters Θ = {Θ1, Θ2}, transition probabilities Q =

{q11, q22}, and the regime-dependent model weight w = {w1,1, w1,2} the likelihood can

be constructed as

ln p(Y o
T |Θ, P, w) =

T∑
t=1

ln p(yt|Y o
t−1,Θ, P, w)

where the regime st is integrated out because it is never observed by econometricians.

For more details for likelihood computations refer to Appendix A.

It should be noted that although we follow Geweke and Amisano (2012) and Wag-

goner and Zha (2012)’s methodological approach our study differs from theirs in several

dimensions. First, we concentrate on yield curve forecasting while they forecast macroe-

conomic variables such as the GDP growth rate and inflation. Second, in our work the
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model specific parameters, the model weights and the transition probabilities are esti-

mated simultaneously, not sequentially. Third, most importantly, is that both short- and

long-term forecasts are produced and used for model comparison whereas they assess

the predictive performance of pooled models based on the log predictive score, which is

a good measurement of one-step ahead predictive accuracy.

3 Estimation

3.1 Competing Models

In our pool of models we consider the three classes of predictions models: ATSM(3),

DNSM(3), and the random-walk. In a standard affine term structure model the τ -period

bond yield at time t is assumed to be affine to a vector of exogenous driving factors ft

yt(τ) = a(τ) + b(τ)′ft

The intercept term a(τ) and the factorloadings b(τ) are both maturity-specific. These

coefficients are endogenously determined by the no-arbitrage condition given certain

assumptions about the dynamic evolution of the factors and the stochastic discount

factor.

In the DNSM(3) the bond yield is also specified as a linear function of three exogenous

latent factors. Unlike in the affine term structure model, the intercept term and the

factorloadings are exogenously fixed, so that the factors are interpreted as time-varying

level, slope and curvature of the yield curve. Finally, the random-walk model (RWM) is

considered and often used as a benchmark in forecasting ability comparison. The details

about the model specification of the three prediction models can be found in Appendix

B.

Diebold and Li (2006) show that overall DNSM(3) produces better forecast accuracy

in out-of-sample prediction compared to Duffie (2002)’s best essentially affine model

although the RWM forecasts better at short forecast horizons. Then the Bayesian

model-averaging method based on the Bayes factor would yield nearly one weight on

the DNSM(3) excluding the ATSM(3) and the random-walk. Nevertheless, all those
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prediction models have been commonly used for forecasting the term structure of in-

terest rates, and none of them consistently outperforms at all maturities and forecast

horizons. One potential reason is that the alternative models are somewhat misspecified.

Given the potential model misspecification of the alternative models we investigate

whether combining the multiple models in a linear form helps improve the predictive

accuracy. Table 1 presents twelve competing models with various combinations. Basi-

cally, we consider the individual models. Also the linear combinations of two and three

of the alternatives are used for prediction. The model weights can be either constant or

time-varying. For the constant mixture case, the weights are to be estimated or equally

given. For instance, the NS-AF-RW is the constant mixture of the DNSM(3), ATSM(3)

and the random-walk whereas the MS -NS-AF-RW is the mixture model in which the

model weights vary over time according to the Markov process. In Equal -NS-AF-RW

each of the model weights is fixed at 1/3.

DNSM(3) ATSM(3) random-walk
Single
DNSM Yes - -
ATSM - Yes -
RWM - - Yes
Constant mixture
NS-AF Yes Yes -
NS-RW Yes - Yes
AF-RW - Yes Yes
NS-AF-RW Yes Yes Yes
Equal -NS-AF-RW Yes Yes Yes
Markov-switching mixture
MS -NS-AF Yes Yes -
MS -NS-RW Yes - Yes
MS -AF-RW - Yes Yes
MS -NS-AF-RW Yes Yes Yes

Table 1: Model combinations
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3.2 Posterior Simulation

In the Bayesian context our regime switching mixture model is the joint posterior dis-

tribution of the regime indicators (S = {st}Tt=1), continuous latent variables (X =

{xt}t=1,2,..,T and F = {ft}t=1,2,..,T ) and the model parameters (ψ= {Θ, P, w}). It has

the form

π (ψ,X,F,S|Y) ∝ f (Y|ψ,X,F,S)× f (X,F|ψ)× p (S|ψ)× π(ψ) (3.1)

where π (ψ) is the prior density of the parameters, p (S|ψ) is the prior density func-

tion for regime-indicators given the parameters and it is specified as the discrete two-

state Markov switching process, f (X,F|S,ψ) is the prior density of the factors and

f (Y|ψ,X,F,S) is the joint density of the Y = {yt}Tt=1. Our prior which we give in the

paper is set up to reflect the apriori belief that the yield curve is gently upward sloping

and concave on average. We arrive at this prior by prior simulation technique, sampling

parameters from the assumed prior, then sampling the data given the parameters, and

then repeating this process many times. This mildly upward sloping and concave yield

curve prior tends to smooth out the many local modes of the likelihood surface as Chib

and Ergashev (2009) show. Table 2 reports our prior and Figure 1 plots the resulting

prior-implied unconditional distribution of the yield curve.
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Figure 1: Prior-implied yield curve

For regime identification, we impose a restriction that the weight on the model M1
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should be higher in regime 1 than in regime 2

1 > w1,st=1 > 0.5 > w1,st=2 > 0

For the ATSM(3), factors are identified by the difference in the persistence. These

identification restrictions are imposed through the prior specification. Because the joint

posterior distribution in equation 3.1 is not analytically tractable, we rely on a MCMC

simulation method and sample the parameters and the states recursively from the joint

posterior distribution as follows:

Algorithm 1: MCMC sampling

• Step 1: Sample ψ= {Θ1,Θ2, P, w}|Y,S using the tailored randomized blocking

Metropolis-Hastings algorithm (Chib and Ergashev (2009))

• Step 2: Sample the discrete states S|Y,ψ based on the multi-move method (Chib

(1998))

• Step 3: Calculate X(F) given the most recent values of Θ1(Θ2)

• Step 4: Simulate the predictive density for the yields given (ψ,X,F)

For each posterior draw (sT ,xT , fT ,ψ) and forecast horizon of h = 1, 2, .., H,, we can

also simulate the posterior predictive density of the bond yields.

Algorithm 2: Posterior predictive simulation

• Step 1: Sample the factors (xT+h, fT+h)

• Step 2: Given the factors, sample the yields y1,T+h(y2,T+h) from M1(M2)

• Step 3: Sample the regimes, sT+h conditioned on (sT+h−1, Q)

• Step 4: Given the sT+h compute yT+h as

yT+h = w1,sT+h
× y1,T+h + (1− w1,sT+h

)× y2,T+h

• Step 5: Retain yT+h as a posterior predictive draw
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Following Zantedeschi et al. (2011) and Chib and Kang (2013) we evaluate the pre-

dictive accuracy of the forecasts in terms of the posterior predictive criterion (PPC) of

Gelfand and Ghosh (1998). For a given modelM and the observations up to time T , the

PPC for h-step ahead posterior predictive density of τ−period bond yield is computed

as

PPCT (τ, h) = DT (τ, h) + WT (τ, h)

where

DT (τ, h) = Var (yT+h(τ)|Y,M)

and

WT (τ, h) =
[
yoT+h(τ)− E (yT+h(τ)|Y,M)

]2
By definition, smaller values of PPC are preferable. Since the value of the PPC can

be different in different out-of-sample periods, we compute the average PPC over the

twelve different forecast periods, which is shown below

in-sample out-of-sample
1990:M1 - 2010:M12 2011:M1 - 2011:M12
1990:M1 - 2011:M1 2011:M2 - 2012:M1
1990:M1 - 2011:M2 2011:M3 - 2012:M2

...
...

1990:M1 - 2011:M11 2011:M12 - 2012:M11

4 Results

The set of maturities in month is given by {3, 6, 12, 24, 36, 60, 84, 120}. We denote the

parameters in the ATSM(3), DNSM(3) and RWM by Θ1, Θ2, and Θ3, respectively. That

is,

Θ1 = {κ, φ, V1,Λ1,D1}, Θ2 = {δ, γ̄,µ,Φ,G, β,Λ2,D2}, Θ3 = {D3} (4.1)

Table 3 reports the results for the PPC averaged over all maturities and forecast

horizons of one- through twelve-months. These values capture the predictive accuracy

taking into account the cross-sectional and time-series variation of the government bond

yields. One can see from the table that the constant mixture of the DNSM, ATSM

and RWM (i.e. NS-AF-RW) provides the most accurate forecasts. It implies that all
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three prediction models are operative, and that the pooling method is better than the

Bayesian averaging method (i.e. DNSM(3)). Interestingly, the performance of the Equal -

NS-AF-RW, which is the constant mixture of the DNSM, ATSM and RWM with equal

weights, is remarkable. It produces the second best predictive ability. The importance of

the constant mixture model with equal weights has been already emphasized by Geweke

and Amisano (2012). In addition, it should be noted that merging perdition models does

not guarantee improvement in forecasts. For instance, the AF-RW and MS -AF-RW are

even worse than the RWM.

As seen from Table 4, for the NS-AF-RW, the estimated weight on the DSNS(3) is

largest and the estimated weights on the ATSM(3) and RWM are almost equal. The

estimated constant weights from NS-AF-RW are not substantially different from the

equal weights, 1/3. For this reason, the Equal -NS-AF-RW and NS-AF-RW produce a

comparable prediction performance. Table 5 and Figure 2 show that the model weights

appear to be regime-specific and change over time. The source of the regime switches

seems to be the changes in the factor loadings and conditional correlations (Table 6

and Figure 3). However, the Markov-switching mixture models produce less accurate

forecasts because of the inefficiency caused by the future regime forecasting.

Tables 7 and 8 presents the PPC across maturities and forecast horizons. The PPCs

in Table 8 indicate the predictive accuracy of entire yield curve across horizons while

the PPCs in Table 7 are the predictive accuracy across maturities averaged over the

forecast horizons. One can see that the NS-AF-RW and Equal -NS-AF-RW both uni-

formly forecast better than the RWM across all maturities and forecast horizons. The

Equal -NS-AF-RW is slightly worse than NS-AF-RW, but its performance is remarkably

better than those of the MS -NS-AF-RW and individual models. Therefore, beating the

constant mixture with equal weights is hard, which is consistent with the finding of

Geweke and Amisano (2012). For short-term bond yields the MS -NS-AF-RW forecasts

best across all forecast horizons as Tables 9 and 10 shows. It appears to be because

short term bond yields are more subject to regime shifts than long term bond yields and

hence the regime switching specification helps to improve the prediction.
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Figure 2: Posterior Probability of Regime 2 These graphs plot the estimates of the prob-
abilities of regime state 2. These graphs are based on 10,000 simulated draws of the posterior
simulation.
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Figure 3: Factors Loadings: Merged Model with Markov-switching These graphs plot
the estimates of the factor loadings of the models. These graphs are based on 10,000 simulated
draws of the posterior simulation.

5 Concluding Remarks

In this study we attempt to improve the predictive accuracy of government bond yields

using the three popular prediction models, which are the three-factor arbitrage-free affine

term structure model, the three-factor dynamic Nelson-Siegel model, and the random-

walk. All these prediction models are somewhat misspsecified in sense that none of them

dominates the others although the Bayesian model averaging would yield the DNSM(3).

To mitigate the model misspecification and achieve prediction gains we consider various

linear combinations of the three prediction models. According to our out-of-sample

prediction comparison, the constant mixture provides the most accurate forecasts. In

particular, it outperforms the individual prediction models consistently at all maturities

and forecast horizons. It implies that the ATSM(3) and the random-walk as well as

the DNSM(3) are still useful in forecasting, and that the pooling method seems to be

better than the Bayesian model averaging. More importantly, our findings suggest that

for prediction purpose one need to try the pooling method when multiple yield curve

prediction models are considered and compared.

We do not argue that our yield curve forecasts obtained from the NS-AF-RW are

the best. As Geweke and Amisano (2011) point out, the performance of the pooling
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method depends on the prediction models contained in the pool. It would be possible

to improve the forecasts by including additional prediction models or by changing the

model specification of each of the prediction models although it can be computationally

more expensive. We leave them as future work.

Appendix

A Likelihood

The section summarizes the step by step procedure for the likelihood calculation. Sup-

pose that p(st−1|Y o
t−1,Θ, P, w) and (Θ, P, w) are given and the log likelihood lnL is ini-

tialized at 0. At time 1, p(st−1|Y o
t−1,Θ, P, w) is replaced by the unconditional probability

of regime st. For t = 1, 2, .., T , the following steps are sequentially repeated.

Algorithm 3: Likelihood calculation

• Step 1: The predictive probability of regime st p(st = j|Y o
t−1,Θ, P, w) is computed

as

p(st = j|Y o
t−1,Θ, P, w)

=
2∑
i=1

Pr[st = j|st−1 = i]× p(st−1 = i|Y o
t−1,Θ, P, w)

=
2∑
i=1

qij × p(st−1 = i|Y o
t−1,Θ, P, w)

• Step 2: the predictive model weight on M1, W1,t is given by

2∑
st=1

w1,st × p(st|Y o
t−1,Θ, P, w)

so the predictive model weight on M2 is W2,t = 1−W1,t.

• Step 3: we now have the conditional likelihood p(yt|Y o
t−1,Θ, P, w) as

W1,t × p(yt|Y o
t−1,Θ1,M1) + W2,t × p(yt|Y o

t−1,Θ2,M2)

and lnL = lnL + log p(yt|Y o
t−1,Θ, P, w)
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• Step 4: the updated probability of regime st p(st = i|Y o
t ,Θ, P, w) is calculated and

retained as

p(st = i|Y o
t ,Θ, P, w)

= p(st = i|Y o
t−1,Θ, P, w, y

o
t )

=
p(st = i, yot |Y o

t−1,Θ, P, w)

p(yot |Y o
t−1,Θ, P, w)

=
p(yt|Y o

t−1,Θ, P, w, st = i)p(st = i|Y o
t−1,Θ, P, w)

p(yot |Y o
t−1,Θ, P, w)

where the predictive density of yt given st is simply given by

p(yt|Y o
t−1,Θ, P, w, st)

= wk=1,stp(yt|Y o
t−1,Θ1,M1) + (1− wk=1,st) p(yt|Y o

t−1,Θ2,M2)

B Alternative Prediction Models in the Pool

B.1 The Three Factor Dynamic Nelson-Siegel Model: DNSM(3)

We now describe the dynamic Nelson-Siegel model (Diebold and Li (2006)). The vector

of yields is statistically modeled by

yt = Λ× xt + ut (B.1)

where

Λ =


1 1−eτ1λ

τ1λ
1−eτ1λ
τ1λ
− e−τ1λ

1 1−eτ2λ
τ2λ

1−eτ2λ
τ2λ
− e−τ2λ

...
...

...

1 1−eτNλ
τNλ

1−eτNλ
τNλ

− e−τNλ

 (B.2)

xt =
(

xLt xSt xCt
)′

(B.3)

ut =
(
ut(τ1) ut(τ2) · · · ut(τN)

)′
(B.4)

Due to the functional form of the factorloadings Λ, the latent dynamic factors, xLt , xSt

and xCt are usually interpreted as level, slope and curvature factors, respectively. The

vector of the dynamic factors xt is also assumed to follow the first-order stationary vector

autoregressive process.

xt = κ + φ (xt−1 − κ) + εt (B.5)
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where [
εt
ut

]
∼ i.i.d.N

(
0(N+3)×1,

(
V1Λ1V1 0N×3
03×N D1

))
(B.6)

V1 = diag(l1, l2, l3), (B.7)

Λ1 =

 1 ρ12,1 ρ13,1
ρ12,1 1 ρ23,1
ρ13,1 ρ23,1 1

 and Ω1 = V1Λ1V1 (B.8)

We let N (., .) denote the multivariate normal distribution. The coefficient λ, referred

to the shape parameter, determines the exponential decay rate of the factor loadings.

Λ1 is the conditional correlation matrix among the factors. Finally, for identification

V1 and D1 are assumed to be both diagonal matrices with positive diagonal elements.

For computational convenience we follow Bansal and Zhou (2002) and Chib and Kang

(2013), and assume that three basis bonds (the three-month, two-year, and ten-year)

are priced exactly by the model.

B.2 The Three Factor Gaussian Affine Term Structure Model:
ATSM(3)

Let Pt(τ) denote the price of the bond at time t that matures in period (t+τ). Following

Duffie and Kan (1996), we assume that Pt(τ) is an exponential affine function of the

vector of three-dimensional factors ft taking the form

Pt(τ) = exp(−τyt(τ)) (B.9)

where yt(τ) is the continuously compounded yield given by

yt(τ) = − logPt(τ)

τ
= a(τ) + b(τ)′ft

and a(τ) is a scalar and b(τ) is a 3× 1 vector, both depending on τ . In order to impose

the no-arbitrage condition

Pt(τ) = E[Mt,t+1Pt+1(τ − 1)|ft]

given the stochastic discount factor (SDF), Mt,t+1, we solve risk-neutral pricing equation

for these coefficients. To do this, we should specify the factor process and the stochastic

discount factor (SDF). The distribution of ft, conditioned on ft−1, is determined by a

Gaussian mean-reverting first-order autoregression

ft = Gf t−1 + ηt, ηt ∼ i.i.d.N (03×1,Ω2) (B.10)
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where

V2 = I3, (B.11)

Λ2 =

 1 ρ12,2 ρ13,2
ρ12,2 1 ρ23,2
ρ13,2 ρ23,2 1

 and Ω2=V2Λ2V2 (B.12)

G is a 3× 3 matrix, and Λ2 is the conditional correlation matrix. In the sequel, we will

express ηt in terms of a vector of i.i.d. standard normal variables ωt as ηt = Lωt where

L is the lower-triangular Cholesky decomposition of Ω2

We complete our modeling by assuming that the SDF Mt,t+1 that converts a time

(t + 1) payoff into a payoff at time t is given by

Mt,t+1 = exp

(
−rt −

1

2
γ ′tγt − γ ′tωt+1

)
(B.13)

where rt is the short-rate, γt is the vector of time-varying market prices of factor risks

and ωt+1 is the i.i.d. vector of factor shocks at time t + 1. We suppose that the short

rate and the market price of factor risk are both affine in the factors and of the form

rt = δ + β′ft, (B.14)

γt = γ̄ + Φft (B.15)

, respectively. We find the expressions for the latter functions by the method of undeter-

mined coefficients. Incorporating the assumptions for the factor and SDF process into

the risk-neutral pricing formula yields the following recursive system for the unknown

functions

a(τ) = δ/τ + a(τ − 1) − b(τ − 1)′Lγ̄ − τ

2
b(τ − 1)′LL′b(τ − 1) (B.16)

b(τ) = β/τ + (G− LΦ)′b(τ − 1)

where τ runs over the positive integers. These recursions are initialized by setting

a(0) = 0 and b(0) = 03×1.

As defined above, yt denotes the vector of yields with different maturities. Also

let a and b be the corresponding intercept and factor loadings for yt obtained from

the recursive equations in (B.16). Then for estimation purpose, we follow Chib and

Ergashev (2009) and assume that all of the yields are measured with pricing error. The

resulting measurement equation has the form

yt = a + bf t + et, et ∼ iidN (0,D2) (B.17)
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where D2 is a diagonal matrix. The transition equation is given by the equation (B.10),

which completes the state-space representation.

B.3 Random-walk Model (RWM)

The third perdition model contained in our pool is the random-walk.

yt = yt−1 + νt, νt ∼ iidN (0,D3) (B.18)

where D3 is a N ×N diagonal matrix.
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Parameter Density Mean S.D. Range
κ1 Normal 2.00 5.00 (−∞,+∞)
κi (i = 2, 3) Uniform -1.00 5.00 (−∞,+∞)
φi (i = 1, 2, 3) Beta 0.80 0.05 (0, 1)
ρij,1 (i 6= j, i, j = 1, 2, 3) Uniform 0.00 0.58 (−1, 1)
li (i = 1, 2, 3) Uniform 1.00 0.58 (0, 2)
50×στ∗i ,1 (i = 1, 2, .., 5) Inverse gamma 2.00 0.30 (0,+∞)

(a) DNSM(3)

Parameter Density Mean S.D. Range
δ Normal 3.00 5.00 (−∞,+∞)
γ̄i (i = 1, 2, 3) Normal -2.00 1.00 (−∞,+∞)
Φi (i = 1, 2, 3) Normal 0.00 1.00 (−∞,+∞)
Gij (i, j = 1, 2, 3) Uniform 0.00 0.58 (−1, 1)
βi (i = 1, 2, 3) Normal 0.50 0.30 (−∞,+∞)
ρij,2 (i 6= j, i, j = 1, 2, 3) Uniform 0.00 0.58 (−1, 1)
50×στ∗i ,2 (i = 1, 2, .., 5) Inverse gamma 2.00 0.30 (0,+∞)

(b) ATSM(3)

50×στ∗i ,3 (i = 1, 2, .., 8) Inverse gamma 2.00 0.30 (0,+∞)
(c) Random-walk

wi,st (i = 1, 2, st = 1, 2) Uniform 0.50 0.29 (0, 1)
(d) Model weights

qii (i = 1, 2) Beta 0.90 0.05 (0, 1)
(e) Transition probability

Table 2: Prior This table presents the prior distribution for the parameters. τ∗′i s are the
maturities of the bonds priced with errors
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PPC
Single
DNSM 0.997
ATSM 1.416
RWM 0.938
Constant weights
NS-AF 0.995
NS-RW 0.893
AF-RW 1.319
NS-AF-RW 0.772
Fixed -NS-AF-RW 0.766
Markov-switching weights
MS -NS-AF 1.087
MS -NS-RW 0.875
MS -AF-RW 1.250
MS -NS-AF-RW 0.877

Table 3: PPC averaged over all maturities and forecast horizons This table presents
the PPCs averaged over all maturities and forecast horizons. The values of the PPCs are based
on 10,000 simulated posterior predictive draws of the bond yields.

DNSM(3) ATSM(3) Random-walk
NS-AF 0.442 0.558

(0.037) (0.041)
NS-RW 0.732 0.268

(0.032) (0.012)
AF-RW 0.225 0.775

(0.029) (0.058)
NS-AF-RW 0.441 0.305 0.253

(0.036) (0.100) (0.100)
Equal-NS-AF-RW 0.333 0.333 0.333

Table 4: Constant model weights The posterior standard errors are in the parentheses.

DNSM(3) ATSM(3) Random-walk DNSM(3) ATSM(3) Random-walk
st = 1 st = 2

NS-AF 0.964 0.036 NS-AF 0.037 0.963
(0.026) (0.001) (0.028) (0.122)

NS-RW 0.868 0.132 NS-RW 0.151 0.849
(0.051) (0.010) (0.110) (0.221)

AF-RW 0.766 0.234 AF-RW 0.028 0.972
(0.140) (0.089) (0.023) (0.184)

NS-AF-RW 0.741 0.127 0.133 NS-AF-RW 0.123 0.425 0.452
(0.023) (0.014) (0.015) (0.019) (0.181) (0.110)

Table 5: Markov switching model weights The posterior standard errors are in the
parentheses.
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3m 6m 12m 24m 36m 60m 84m 120m
3m 1.00
6m 0.89 1.00
12m 0.68 0.81 1.00
24m 0.55 0.77 0.88 1.00
36m 0.47 0.70 0.84 0.98 1.00
60m 0.39 0.62 0.77 0.93 0.94 1.00
84m 0.35 0.58 0.74 0.90 0.92 0.94 1.00
120m 0.32 0.53 0.69 0.86 0.89 0.94 0.98 1.00

(a) DNSM(3)

3m 6m 12m 24m 36m 60m 84m 120m
3m 1.00
6m 0.93 1.00
12m 0.87 0.88 1.00
24m 0.89 0.92 0.94 1.00
36m 0.88 0.90 0.92 0.99 1.00
60m 0.85 0.86 0.88 0.95 0.96 1.00
84m 0.81 0.82 0.83 0.91 0.92 0.93 1.00
120m 0.81 0.80 0.80 0.88 0.91 0.93 0.95 1.00

(b) ATSM(3)

Table 6: Model-dependent conditional correlation These graphs are based on 50,000
simulated draws of the posterior simulation.

3m 6m 12m 24m 36m 60m 84m 120m
Single
DNSM 0.983 0.952 0.959 1.036 1.087 1.054 0.989 0.913
ATSM 1.658 1.626 1.564 1.458 1.403 1.325 1.217 1.077
RWM 0.933 0.917 0.920 0.960 0.988 0.968 0.932 0.882
Constant weights
NS-AF 1.134 1.124 1.066 1.014 0.989 0.937 0.886 0.809
NS-RW 0.890 0.863 0.862 0.917 0.957 0.937 0.890 0.829
AF-RW 1.304 1.404 1.435 1.400 1.382 1.329 1.228 1.069
NS-AF-RW 0.821 0.803 0.773 0.774 0.785 0.772 0.747 0.703
Fixed -NS-AF-RW 0.818 0.802 0.778 0.768 0.775 0.761 0.736 0.691
Markov-switching weights
MS -DN-AF 1.224 1.143 1.040 0.967 1.015 1.102 1.115 1.092
MS -NS-RW 0.876 0.855 0.849 0.897 0.934 0.914 0.867 0.809
MS -AF-RW 1.318 1.350 1.339 1.289 1.272 1.237 1.160 1.033
MS -NS-AF-RW 0.798 0.794 0.831 0.916 0.963 0.949 0.909 0.857

Table 7: PPC(τ): PPC averaged over all forecast horizons This table presents the
PPCs averaged over all forecast horizons. The values of the PPCs are based on 10,000 simulated
posterior predictive draws of the bond yields.
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forecast horizon 1-month ahead 3-month ahead 9-month ahead 12-month ahead
Single
DNSM 0.375 0.670 0.988 1.489
ATSM 0.535 0.962 1.424 2.078
RWM 0.351 0.647 0.946 1.366
Constant weights
NS-AF 0.341 0.655 1.010 1.486
NS-RW 0.340 0.613 0.896 1.312
AF-RW 0.389 0.769 1.282 2.169
NS-AF-RW 0.282 0.528 0.792 1.117
NS-AF-RW-Fixed 0.285 0.528 0.786 1.106
Markov-switching weights
MS -DN-AF 0.387 0.700 1.078 1.649
MS -NS-RW 0.328 0.601 0.880 1.282
MS -AF-RW 0.401 0.779 1.238 1.981
MS -NS-AF-RW 0.331 0.600 0.879 1.290

Table 8: PPC(h): PPC averaged over all maturities This table presents the PPCs
averaged over all maturities. The values of the PPCs are based on 10,000 simulated posterior
predictive draws of the bond yields.
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3m 6m 12m 24m 36m 60m 84m 120m
Single
DNSM 1.073 0.995 1.126 0.986 1.141 1.119 1.011 0.999
ATSM 2.635 2.462 2.027 1.378 1.245 1.145 1.085 0.902
Constant mixture
NS-AF 1.020 1.163 1.010 0.762 0.886 0.895 0.895 0.869
NS-RW 0.882 0.926 0.955 0.887 1.115 1.140 1.046 0.932
AF-RW 1.643 1.608 1.368 0.955 0.926 0.929 0.908 0.788
NS-AF-RW 0.656 0.755 0.752 0.666 0.796 0.817 0.806 0.773
Fixed -NS-AF-RW 0.674 0.777 0.768 0.673 0.789 0.811 0.815 0.785
Markov-switching mixture
MS -DN-AF 1.629 1.656 1.452 1.108 1.135 1.079 1.033 0.936
MS -NS-RW 0.792 0.840 0.850 0.784 0.969 1.002 0.946 0.863
MS -AF-RW 1.844 1.817 1.523 1.034 0.974 0.979 0.935 0.808
MS -NS-AF-RW 0.511 0.645 0.814 0.843 1.077 1.107 1.036 0.956

(a) 1-month ahead

3m 6m 12m 24m 36m 60m 84m 120m
Single
DNSM 1.095 1.176 1.223 1.032 1.027 1.034 0.958 0.924
ATSM 2.584 2.444 2.085 1.482 1.253 1.085 0.995 0.887
Constant mixture
NS-AF 1.272 1.282 1.077 0.791 0.818 0.876 0.874 0.892
NS-RW 0.886 0.884 0.899 0.933 1.074 1.127 1.061 0.968
AF-RW 1.696 1.642 1.425 1.031 0.904 0.830 0.795 0.755
NS-AF-RW 0.710 0.755 0.719 0.666 0.745 0.803 0.793 0.779
Fixed -NS-AF-RW 0.739 0.789 0.744 0.683 0.749 0.801 0.795 0.785
Markov-switching mixture
MS -DN-AF 1.793 1.723 1.485 1.172 1.135 1.088 1.035 0.985
MS -NS-RW 0.835 0.847 0.864 0.862 0.970 1.025 0.976 0.899
MS -AF-RW 1.955 1.915 1.656 1.181 1.018 0.924 0.878 0.815
MS -NS-AF-RW 0.506 0.555 0.716 0.856 1.023 1.084 1.036 0.974

(b) 3-month ahead

Table 9: PPC(τ ,h) These graphs are based on 10,000 simulated draws of the posterior sim-
ulation.
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3m 6m 12m 24m 36m 60m 84m 120m
Single
DNSM 1.618 1.718 1.631 1.267 1.113 0.967 0.910 0.848
ATSM 2.877 2.943 2.638 1.982 1.670 1.235 1.062 0.934
Constant mixture
NS-AF 1.563 1.535 1.230 0.823 0.789 0.828 0.860 0.900
NS-RW 0.905 0.924 0.933 0.988 1.114 1.135 1.086 1.020
AF-RW 1.785 1.827 1.604 1.158 0.987 0.836 0.811 0.805
NS-AF-RW 0.955 0.962 0.857 0.724 0.740 0.783 0.806 0.822
Fixed -NS-AF-RW 0.878 0.903 0.818 0.723 0.775 0.812 0.827 0.841
Markov-switching mixture
MS -DN-AF 1.979 1.909 1.621 1.256 1.202 1.122 1.075 1.036
MS -NS-RW 0.861 0.884 0.880 0.910 1.022 1.054 1.018 0.963
MS -AF-RW 2.155 2.207 1.917 1.366 1.144 0.950 0.903 0.867
MS -NS-AF-RW 0.502 0.565 0.699 0.872 1.033 1.073 1.041 0.996

(c) 6-month ahead

3m 6m 12m 24m 36m 60m 84m 120m
Single
DNSM 0.927 0.983 0.988 0.934 0.985 1.125 1.137 1.087
ATSM 2.877 2.943 2.638 1.982 1.670 1.235 1.062 0.934
Constant mixture
NS-AF 2.033 1.971 1.599 1.025 0.829 0.770 0.814 0.865
NS-RW 0.885 0.902 0.923 0.976 1.103 1.137 1.108 1.035
AF-RW 2.168 2.281 2.073 1.539 1.272 0.942 0.843 0.805
NS-AF-RW 1.102 1.091 0.957 0.756 0.754 0.780 0.808 0.821
Fixed -NS-AF-RW 1.140 1.131 0.989 0.779 0.767 0.786 0.812 0.824
Markov-switching mixture
MS -DN-AF 2.319 2.251 1.942 1.454 1.309 1.156 1.110 1.068
MS -NS-RW 0.868 0.875 0.875 0.895 1.009 1.061 1.045 0.982
MS -AF-RW 2.629 2.721 2.441 1.808 1.503 1.117 0.993 0.914
MS -NS-AF-RW 0.525 0.576 0.695 0.858 1.020 1.084 1.069 1.020

(d) 12-month ahead

Table 10: PPC(τ ,h) These graphs are based on 10,000 simulated draws of the posterior
simulation.
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