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Abstract

We develop a model of decentralized college admissions in which students’ preferences for

colleges are uncertain, and colleges incur costs whenever their enrollments exceed their ca-

pacities. Colleges’ admission decisions become a tool for strategic yield management, because

the enrollment at a college depends on not only students’ uncertain preferences but also other

colleges’ admission decisions. We find that equilibrium admission decisions exhibit “strategic

targeting”—colleges may forgo admitting (even good) students likely sought after by the oth-

ers and may admit (not as good) students likely overlooked by the others. Randomization in

admissions may also emerge. The resulting assignment is inefficient and leads to justified envy.

When the colleges consider multiple dimensions of students merits, they may avoid head-on

competition by placing excessive weights on less correlated dimensions, such as extracurricular

activities and non-academic aspects. Restricting the number of applications or allowing for wait-

listing might alleviate colleges’ yield management problem, but the resulting assignments are

still inefficient and admit justified envy. Centralized matching via Gale and Shapley’s Deferred

Acceptance algorithm eliminates the yield management problem and justified envy and attains

efficiency. But, some colleges may be worse off relative to decentralized matching.

1 Introduction

The standard market design research on matching focuses on how best to design a centralized

matching mechanism, taking the societal consensus on centralization as a given. While such a con-

sensus exists in a number of markets (e.g., medical residency matching and public school matching),

many markets remain decentralized (e.g., college admissions and graduate school admissions). De-

centralized markets often exhibit congestion and do not operate efficiently (Roth and Xing, 1997).

Although it is widely believed that these markets will benefit from improved coordination or cen-

tralization, it is not well understood why they remain decentralized and what welfare benefits would

be gained by improving coordination possibly via a centralized clearinghouse.
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At least part of the problem is the lack of an analytical grasp of decentralized matching markets.

Often treated as a black box, the equilibrium and welfare implications of decentralized matching

markets have not been understood well in the literature. Indeed, we have yet to develop a workhorse

model of decentralized matching that could serve as a useful benchmark for comparison with a

centralized system.1

The current paper develops an analytical framework for understanding decentralized matching

markets in the context of college admissions. In many countries, such as Japan, Korea, and the

US, college admissions are organized similarly to decentralized labor markets, with exploding and

binding admissions made by schools during a short window of time, among other things.

With limited offers and acceptances to clear the markets, decentralized matching provides only a

limited chance for colleges to learn students’ preferences and to condition their admission decisions

on them. This presents a challenge for colleges in managing its yield. Inability to forecast yield

accurately could result in too many or too few students enrolling in a college relative to its capacity.

Either mistake is costly. For instance, 1,415 freshmen accepted Yale’s invitation to join its incoming

class in 1995-96, although the university had aimed for a class of 1,335. At the same year, Princeton

also reported 1,100 entering students, the largest in its history. The college set up mobile homes

in fields and built new dorms to accommodate the students (Avery, Fairbanks and Zeckhauser,

2003).2

The yield management problem becomes increasingly important in many countries. In Korea,

for example, students apply for departments and not for colleges. Since each department has a

small quota and there are many potential choices for students, it is critical for departments to

predict yield rates accurately to ensure that they fill their capacities. In the US, most colleges

continue to experience increase in the number of applications they receive,3 and the average yield

rate of four-year colleges in the US has declined significantly over the past decade, from 49 percent

in 2001 to 38 percent in 2011 (Clinedinst, Hurley and Hawkins, 2012). Declining rates signal greatly

increased uncertainty for colleges:

Trying to hit those numbers is like trying to hit hot tub when you are skydiving

30,000 feet. I’m going to go to church every day in April. – Jennifer Delahunty (Dean

1The main exceptions are two excellent works by Chade and Smith (2006) and Chade, Lewis and Smith (2011).
As we discuss more fully later, they focus on the portfolio decisions students face in application and colleges’ inference
of students’ abilities based on imperfect signals. By contrast, the current paper focuses on the matching implications
of college admissions, paying special attention to the yield management problem arising from (aggregately) uncertain
students’ preferences.

2The cost may also take the form of an explicit sanction imposed on the admitting unit (e.g., department) by the
government (as in Korea) or by the college (as in Australia).

3The application increase in recent years is due partly to the increased number of high school graduates but mainly
to an increase in applications submitted per student as online applications become prevalent. Seventy-nine percent
of Fall 2011 freshmen applied to three or more colleges and twenty-nine percent of them submitted seven or more
applications. (Clinedinst, Hurley and Hawkins, 2012)
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of admissions and financial aid at Kenyon College in Ohio)4

Importantly, the uncertainty facing a college with respect to a student’s enrollment depends not

just on her preference but also on what other set of admissions she receives. This makes a college’s

admission policy a strategic yield management decision. We provide a simple model of colleges’

strategic yield management problems and characterize the equilibrium outcomes of these strategic

decisions. The explicit analysis of equilibrium allows us to evaluate the resulting assignment in

terms of welfare and fairness and to compare this with outcomes that arise from other coordinated

admissions and centralized matching.

In our baseline model, there are two colleges, each with limited capacity, and a unit mass of

students with “scores” that are common for both colleges (e.g., high school GPA or SAT scores).

Students apply to colleges at no cost. Colleges prefer students according to their scores, but they

do not know students’ preferences toward them. This uncertainty takes an aggregate form: The

mass of students preferring one college over the other varies across states that are unknown to the

colleges. Over-enrollment costs a college in proportion to the enrollment in excess of its capacity.

Our baseline model involves a simple time line: Initially, students simultaneously apply to colleges.

Each college observes only the scores of those students who apply to it. Next, the two colleges

simultaneously offer admissions to sets of students. Finally, the students who are admitted by

either or both colleges decide on which admission they will accept.

Given that application is costless, students have a (weak) dominant strategy of applying to

both colleges. Hence, the main focus of the analysis is the college’s admission decisions. Our main

finding in this regard is that the colleges engage in “strategic targeting”: In equilibrium, each college

may forgo good students who are sought after by the other college and may admit less attractive

students who appear overlooked by the other college. The reason for this is that the students who

attract competing admissions from the other college present greater enrollment uncertainty and

add to capacity cost. Randomization in admissions for students may also emerge. We then provide

existence of these equilibria. Next, we show that the assignment is typically unfair; that is, it entails

justified envy among students and fails to achieve efficiency among students, among colleges and

among all parties including colleges and students.

These results can be illustrated via a simple example. Suppose there are only two students, 1

and 2, applying to colleges A and B. Each college has one seat to fill and faces a prohibitively high

cost of having two students. Student i has score vi, i = 1, 2, where 0 < v2 < v1 < 2v2. Each student

has an equal probability of preferring either school, which is private information (unknown to the

other student and to the colleges). Each college values having student i at vi. The applications are

free of cost, and the timing is the same as that explained above.

Given the large cost of over-enrollment, each college admits only one of the students. Their

4“In Shifting Era of Admissions, Colleges Sweat,” NY Times, March 8, 2009
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payoffs are described as follow.

A’s strategy\ B’s strategy Admit 1 Admit 2

Admit 1 1
2v1, 1

2v1 v1, v2

Admit 2 v2, v1
1
2v2, 1

2v2

This game has a battle of the sexes’ structure (with asymmetric payoffs), so it is not difficult to

see that there are two different types of equilibria. First, there are two asymmetric pure-strategy

equilibria in which one college admits student 1 and the other admits student 2. There is also

a mixed-strategy equilibrium in which each college admits 1 with probability γ := 2v1−v2
v1+v2

> 1/2

and admits 2 with probability 1 − γ, where γ is chosen such that the other college is indifferent.

Both types of equilibria show the pattern of strategic targeting. In the pure-strategy equilibria,

colleges manage to avoid competition and thus randomness in enrollment by targeting different

students. The mixed-strategy equilibrium can be interpreted as arising from strategic targeting,

i.e., colleges’ attempt to avoid students sought after by the other, although it does not result in

perfect coordination.

This example, while extremely simple, suggests problems with decentralized matching in terms

of welfare and fairness. First, the student with high score (student 1) may be assigned to a less

preferred school (in both types of equilibria) even though both colleges prefer the high scoring

student; that is, justified envy arises. Second, it could be the case that student 1 prefers A and

student 2 prefers B, but the former is assigned to B and the latter is assigned to A, showing that

the equilibrium outcome is inefficient among students. Lastly, the mixed-strategy equilibrium is

Pareto inefficient because both colleges may admit the same student, in which case one college is

unmatched and would rather match with the other student.

We next study the admissions problem when students have multidimensional types. Some mea-

sures, such as students’ academic performances or system wide test like SAT, are highly correlated

among colleges, but others measures, such as students’ extracurricular activities or college specific

tests and essays, are less correlated among them.5 Clinedinst, Hurley and Hawkins (2012) report

that private colleges place emphasis on many factors other than standard test scores, including

essay/writing sample and extracurricular activities. We show that colleges’ desire to avoid head-on

competition, and thus to lessen enrollment uncertainty, leads them to bias their evaluation toward

less correlated measures by placing excessive weights on theses dimensions.

We also study two common ways for colleges to alleviate their yield management problem. One

common way is “self-targeting,” whereby colleges coordinate to restrict the number of applications

each student can submit. This form of coordination is observed in many countries; for instance,

5In Korea, for instance, students take a nationwide exam and each college has its own essay tests and/or oral
interviews. In Japan, there is a nationwide exam called National Center Test (NCT). Public universities use both
NCT and their own exams, and private universities often use their own exam only.
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students in the UK cannot apply to both Cambridge and Oxford, students in Japan can apply to at

most one public university, and students in Korea face a similar restriction. Self-targeting reduces

the enrollment uncertainty for the colleges, and thus alleviates their yield management burden.

Yet, we show that this method may not completely eliminate the yield management problem and

justified envy, and it may also fail to achieve efficiency.

Another way to cope with the enrollment uncertainty is by admitting students in sequence, or

“wait-listing”: Colleges admit some students and place others in the wait list in each of multiple

rounds and later extend admissions to those in the wait list when seats open up from the previous

round. This method is also observed in many countries, including France, Korea and the US. Wait-

listing alleviates colleges’ yield management problem, since colleges may adjust their admission

offers based on the students’ acceptance behavior and the information the colleges may learn over

the course of the process. We show, however, that they still engage in strategic targeting under

this mechanism, and the welfare and fairness problems still remain.

Finally, we consider a centralized matching via Gale and Shapley’s Deferred Acceptance al-

gorithm (DA in short). This eliminates colleges’ yield management problem and justified envy

completely and attains efficiency. At the same time, it is possible for one college to be worse off

relative to the decentralized matching. For instance, in the above example, suppose a pure-strategy

equilibrium in which college i always gets student 1 is played. Then, that college will clearly be

worse off from a switch to a centralization via DA because it will not always attract student 1.

This may explain a possible lack of consensus toward centralization and may underscore why college

admissions remain decentralized in many countries.

The paper is organized as follows. Section 1.1 discusses the related literature. The model is

introduced in Section 2. Equilibrium is characterized in Section 3. Section 3.1 establishes existence

of equilibrium. Section 3.2 discusses welfare and fairness implications of equilibria. Section 4

studies admissions problem when students’ types are multidimensional. In Section 5, self-targeting

via restriction on the number of applications is studied, and in Section 6, wait-listing is studied.

Centralized matching via DA is considered in Section 7. Section 8 concludes the paper. Proofs are

provided in the Appendix unless stated otherwise. The Appendix also extends the baseline model

to allow for more than two colleges and shows that our analysis in the two-college model carries

over.

1.1 Related Literature

Several papers in the matching literature have considered decentralized matching markets. Roth

and Xing (1997) study the entry-level market for clinical psychologists in which firms make offers

to workers sequentially within a day and workers can accept, reject or hold an offer. They find that,

mainly based on simulations, such a decentralized (but coordinated) market exhibits congestion,
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i.e., not enough offers and acceptances could be made to clear the market, and the resulting outcome

is unstable. Neiderle and Yariv (2009) also study a decentralized (one-to-one matching) market in

which firms make offers sequentially through multiple periods. They provide sufficient conditions

under which such decentralized markets generate stable outcomes in equilibrium in the presence

of market friction (namely, time discounting) and preference uncertainty. Like these models, our

model concerns the consequence of congestion arising from decentralized matching, but unlike

Roth and Xing (1997), we study participants’ strategic responses, analyzing equilibrium admission

decisions and their welfare and fairness properties. In particular, the current framework develops

a new theme of strategic targeting. Moreover, the explicit analysis of equilibria permits a clear

comparison with the outcome that would arise from a centralized matching.

The college admissions problem has recently received attention in the economics literature.

Chade and Smith (2006) study students’ application decision as a portfolio choice problem. Chade,

Lewis and Smith (2011) analyze colleges’ admission decisions together with the students’ application

decisions. In their model, students with heterogeneous abilities make application decisions subject

to application costs, and colleges set admission standards based on noisy signals on students’

abilities. Avery and Levin (2010) and Lee (2009) study early admissions. Unlike our model, these

models have no aggregate uncertainty with respect to students’ preferences, which means that the

colleges in their models do not face any enrollment uncertainty. Hence, colleges do not employ

strategic targeting; they instead use cutoff strategies.

Some aspects of our equilibrium are related to political lobbying behavior studied by Lizzeri

and Persico (2001, 2005). Just as colleges target students in our model, politicians in these models

target voters for distributing their favors. In their models, voters are homogeneous, and a voter

votes for the candidate that offers her the largest favor. In our model, however, students have

heterogeneous abilities and preferences. Thus, colleges’ admission decisions are more complicated—

admission probabilities vary according to students’ scores. Aggregate uncertainty plays a unique

role in shaping competition in our model, whereas how the spoils of office are split among candidate

(either winner-take-all or proportional rule) is crucial in their model.

Our model also shares some similarities with directed search models, such as Montgomery (1991)

and Burdett, Shi and Wright (2001). In these studies, each firm (seller) posts a wage (price), and

each worker (buyer) decides which job to apply for. Firms have a fixed number of job openings and

cannot hire more than the capacity, and workers can only apply to one firm. Workers’ inability

to precisely coordinate their search decisions causes a “search friction,” so they randomize on

application decisions. Just like the workers in these models, colleges in our model can be seen to

engage in “directed searches” on students. The difference is that the colleges in our model offer

admissions to many students subject to aggregate uncertainty. This leads to strategic targeting, a

novel feature of our model.
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2 Model

There is a unit mass of students with score v distributed from V ≡ [0, 1] according to an absolutely

continuous distribution G(·). There are two colleges, A and B, each with capacity κ < 1
2 . (Ap-

pendix B will extend the model to include more than two colleges, showing that our main results

carry over to that extension.) Each college values a student with score v at v and faces a cost

λ ≥ 1 for each incremental enrollment exceeding the quota. Each student has a preference over

the two colleges, which is private information. A state of nature s, drawn from [0, 1] according to

the uniform distribution, determines the fraction of students who prefer A over B. In state s, a

fraction µ(s) ∈ [0, 1] of students prefers A to B, where µ(·) is strictly increasing and continuous

in s.6 While we shall consider a general environment with respect to µ(·), some result will con-

sider a symmetric environment in which µ(s) = 1 − µ(1 − s) for all s ∈ [0, 1]. In a symmetric

environment, the measure of students who prefer A over B is symmetric around s = 1
2 .

The timing of the game is as follows. First, Nature draws the (aggregate uncertainty) state s.

Next, all students simultaneously apply to colleges. Each college observes the scores of only those

students who apply to it. Next, colleges simultaneously decide which applicants to admit. Last,

students who have received at least one admission offer decide which offer to accept.

We assume that there is no application cost for the students, so it is a weak dominant strategy

for each student to apply to both colleges. Throughout this paper, we focus on a perfect Bayesian

equilibrium in which students play the weak dominant strategy.7

Colleges distribute admissions based on students’ scores. Let α : V → [0, 1] and β : V → [0, 1]

be college A and B’s admission strategies, respectively, in terms of the fractions of students with

score v colleges admit.

For given α(·) and β(·), let VA := {v ∈ [0, 1] |α(v) > 0} and VB := {v ∈ [0, 1] |β(v) > 0} be the

types of students colleges A and B respectively admit. Let VAB := VA ∩ VB. If VAB has a positive

measure in an equilibrium, this means that a positive measure of students has admissions from

both colleges. We call such an equilibrium competitive. An equilibrium in which VAB has zero

measure is called non-competitive.

Consider the students with score v. A fraction α(v)[1 − b(v)] of them is admitted only by A,

and a fraction α(v)β(v) of them is admitted by both colleges, in which case a fraction µ(s) of

those latter students prefers A over B. Thus, the mass of students who attend A in state s, given

6There is no loss of generality to assume the uniform distribution, because for a distribution F (·) of s, we can
simply relabel s, and the popularity of a college over the other is captured by µ(·).

7The strategy of applying to both colleges can be made a strictly dominant strategy if students have some
uncertainty about their scores, which is realistic in case the scores are either not publicly observable or depend on
multiple dimensions of attributes, the weighting of which may be unknown to the students.
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strategies α(·) and β(·), is

mA(s) :=

∫ 1

0
α(v)[1− β(v) + µ(s)β(v)] dG(v). (2.1)

Similarly, the mass of students who attend B in state s is

mB(s) :=

∫ 1

0
β(v)[1− α(v) + (1− µ(s))α(v)] dG(v). (2.2)

Each college realizes the scores of enrolled students as its gross payoff and incurs cost λ for each

increment beyond its capacity. Thus, college A and B’s ex ante payoffs are, respectively,

πA := Es
[ ∫ 1

0
vα(v)[1− β(v) + µ(s)β(v)] dG(v)− λmax{mA(s)− κ, 0}

]
and

πB := Es
[ ∫ 1

0
vβ(v)[1− α(v) + (1− µ(s))α(v)] dG(v)− λmax{mB(s)− κ, 0}

]
.

One immediate observation is that each college’s payoff is concave in its own admission strategy

(see Lemma A3), that is, πA(ηα+ (1− η)α′) ≥ η πA(α) + (1− η)πA(α′) for any feasible strategies

α and α′ and for any η ∈ [0, 1]. Therefore, mixing over α’s is unprofitable for college A (similarly

β’s for college B). For this reason, any equilibrium is characterized by a pair (α, β). Of course,

this does not mean that the equilibrium is in pure-strategies; the values of α and β may be strictly

interior, in which case the admission strategies would involve randomization.

In the following sections, we characterize different types of equilibria and establish their exis-

tence. We then provide welfare and fairness properties of equilibria.

3 Characterization of Equilibrium

We analyze colleges’ admission decisions in this section. To this end, we fix any equilibrium (α, β)

and explore the properties it must satisfies. Later, we shall establish existence of the equilibria.

We begin with the following observations, whose proofs are in Appendix A.1.

Lemma 1. In any equilibrium (α, β), the following results hold.

(i) mA(0) ≤ κ ≤ mA(1) and mB(1) ≤ κ ≤ mB(0).

(ii) VA ∪ VB is a connected interval with sup{VA ∪ VB} = 1 and inf{VA ∪ VB} > 0.

(iii) If the equilibrium is competitive (i.e., VAB has a positive measure), then there exists a

unique (ŝA, ŝB) ∈ (0, 1)2 such that mA(ŝA) = κ and mB(ŝB) = κ.

(iv) If the equilibrium is non-competitive (i.e., VAB has zero measure), then mA(s) = mB(s) = κ

for all s ∈ [0, 1]. Further, almost every student with v ≥ G−1(1 − 2κ) receives an admission offer

from exactly one college.
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Part (i) of the lemma states that in equilibrium, colleges cannot have strict over-enrollment

and/or strict under-enrollment in all states. This is obvious since if there were over-enrollment in

all states for a college, then since λ ≥ 1, it will profitably deviate by rejecting some students with

v < 1, and if there were under-enrollment in all states, a college will likewise profitably deviate by

accepting more students. Part (ii) suggests that if a student with score v is admitted by either

college, then all students with scores higher than such v must be admitted by some college at least

with positive probability, and there is a positive mass of students in the low tail who are never

admitted by either college. Part (iii) suggests that in a competitive equilibrium, the colleges will

suffer from under-enrollment in some states and over-enrollment in other states. This is intuitive

since given (aggregately) uncertain preferences on the part of students, the presence of students

who receive admissions from both colleges presents non-trivial enrollment uncertainty. Each college

will deal with uncertainty by optimally trading off the cost of over-enrollment with the loss from

under-enrollment, thus entailing both types of mistakes depending on the states. Part (iv) states

that in a non-competitive equilibrium, colleges avoid the over- and under-enrollment problems, and

almost every top 2κ students receive admissions from only one college. This is, again, intuitive since

the colleges in this case face no enrollment uncertainty, so they will fill their capacities exactly in

all states with students whose scores are within the top 2κ.

In what follows, we shall focus on competitive equilibria. There are several reasons for this. It

will be seen that competitive equilibria always exist (see Theorem 3). By contrast, non-competitive

equilibria can be ruled out if either λ is not too large or κ is not too small (see Appendix A.2).

Finally, even if a noncompetitive equilibrium exists, the characterization provided in Lemma 1-(iv)

is sufficient for our welfare and fairness statements, as will be seen later.

Therefore, fix any competitive equilibrium (α, β). For ease of notation, let µ+(s) := E[µ(s̃)|s̃ ≥
s], µ−(s) := E[µ(s̃)|s̃ ≤ s] and µ := E[µ(s)]. It is convenient to rewrite A’s payoff at the equilibrium

as follows:

πA =

∫ 1

0
vα(v)[1− β(v) + µβ(v)] dG(v)− λE[mA(s)− κ | s > ŝA](1− ŝA)

=

∫ 1

0
α(v)HA(v, β(v)) dG(v) + λ (1− ŝA)κ,

where ŝA ∈ (0, 1) is such that mA(ŝA) = κ as defined in Lemma 1-(iii), and

HA(v, β(v)) := v[1− β(v) + µβ(v)]− λ(1− ŝA)[1− β(v) + µ+(ŝA)β(v)]

= (1− β(v))
[
v − λ(1− ŝA)

]
+ β(v)µ

[
v − λ(1− ŝA)

µ+(ŝA)

µ

]
(3.1)

is A’s marginal payoff from admitting a student with score v for given ŝA and β(·)8 in equilibrium.

8We shall suppress its dependence on ŝA unless it is important.
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0 vA vA v

“Not Admit” “Admit”“Admit only if B does not”

HA(v, 0) < 0 HA(v, 1) > 0HA(v, 1) < 0 < HA(v, 0)

Figure 3.1: A’s Admission Decision

HA captures A’s local incentive; that is, what A gains by admitting v, holding fixed its opponent’s

decision and its own decisions for the rest of the students at α(·).
Notice that the first and the second square brackets in (3.1) are college A’s marginal payoffs

of admitting a student with score v when she does not receive an admission offer from B and

when she does, respectively. Recall that the college incurs capacity cost only when there is over-

enrollment. If the student does not receive a competing offer from B, then she accepts A’s admission

for sure. Hence, over-enrollment occurs with probability (1 − ŝA), entailing the marginal cost

vA := λ(1− ŝA), which explains the second term of the first square brackets in (3.1). If the student

receives a competing offer from B, then she accepts A’s offer only when she prefers A to B. Hence,

conditional on acceptance, the over-enrollment arises with probability (1− ŝA)µ+(ŝA)
µ , entailing the

marginal cost vA := λ(1− ŝA)µ+(ŝA)
µ , the second term in the second square brackets in (3.1).

Observe that µ+(ŝA) > µ for ŝA ∈ (0, 1), so vA is higher than vA. The reason for this is that

when the student receives an offer from B but accepts A’s offer, the state is more likely to be high

comparing to the case that she does not receive a competing offer, since she is more likely to accept

A’s offer when µ(s) is high than when it is not. This explains why it is more costly to admit a

student who is sought after by another college than a student who is not. Hence, college A is less

likely to admit a student if college B admits her, and is more likely to admit the student if B does

not.

Lemma 2. In any competitive equilibrium, Hi(v, x), i = A,B, is strictly increasing in v for

each x. Moreover, for each v, Hi(v, x) satisfies the single crossing property: If Hi(v, x) ≤ 0 for

some x ∈ (0, 1), then Hi(v, x
′) < 0 for any x′ > x.

Proof. See Appendix A.3. �

Lemma 2 implies that HA(v, β(v)) partitions the students’ type space into three intervals, as

depicted in Figure 3.1. First of all, there exist vA > vA such that HA(vA, 1) = 0 and HA(v, 0) = 0.

Since HA(v, 1) > 0 for v > vA and HA(v, 0) < 0 for v < vA (recall HA is strictly increasing in v),

college A admits all students with v > vA even if college B admits all of them and rejects all

students with v < vA even if college B rejects all of those students.

For the students with v ∈ (vA, vA), we have HA(v, 1) < 0 < HA(v, 0). This means that college

A’s incentive for admitting these students depends on college B’s admission decisions toward them.

The single crossing property established in Lemma 2 implies that for each v, there exists σ̂B(v) ∈
(0, 1) such that HA(v, x) > 0 if x < σ̂B(v), HA(v, x) < 0 if x > σ̂B(v), and HA(v, σ̂B(v)) = 0
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1

α(v)

0 vB vA vB vA 1 v

1

β(v)

0 vB vA vB vA 1 v

Figure 3.2: Pure-Strategy Equilibrium

if x = σ̂B(v). Hence, college A admits all students with v if B admits (rejects) less (greater)

than fraction σ̂B(v) of them and admits any fraction of those students if B admits exactly fraction

σ̂B(v) ∈ (0, 1) of them. In particular, college A admits all of them if B does not admit any of them,

but does not admit them if B admits all of them.

The characterization of B’s admission strategy is completely symmetric. Its payoff function is

written as

πB =

∫ 1

0
β(v)HB(v, α(v))dG(v) + λ ŝB κ,

where

HB(v, α(v)) = (1− α(v))
[
v − λŝB

]
+ α(v)(1− µ)

[
v − λŝB

1− µ−(ŝB)

1− µ

]
,

and the admission strategy is described analogously using the cutoff scores vB := λ ŝB and vB :=

λ ŝB
1−µ−(ŝB)

1−µ , where vB < vB. Combining the two colleges’ admission decisions leads to the

following characterization of equilibria.

Theorem 1. In any competitive equilibrium, there exist vi < vi, i = A,B, such that college i admits

students with v > vi and v ∈ [vi, vj ] and rejects students with v < vi and v ∈ [vj , vi], where j 6= i.

At least one college admits a positive fraction of students with v ∈ [max {vA, vB} ,min {vA, vB}].

Theorem 1 describes the structure of competitive equilibrium. Figure 3.2 depicts a typical
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pure-strategy equilibrium. Here, the students at the top with v > vA = max {vA, vB} receive

admissions from both colleges, because their scores are above the high cutoffs of both colleges. And

the students at the bottom below vB = min {vA, vB} do not receive any admissions. Strategic

targeting occurs with students in the middle with v ∈ [vB, vA]. The students with v ∈ [vB, vA]

are admitted only by B, since A finds them admission-worthy only if B does not admit them, but

B admits them no matter what A does. Each of the students in the intermediate range of scores,

i.e., [vA, vB], receives an admission from only one college. The students with scores v ∈ [vB, vA]

receive admissions only from B, since that college alone finds them admission-worthy given that

they are not admitted by A. This pattern of strategic targeting — i.e., forgoing good students

sought after by the other college but admitting less attractive ones neglected by others — stands

in stark contrast with the cutoff strategy equilibrium found by the existing literature (see Chade,

Lewis and Smith, 2011).

The particular pattern of strategic targeting, namely how the two colleges coordinate exactly

on the students in [vA, vB], is indeterminate, and the figure depicts one possible coordination.9

In practice, it is implausible for colleges to achieve the kind of precise coordination described in

the pure-strategy equilibria. It seems much more plausible for colleges to randomize its admission

over students with the intermediate range of scores v ∈ [v̌, v̂], where v̌ := max {vA, vB} and v̂ :=

min {vA, vB}.10 A typical mixed-strategy equilibrium is depicted in Figure 3.3.

Notice that the admission strategies outside the intermediate range is similar to that in the

above pure-strategy equilibrium, as completely pinned down by Theorem 1. For the intermediate

range of scores, an interior fraction of the students are chosen to keep each college indifferent, as

follows. For each v ∈ [v̌, v̂], let α(v) = α0(v) and β(v) = β0(v), where HA(v, β0(v)) = 0 and

HB(v, α0(v)) = 0, or equivalently,

α0(v) :=
v − λ ŝB

v µ− λ ŝB µ−(ŝB)
(3.2)

and

β0(v) :=
v − λ(1− ŝA)

v(1− µ)− λ(1− ŝA)(1− µ+(ŝA))
. (3.3)

One can easily check that α0(v), β0(v) ∈ [0, 1] for v ∈ [v̌, v̂]. If college B admits a fraction β0(v)

of students with v, then college A’s marginal gain from admitting those students is zero, so it is

indifferent about admitting them. Hence, it is college A’s best response to randomize according

9 As noted, there may be many ways for colleges to coordinate their admissions for students with v ∈ [v̌, v̂], where
v̌ := max {vA, vB} and v̂ := min {vA, vB}. The range of different pure-strategy equilibria can be summarized by
two extreme types of equilibria. We call a competitive equilibrium an A-priority equilibrium if α(v) = 1 for all
v ∈ [v̌, v̂], and a B-priority equilibrium if β(v) = 1 for all v ∈ [v̌, v̂]. In words, in an i-priority equilibrium, the
coordination is tilted in favor of college i. Clearly, between these two equilibria, one can construct (infinitely) many
equilibria.

10It is important to note that the thresholds are not necessarily the same as in the pure-strategies, since different
equilibria involve different cutoff states, (ŝA, ŝB), which affect the marginal payoff functions HA and HB .
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Figure 3.3: Mixed-Strategy Equilibrium

to α0(·). Since HB(v, α0(v)) = 0, college B is indifferent, making its randomization a best response.

Observe that both α0(·) and β0(·) are increasing in v, which means that colleges admit a higher

fraction of students with higher scores. This is intuitive: Higher score students are more valuable

all else equal, so admitting a higher fraction of those students is necessary to keep the opponent

college indifferent. It is also interesting to observe discrete jumps in this figure — α0(vA) > 0 and

β0(vB) < 1. The former follows from the fact that vA > vB which implies HB(vA, 0) > 0, and the

latter follows from vA > vB which implies HA(vB, 1) < 0.

There could be many ways for colleges to play mixed-strategies: For instance, colleges could

coordinate to use a pure-strategy for some students, say [ṽ, v̂] for some ṽ ∈ (v̌, v̂), and use mixed-

strategies for v ∈ [v̌, ṽ]. Consistent with our selection, we focus on the maximally mixed equi-

librium (MME, in short) in which both colleges play mixed-strategies (α0, β0) for students with

v ∈ [v̌, v̂] and according to Theorem 1 for outside that range.

The characterization of equilibria has so far rested on the necessary conditions for competitive

equilibria, particularly the “local” incentive compatibility with respect to each type of students.

Whether the preceding characterization based on MME admits a well-defined strategy profile and,

if so, whether it constitutes competitive equilibria are not clear. We shall address these issues in

the next subsection.

Before proceeding, though, it is important to recognize that a randomization by each college

arises from its attempt to avoid competition for students in the intermediate range of scores. In this

sense, as long as a competitive equilibrium admits the intermediate region, i.e., if v̌ < v̂, one can

13
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Figure 3.4: Cutoff Equilibrium

say that equilibrium involves strategic targeting, regardless of whether the colleges play a mixed-

or a pure-strategy. We say competitive equilibrium exhibits strategic targeting if v̌ < v̂.

When do competitive equilibria exhibit strategic targeting? Note that Theorem 1 does not

preclude a competitive equilibrium in which v̂ < v̌. Figure 3.4 depicts such a possibility with

vB < vB < vA < vA. As before, college i admits students with v > vi and rejects those with v < vi.

Observe that college A does not admit any student with v ∈ [vA, vA], since college B admits them

for sure (because vB < vA). Even though colleges have targeting incentives in this example, the

resulting equilibrium is indistinguishable from the cutoff equilibria featured in the existing research.

A natural question is when such an equilibrium can be ruled out. The exact condition for its

existence appears difficult to find, but we show next that the symmetric environment is sufficient

to guarantee strategic targeting behavior.

Theorem 2. If the environment is symmetric (i.e., µ(s) = 1 − µ(1 − s) for all s), then every

competitive equilibrium exhibits strategic targeting.

Proof. See Appendix A.4. �

3.1 Existence of MME

We now show that there exists an equilibrium in which α(·) and β(·) involve maximal mixing.11

11In the same proof, we also establish the existence of A- or B-priority equilibrium. Note that a general equilibrium
existence follows from the Glicksberg-Fan theorem, since each college’s strategy space is compact and convex, and
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Theorem 3. There exists a competitive equilibrium with maximal mixing.

Proof. See Appendix A.5. �

We sketch the proof here. The proof constructs equilibrium strategies α(·) and β(·) of the

desired property (i.e., maximal mixing) in terms of threshold states (ŝA, ŝB). Since the latter space

is Euclidean (whereas the former is functional), we can simply appeal to the Brouwer’s fixed point

theorem to establish the existence. To begin, fix any candidate threshold states (ŝA, ŝB) for the

two colleges. Next, we can construct the colleges’ mutual best-responses (α, β) corresponding to

the chosen (ŝA, ŝB), by simply consulting the signs of HA and HB:

α(v; ŝ) =



1 if HA(v, 1; ŝ) > 0

0 if HA(v, 1; ŝ) < 0, HB(v, 1; ŝ) > 0

α0(v; ŝ) if HA(v, 1; ŝ) < 0 < HA(v, 0; ŝ), HB(v, 1; ŝ) < 0 < HB(v, 0; ŝ)

1 if HA(v, 0; ŝ) > 0, HB(v, 0; ŝ) < 0

0 if HA(v, 0; ŝ) < 0

where α0(·) satisfies HB(v, α0(v)) = 0 for v ∈ [v̌, v̂] as given by (3.2), and β(v; ŝ) is defined

analogously.

Note that the construction pieces together the implications of Lemma 2, much as we did before,

except that, for the intermediate v’s, we require each college to mix in such a way to keep the

opponent indifferent. In this way, a given (ŝA, ŝB) pins down the maximally mixing mutual best

responses (α, β). Since the threshold states (ŝA, ŝB) are arbitrary, there is no guarantee that the

constructed strategies reproduce them as the correct thresholds. In fact, they will reproduce another

possible threshold states s̃ = (s̃A, s̃B):12

s̃A = inf{s ∈ [0, 1] |mA(s; ŝ)− κ > 0} and s̃B = inf{s ∈ [0, 1] |mB(s; ŝ)− κ > 0}, (3.4)

where mA and mB are derived from the formulae (2.1) and (2.2).

But this process defines a mapping T : [0, 1]2 → [0, 1]2 such that T (ŝ) = s̃. In Appendix A.5,

we apply the Brouwer’s fixed point theorem to show that T admits a fixed point ŝ∗ = (ŝ∗A, ŝ
∗
B)

such that T (ŝ∗) = ŝ∗. Clearly, the strategies (α, β) constructed as above based on this fixed point

ŝ∗ = (ŝ∗A, ŝ
∗
B) does form mutual best responses for the colleges, given the accurate thresholds.

Note that the strategies (α, β) thus found form best responses in the “local” sense: (α, β) entails

each college’s payoff function is concave in its own strategy. That is, if one does not insist on the particular structure
of behavior we impose on MME (or A- or B-priority), it is easy to show the existence of equilibrium admission
strategies.

12As usual, these formulae are valid only if the associated sets in (3.4) are nonempty. If they are empty, then
threshold values are set equal to one for s̃A and zero for s̃B .
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no incentive for each college to deviate in its admission decisions on type-v students, for each v,

holding constant its own admission strategies with respect to the other students. A college may still

profitably deviate on a mass of students. To show that no such global deviation is profitable, we

consider a variation of α(·) such that for any t ∈ [0, 1],

α(v; t) := tα̃(v) + (1− t)α(v), (3.5)

where α̃(v) ∈ [0, 1] is an arbitrary strategy. We then define A’s payoff function in terms of α(v; t),

V (t) := πA(α(v; t)). Observe that πA(α̃) = V (1) and πA(α) = V (0). Therefore, the proof is

completed by showing that V (1) ≤ V (0). Because α̃(·) is arbitrary, this proves that α(·) is a best

response for a given β(·). See Appendix A.5 for details.

3.2 Properties of Equilibria

We have seen that the equilibrium outcome involves strategic targeting. We now consider the

properties of the equilibria in welfare and fairness.

Let us first define assignment and outcome. For each state s, an assignment is a mapping

from V ×{A,B} into the fraction of students assigned to each college. That is, an assignment is an

allocation of the types of students in terms of scores and preferences to the colleges. An outcome

is a mapping from a state to an assignment, i.e., the realized allocation in state s.

We say that a student has a justified envy at state s if at that state she prefers a college to

the one she enrolls in, even though the former enrolls a student with a lower score. An outcome is

said to be fair if for almost every state, the assignment it selects has no justified envy for almost

all students. Next, an outcome is Pareto efficient if for almost every state, the assignment it

selects is not Pareto dominated, i.e., there is no other assignment in which both colleges and all

students are weakly better off and either at least one college or a positive measure of students is

strictly better off relative to the initial assignment.

It is also useful to study the welfare of one side, taking the other side simply as resources. We

say that an outcome is student efficient if for almost every state, there is no other assignment

in which all students are weakly better off and a positive measure of students is strictly better

off relative to the initial assignment that the outcome selects. An outcome is said to be college

efficient if for almost every state, no other assignment can make both colleges weakly better off and

at lease one college strictly better off relative to the assignment that the outcome selects. Notice

that even if an outcome is Pareto efficient, it need not imply student efficiency or college efficiency.

The next theorem states properties of equilibria that arise in decentralized matching.

Theorem 4. (i) Any non-competitive equilibrium is unfair, student inefficient, but college efficient.

(ii) Any non-competitive equilibrium is Pareto inefficient unless almost every student admitted

by one college has higher score than those admitted by the other college.
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(iii) Any competitive equilibrium is student, college and Pareto inefficient.

(iv) Any competitive equilibrium is unfair if and only if it exhibits strategic targeting.

Proof. See Appendix A.6 �

4 Multidimensional Performance Measures and Evaluation Dis-

tortion

In the baseline model, we have assumed that colleges assess students based on the common per-

formance measure. In practice, colleges consider multiple dimensions of students’ qualities and

performances, academic as well as non-academic. Some performance dimensions are more common

among colleges; for instance, the SAT scores or grade points average of students are commonly

observed and interpreted virtually the same by colleges. Others are less correlated. For instance,

many colleges require college-specific essays and testing (e.g., those in Korea and Japan). Non-

academic performance measures are particularly rich and difficult to quantify, and colleges are likely

to focus on different aspects and interpret them differently. For instance, some colleges may pay

attention to students’ community service or leadership activities, whereas others may pay more

attention to extracurricular activities such as musical or athletic talents. So colleges’ evaluation of

students on these dimensions are likely to be less correlated. We show that strategic targeting takes

a particular form in this environment: Colleges bias their admissions criteria by placing excessive

weight on non-common performances.

To this end, we extend our model as follows. A student’s type is described as a triple (v, e, e′) ∈
V×E×E′ ≡ [0, 1]3, where v is distributed according to G(·) as before, and e and e′ are conditionally

independent on v and are distributed according to X(·|v) and Y (·|v), respectively, which admit

densities x(·|v) and y(·|v). We also assume that Xv(e|v) < 0 and Yv(e
′|v) < 0 for all e, e′ ∈ [0, 1].

That is, a student with higher v has a higher probability to have higher e and e′. We also assume full

support of G, X, Y . College A only values (v, e) and college B only cares about (v, e′). Specifically,

we assume that college A derives payoff U(v, e) from matriculating student with type (v, e, e′),

where U is strictly increasing and differentiable in both arguments. Likewise, college B realizes

payoff V (v, e′) from matriculating the same type of student, where V is strictly increasing and

differentiable in (v, e′).

One interpretation is that v is an academic performance measure observed commonly to both

colleges, and e and e′ correspond to different dimensions of extracurricular activities that the two

colleges focus on. Alternatively, v is a student’s test scores of the nationwide exam, and e and e′

may represent a student’s performance on college-specific tests or interviews.

College A’s strategy is now described as a mapping α : V ×E → [0, 1] with interpretation that

it admits a fraction α of students with type (v, e). Likewise, college B’s strategy is described by
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Figure 4.1: College’s Cutoff Locus

a mapping β : V × E′ → [0, 1]. The enrollment uncertainty facing A with regard to students with

type (v, e) depends on whether those students receive an admission offer from B. But since e′ is

conditionally uncorrelated with e, the probability of such event is β(v) := Ee′ [β(v, e′)|v]. Likewise

α(v) := Ee[α(v, e)|v] is relevant for B to assess its enrollment uncertainty.

For given α(·) and β(·), the mass of students enrolling in college A in state s is

mA(s) =

∫ 1

0

∫ 1

0
α(v, e)[1− β(v) + µ(s)β(v)] dX(e|v) dG(v).

Hence, A’s payoff is described as follow:

πA =

∫ 1

0

∫ 1

0
U(v, e)α(v, e)[1− β(v) + µβ(v)] dX(e|v) dG(v)− λEs[mA(s)− κ | s > ŝA](1− ŝA)

=

∫ 1

0

∫ 1

0
HA(v, e, β(v)) dX(e|v) dG(v) + λ (1− ŝA)κ,

where

HA(v, e, β(v)) := U(v, e)[1− β(v) + µβ(v)]− λ(1− ŝA)
(
1− β(v) + µ+(ŝA)β(v)

)
. (4.1)

We focus on a cutoff strategy equilibrium in which college A admits student type (v, e) if and

only if e ≥ η(v) for some η nonincreasing in v, and college B admits student type (v, e′) if and

only if e′ ≥ ξ(v) for some ξ nonincreasing in v. For instance, the shaded area in Figure 4.1

depicts the types of students A admits under a cutoff strategy. Appendix A.7 provides a condition

under which cutoff equilibrium exists. Such an equilibrium is quite plausible since the use of non-

common performance measure by the colleges lessens their head-on competition and the associated

enrollment uncertainty.
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The question we focus on here is whether the colleges may further reduce the head-on com-

petition and the enrollment uncertainty by placing more weight on the non-common performance

measures relative to their common preferences. Consider college A. (College B’s incentive will be

analogous.) Inspection of A’s preference makes it clear that under the cutoff equilibrium, it must

accept student type (v, e) if and only if HA(v, e, β(v)) ≥ 0. In particular, the cutoff locus e = η(v)

must satisfy HA(v, η(v), β(v)) = 0 whenever η(v) ∈ (0, 1). Its slope −η′(v) shows the “relative

worth” of the student’s common performance v in A’s evaluation, as measured in the units of the

student’s non-common performance that A is willing to give up to obtain a unit increase in her

common performance. The higher this value is, the higher weight A places on the common perfor-

mance. In particular, we shall say that the college under-weights a student’s common performance

v and over-weights her non-common performance e if for all v,

−η′(v) ≤ Uv(v, η(v))

Ue(v, η(v))

and the inequality is strict for a positive measure of v. Suppose for instance U(v, e) = (1−ρ)v+ρe,

then the condition means that −η′(v) ≤ 1−ρ
ρ , so the college places a weight less than 1 − ρ to

common performance v and the weight more than ρ to non-common performance e.

Theorem 5. In a cutoff equilibrium, each college under-weights a student’s common performance

and over-weights her non-common performance.

Proof. See Appendix A.7. �

The distortion of the evaluation criterion makes the equilibrium outcome unfair since justified

envy arises in a positive measure of states for those students with (v, e, e′) who prefer A to B (those

who are in the area II at the bottom between dotted and solid lines in Figure 4.1) and should

have outranked some of those students admitted by A (those who are in the area I at the top

between solid and dotted lines). In equilibrium, a college is also underfilled in a positive measure of

states, and assigning unmatched students to those unfilled seats improves the social welfare without

hurting any other students or colleges.

Theorem 6. The cutoff equilibrium is unfair and students, college and Pareto inefficient.

5 Coordinated Matching: Self-Targeting

So far, we have characterized the pattern of colleges’ strategic targeting and provided existence

and welfare and fairness properties of such equilibria. In the current and the following sections, we

study two common ways for colleges to alleviate their yield management burden in decentralized

matching. We consider the case that students’ type is single dimensional as in the baseline model.
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One common method used in many countries is to limit the number applications that students

can submit. For instance, students cannot apply to both Cambridge and Oxford in the UK, and

applicants in Japan can only apply to one public university.13 In Korea, all schools (more precisely,

college-department pairs) are partitioned into three groups and students are allowed to apply to

only one in each group.14

Limiting the application forces students to “self-target” colleges. Since students are likely to

target schools they are most likely to accept when admitted, this method improves the odds of

enrollment for colleges and thus their yield management burden. In our model with two colleges, if

the number of applications is restricted to one, colleges face no enrollment uncertainty because no

student admitted by a college will turn down its offer; so their admission behavior is non-strategic;

namely, they admit students in the order of v until their capacities are filled. However, students’

application behavior will be strategic; thus, the overall welfare effects are not clear a priori.

We now provide a simple model showing students’ application behavior when the students can

apply to only one of the two colleges. To this end, we introduce students’ cardinal preferences for

colleges.15 Each student has a taste y ∈ Y ≡ [0, 1], which is independent of score v ∈ [0, 1]. A

student with taste y obtains payoff y from attending college A and 1− y from attending college B.

Thus, students with y ∈ [0, 1
2 ] prefer B to A, and those with y ∈ [1

2 , 1] prefer A to B. To facilitate

the analysis, we assume that colleges observe an applicant’s score v but not her preference y, while

each student knows her preference y but not her score v.16 In reality, even though students submit

their records to colleges, they do not know precisely how they are ranked by colleges. See Avery

and Levin (2010) for the same treatment.

A student’s taste y is drawn according to a distribution that depends on the underlying state.

For a given s, let K(y|s) be the distribution of y with a density function k(y|s). Then, µ(s) ≡
1 − K(1

2 |s) is the mass of students who prefer A to B in state s. We assume that µ(s) 6= 1
2 for

almost all s and that k(y|s) is continuous and obeys (strict) monotone likelihood ratio property

(MLRP), i.e., for any y′ > y and s′ > s,

k(y′|s′)
k(y|s′)

>
k(y′|s)
k(y|s)

, (5.1)

13Public colleges in Japan may hold three exams. The first one is called “zenki(former period)-exam” and the last
one is called “koki(later-period)-exam”. There are very small number of schools that have exam between these two
exams. Students can apply to at most one public school at each exam date but the deadline for registering to the
school that a student is admitted at zenki-exam is earlier than the date for applying the koki-exam.

14Although there is no such restriction in the US, high application fees may serve this role. See Chade and Smith
(2006) and Chade, Lewis and Smith (2011) for students application decisions subject to application costs, without
aggregate uncertainty.

15Note that this does not alter the previous analyses, because even if students have cardinal preferences, it is still
a weak dominant strategy for students to apply to both colleges in the previous model.

16This also does not alter the previous analyses, because if students do not know their scores perfectly, then it is a
strict dominant strategy for them to apply to both colleges when there is no restriction on the number of applications
(see footnote 7).
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meaning that a student’s taste is more likely to be high in a high state. We further assume that

there is δ > 0 such that
∣∣∣ky(y|s)
k(y|s)

∣∣∣ < δ for any y ∈ [0, 1] and s ∈ [0, 1], which means that students’

tastes change moderately according to states. Each student with taste y forms a posterior belief

about the states,

l(s|y) :=
k(y|s)∫ 1

0 k(y|s)ds
.

Before proceeding, we make the following observations: First, for the students, applying to a

school dominates not applying at all. Second, since students do not know their scores and their

preferences are independent of the scores, students’ applications depend only on their preferences.

Third, since students’ preferences depend on states, the mass of students applying to each college

varies across states. Let ni(s) be the mass of students who apply to college i = A,B in state s.

Consider colleges’ admissions decisions. Since a college faces no enrollment uncertainty, a cutoff

strategy is optimal. If ni(s) ≥ κ in state s, then college i will set its cutoff so as to admit students

up to its capacity. Otherwise, it will admit all applicants. More precisely, the cutoff of college i in

state s, denoted by ci(s), is given by

ci(s) := inf {c ∈ [0, 1] |ni(s)[1−G(c)] ≤ κ} .

Consider now students’ application decisions. Fix any σ : Y → [0, 1] which maps from taste to

a probability of applying to A. This induces the mass of students applying to A in each state s,

nA(s) :=

∫ 1

0
σ(y)k(y|s) dy.

Clearly, nB(s) = 1− nA(s). A student with taste y has a probability of being admitted by i

Pi(y|σ) = Es[1−G(ci(s)) | y, σ] =

∫ 1

0
qi(s|σ)l(s|y)ds,

where qi(s|σ) := min
{
κ/ni(s|σ), 1

}
for i = A,B. Note that a student with taste y will apply to A

if and only if

yPA(y|σ) ≥ (1− y)PB(y|σ).

or equivalently,

T (y|σ) := yPA(y|σ)− (1− y)PB(y|σ) ≥ 0.

Lemma 3. Suppose δ ≤ 1
2 . In any equilibrium, there exists a cutoff ŷ such that students with y ≥ ŷ

apply to A and those with y < ŷ apply to B. And such an equilibrium exists.

Proof. See Appendix A.8. �

Let ŷ be the cutoff in the equilibrium. Since all students with y ≥ ŷ apply to A, the mass of
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Figure 5.1: Equilibrium Assignment when κ = 0.4

students applying to A is nA(s) =
∫ 1
ŷ k(y|s)dy = 1−K(ŷ|s), and similarly nB(s) = K(ŷ|s).

Theorem 7. Suppose µ(s) > 1
2

(
µ(s) = 1

2

)
for almost all s. Then, ŷ ∈ (1

2 , 1)
(
ŷ = 1

2

)
, where ŷ is

the equilibrium cutoff.

Proof. See Appendix A.8. �

Theorem 7 shows students’ strategic applications when college A is more popular than the other

for all states. Consider a student with taste y who expects that PB(y) > PA(y) since A is more

popular than B. If she prefers B (y < 1
2), then it is optimal for her to apply to B, obviously. If

the student prefers A (y ≥ 1
2), then there is a trade-off since her payoff is higher if she can attend

A over B, but she believes that she has a higher chance of admission to B. Thus, if she mildly

prefers A, then she may apply to B instead of A. We provide a simple example with two states to

illustrate the results. Figure 5.1 depicts the equilibrium assignments of the example.

Example 1. Suppose there are two states a and b with equal probability. Let K(y|a) = y2, K(y|b) =

y and κ = 0.4. Then, we have

ŷ nA(a) nB(a) cA(a) cB(a) nA(b) nB(b) cA(b) cB(b)

0.547 0.701 0.299 0.429 0 0.453 0.547 0.116 0.269

Observe that if ni(s) ≥ κ for all s and all i = A,B, then the self-targeting eliminates colleges’

yield management problem, since each college fills its capacity with the best students among those

who applied to it. However, it does not hold in general because there can be under-subscription to

a college in some state. In the above example, for instance, the mass of applicants to college B in

state a is smaller than its capacity (nB(a) = 0.299 < κ = 0.4).

Let us now consider welfare and fairness properties of the equilibrium outcome. First, the

equilibrium is unfair. That is, justified envy arises in that (i) students who happen to have applied
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to a more popular school for a given state may be unassigned even though their scores would have

been good enough for the other school (the area on the bottom right below the right shaded area

of Figure 5.1(a)); and (ii) students who mildly prefer the popular school to the less popular one

may be assigned to the latter college even though they could have been assigned to the popular

one (the dark shaded area between 1
2 and ŷ of Figure 5.1(b)).

Second, there can be under-subscription to a college in equilibrium so that its capacity is not

filled even though there are unassigned, acceptable students. By assigning those students to unfilled

seats of a college, both the students and college will be better off. Thus, the equilibrium outcome

is still student, college and Pareto inefficient.

In the next theorem, we provide conditions under which justified envy among students and/or

under-subscription to a college arise.

Theorem 8. The outcome is unfair. Suppose K(ŷ|s) < κ for a positive measure of states. Then,

college B suffers from under-subscription, and the outcome is student, college and Pareto inefficient.

Proof. See Appendix A.8. �

6 Wait-listing

In this section, we consider wait-listing as another way to cope with enrollment uncertainty. Ac-

cording to this method, a college would admit initially some applicants and wait-list some others

and later admit students from the latter group when some of the former group decline admissions,

and this process may repeat. Wait-listing is adopted by most colleges in France, Korea, and the

US.17 Typically, the acceptance decisions are not deferred or the number of iterations is limited.

Hence, even though wait-listing entails more admission offers and acceptances than the baseline

model or self-targeting, it does not fully eliminate congestion. For this reason, strategic targeting

remains an issue as well.

To see this, we consider a simple extension of our baseline model. There are three colleges, A,

B and C, each with a mass κ < 1
3 capacity. There is a unit mass of students with score v, where v

is distributed over [0, 1] according to G(·) as before. All students like A and B better than C, but

C is sufficiently better than not attending any school. Colleges’ preferences are given by students’

scores, but for each student, there is a probability ε that each of colleges A and B finds that the

student is unacceptable. College C simply likes students according to their scores.

There are two states, a and b, with equal probability. In state i, i = a, b, a fraction si of students

gets utility u from A and u′ from B, and the remaining 1−si students have the opposite preference,

where sa = 1 − sb > 1
2 . In either state, students get utility u′′ from C, where u > u′ > u′′ and

17In the US, nearly 45 percent of four-year colleges utilize wait lists in 2011 (Clinedinst, Hurley and Hawkins,
2012).
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u′′ > (1− ε)u. The latter assumption means that the certain utility from college C of a student is

greater than the uncertain utility from the better school. Note that in state a, the mass of students

who prefer A to B is larger than that of those who prefer B to A (sa >
1
2 > 1− sa), and in state b,

the former is smaller than the latter (sb <
1
2 < 1− sb).

Suppose the capacity cost is prohibitively high so that at each time when a college makes

admission decisions, it must be sure that the capacity will never be violated. The wait-listing has

the following feature. In each round, the colleges make admission offers to a set of students and

wait-list the remaining. The students who received offer(s) from college(s) must decide to accept

or reject the offer immediately; that is, the acceptance decision cannot be deferred. After the first

round, colleges A and B learn the state, so the game effectively ends in two rounds.

We show that there is no symmetric equilibrium in which both colleges A and B use a cutoff

strategy (i.e., admit the top κ students among those who are acceptable) in the first round.

Theorem 9. There is no symmetric equilibrium in which both A and B offer admissions to the

top κ students (excluding those whom they find unacceptable) in the first round.

Proof. See Appendix A.9. �

Suppose colleges A and B consider making admission offers to the most preferred candidates up

to their capacities with a plan to approach the next best students in case some of those first group

students turn their offers down. The problem, however, is that when they are turned down by some

of the first group students, they may not have the second best students available. The reason is that

those latter group students are uncertain about whether A or B find them acceptable, hence if they

receive an admission offer from college C, they may accept it. This in turn creates uncertainty for

colleges on the students that remain after the first round. In particular, the students who remain

after the first round are likely to be far worse than the second best group. This means in that

in any symmetric equilibrium, each of A and B must directly offer admissions to some of those

second group (at least with a positive probability) instead of some of the first group students. In

other words, strategic targeting must occur in any symmetric equilibrium. The strategic targeting

here can be traced to the uncertainty facing the colleges about what students will remain after

each round. This uncertainty in turn arises from the uncertainty facing the students about whether

better offers will emerge in the next round by turning down the current offer. Without the deferral of

decisions, either by colleges in admitting students or by students in accepting offers, the uncertainty

results in strategic targeting.18

Even though our characterization is partial, we have shown that strategic targeting must be

part of the symmetric equilibrium. This means that the equilibrium outcome must be unfair. The

equilibrium must be also student inefficient because there are two groups of students, among those

18As will be seen in the next section, the deferral of decisions allowed in the Gale-Shapley’s algorithm solves this
problem.
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Figure 7.1: Deferred Acceptance Algorithm

in the second best group, one preferring A but assigned to B and the other preferring B but assigned

to A. Again, strategic targeting has undesirable consequences.

7 Centralized Matching via Deferred Acceptance

The most systemic way to respond to the enrollment uncertainty would be to centralize the matching

procedure. College admissions are also centralized in some countries, such as Australia, China,

Germany, Taiwan, Turkey and the UK.19 In this section, we consider a centralized matching with a

Gale and Shapley’s Deferred Acceptance algorithm (henceforth DA). Not only is the DA employed

in many centralized markets, such as public school admissions and medical residency assignments,

but it has a number of desirable properties compared with the outcomes of decentralized matching,

as we shall highlight below.

Suppose that the matching is organized by a clearinghouse that applies Gale and Shapley’s

student-proposing DA.20 The algorithm works as follows. Initially, students and colleges report

their preference orderings to the clearinghouse. In each round, students propose to the best schools

that have not yet rejected them. The colleges then accept tentatively the applicants in the order

of their scores up to their capacities and rejects the rest. This process is repeated until no further

proposals are made, in which case each student is assigned to a college that has tentatively accepted

her proposal.21

Figure 7.1 illustrates the process for the case µ(s) ≥ 1
2 . In the first round, a fraction µ(s) of

students proposes to college A, and the remaining students propose to college B. Each college

19See Chen and Kesten (2011) for Shanghai mechanism and Westkamp (2012) for Germany medical school match-
ings.

20The outcome of college-proposing DA is the same as that of student-proposing DA in our model, since colleges
have a uniform rank on students.

21Abdulkadiroğlu, Che and Yasuda (2012) and Azevedo and Leshno (2012) provide a model of DA in which a
continuum mass of students is matched to a finite number of schools.
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tentatively admits the top κ students among the applicants. Thus, colleges’ cutoffs in this round,

denoted by ĉi(s), i = A,B, satisfy µ(s)[1 − G(ĉA(s))] = κ and (1 − µ(s))[1 − G(ĉB(s))] = κ (see

Figure 7.1(a)). Unassigned students then propose to another college at the second round, and again,

colleges reselect the top κ students from those tentatively admitted and from the new applicants.

Thus, colleges’ cutoffs in this round satisfy µ(s)[1 − G(ĉA(s))] = κ and 1 − G(ĉB(s)) = 2κ (see

Figure 7.1(b)). Since there are no more colleges to which unassigned students can apply, the

assignment is finalized in the second round in our model.

Consider now the equilibrium properties of the DA outcome. Under DA, the matching is strategy

proof for the students, so the students have a dominant strategy of reporting their preferences

truthfully (Dubins and Freedman, 1981; Roth, 1982). In addition, colleges in our model also report

their rankings and capacities truthfully in a Nash equilibrium.

Lemma 4. Given the common college preferences, it is an ex post equilibrium for colleges to report

their rankings and capacities truthfully.

Proof. See Appendix A.10. �

The matching in the equilibrium involves no justified envy (Gale and Shapley, 1962; Balinski

and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003) and is efficient among students (because

colleges’ preferences are acyclic in the sense of Ergin (2002)) and Pareto efficient (an implication of

stability). It also eliminates colleges’ yield management problem completely. Colleges never exceed

their capacities (because it is never allowed by the algorithm) and have no seats left unfilled in the

presence of acceptable unmatched students (a consequence of stability).

In fact, given the homogeneous preferences of the colleges, there exists a single cutoff such that

a student is assigned to a college under DA if and only if her score exceeds that cutoff. In order

words, only those with the top 2κ scores are assigned. This outcome is jointly optimal for the two

colleges, in the sense that if the two colleges were to merge, it will choose exactly top 2κ students in

each state. In contrast, a competitive equilibrium in decentralized matching entails unfilled seats

for colleges in low-demand states and exceeded quotas in high-demand states, so the assignment is

far from jointly optimal. This observation suggests that at least one college must be strictly better

off from a shift from decentralized matching to centralized matching via the deferred acceptance

algorithm. Despite the overall benefit from switching centralization via DA, it is possible for one

college to be worse off. To see this, consider the following example.

Example 2. Let v ∼ U [0, 1], λ = 5, κ = 0.45 and µ(s) = 2
5s+ 3

5 . Then, in a decentralized admission,

there is a MME such that v̌ = vA < vB = v̂ and colleges’ payoffs in the equilibrium are πA = 0.283

and πB = 0.180. Suppose now that the DA is in use. Then, their payoffs are πDAA = 0.321 and

πDAB = 0.174. Notice that πDAA + πDAB = 0.495 > πA + πB = 0.463 (overall benefit for the two

colleges), πDAA > πA (college A is strictly better off), but πDAB < πB (college B is worse off).
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In this example, college A is more popular than B for all states. Yet, in a decentralized matching,

strategic targeting enables college B to attract top students who it would otherwise not be able to

attract under DA. This may explain why centralized college admissions are not very common, for

instance, in contrast with public high school admissions. In the latter, the schools are largely under

the control of the school system which serves the interest of the students. In contrast, colleges are

independent strategic players with their own interest to pursue.

Equilibrium properties of the outcome under DA are summarized in the follow.

Theorem 10. Under DA, the equilibrium outcome is fair, Pareto and student efficient, and jointly

optimal among the colleges. However, some college may be worse off relative to decentralized match-

ing.

8 Conclusion

The current paper has introduced and analyzed a new model of decentralized college admissions.

In the model, colleges make admission decisions subject to aggregate uncertainty about students’

preferences and linear costs for any enrollment exceeding the capacity. We find that colleges’

admission decisions become a tool for strategic yield management and in equilibrium, colleges try

to reduce their enrollment uncertainty by strategically targeting students with their admissions.

We also show that when colleges consider students’ non-academic performance or extracurricular

activities, the use of these aspects may lessen head-on competition among colleges. However,

strategic targeting still entails as colleges placing over-weights on those non-common performance

measure.

We also obtain the welfare and fairness implications of the equilibrium outcomes. We show

that the equilibrium outcome under decentralized matching entails justified envy and is Pareto

inefficient. Our analytical model also permits a clear comparison of the outcomes that would arise

when students are forced to self-target (by the limited set of schools they can apply to), when

admissions are made sequentially, and when the market is centralized via DA. Both self-targeting

and wait-listing alleviate colleges’ yield management burden, but strategic targeting and enrollment

uncertainty remain. Thereby, so do inefficiencies and justified envy. Centralized matching via DA

completely eliminates the yield management problem and justified envy, and it also achieves Pareto

efficiency. At the same time, not all colleges may benefit from such a centralized matching. This

last observation may explain why college admissions remain decentralized in many countries.

Our analyses yield implications on several issues:

Early Admissions. Early admissions are widely used in the US and Korea. In these countries,

students can apply early often to a restricted set of schools, and the schools early-admit them (with

binding or non-binding requirements for students to accept them). The remaining students and
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seats are then allocated through regular admissions, operating much as in our baseline model. The

resulting process involves the sequencing of admissions, as studied in Section 6, and the restricted

choice in the early round resembles self-targeting, as studied in Section 5. While the process is

too complicated to model in our framework, particularly with aggregate uncertainty, our analyses

suggest an important purpose the early admissions program serves. By restricting the number

of applications, the early admissions programs induce students to reveal their preferences for col-

leges. This, together with the sequencing, allows colleges to forecast and manage the enrollment

uncertainty more effectively than they could without the program. We believe this is an important

function of the early admissions, in addition to those recognized by other recent literatures (Avery

and Levin, 2010; Lee, 2009). Regardless of the motives, the programs restrict choices for students

and force colleges to make decisions based on less than full information that will become available

to them. As seen in Section 5 and in Avery and Levin (2010), students are likely to respond

strategically, which will likely entail justified envy and inefficiencies.

Colleges’ Preferences for Loyalty and Enthusiasm. It is well documented that colleges favor

students who are eager to attend them. Students who convey seriousness of their interests through

campus visits, essays, and webcam interviews are known to be marginally favored, especially by

small liberal arts colleges. Early admissions, as Avery and Levin (2010) argue, also serve as a

tool for colleges to identify enthusiastic applicants and favor them in the admission. Likewise, the

“legacy” admits (who have a family history with the school) can be seen as a way for colleges to

identify and favor those who have strong preferences. It is entirely plausible that these preferences

by colleges are intrinsic, as postulated by Avery and Levin (2010). But, our theory suggests that

such a preference by colleges could also arise endogenously from their desire to manage enrollment

uncertainty. The main logic of our theory is that those who are more likely to accept a college’s

admission contributes less to enrollment uncertainty than those who are not as serious, suggesting

that even a college with no intrinsic preference for the former students has a reason to favor them.

In this sense, campus visits, essays and legacy admits all serve as a device for colleges to target

those who are more likely to come.

Specialized Requirements and College Specific Investments. Colleges often have spe-

cial requirements for their applicants to fulfill. These requirements range from specialized essay

questions, college-specific entrance exams, to specialized admissions tracks requiring specific qual-

ifications. For example, colleges in Korea admit a number of students through specialized tracks

that require specific qualifications, such as foreign language skills, awards in contests in science,

music, invention, or information technologies. Such requirements help colleges to identify students

with serious interests. More demanding requirements encourage students to make college-specific

investments. Our theory suggests that these investments serve as a means by which colleges can
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target and secure enrollment of students even in early stages.

References
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A Appendix A: Proofs

A.1 Proof of Lemma 1

Claim 1. Suppose VAB has zero measure. Then, the following results hold.

(i) mA(s) = mB(s) = κ for all s ∈ [0, 1].

(ii) Almost every student with v ≥ G−1(1− 2κ) receives a admission.

Proof. (i) Since VAB is a measure zero set, mi(s), i = A,B, is constant across states. Suppose

mi(s) < κ. Then, college i can benefit by admitting some students with measure less than κ−mi(s).

Similarly, if mi(s) > κ, then it can benefit by rejecting some students with measure less than

mi(s)− κ.

(ii) Observe that VA ∪ VB cannot have a gap, otherwise a college can benefit by replacing a

positive measure of low score students with the same measure of students in the gap. So, it must

be a connected interval with sup{VA ∪ VB} = 1. Since mA(s) = mB(s) = κ for all s by Part (i),

this means that almost every top 2κ students are admitted. �

Note that the proofs for Parts (i), (ii) and (iv) of the lemma for noncompetitive equilibrium

follow from Claim 1. We thus consider competitive equilibrium in what follows. We prove in the

sequence of Parts (i), (iii) and (ii).

Proof of Part (i). Consider a competitive equilibrium. Suppose mA(1) < κ. Let college A admit

a mass κ −mA(1) of students. Then, the mass of students attending A in this case, denoted by

m̃A(s), satisfies that for any s < 1,

mA(s) < mA(s) + µ(s)[κ−mA(1)] ≤ m̃A(s) ≤ mA(s) + [k −mA(1)] < κ,

where the first and the last inequality follow from the fact that mA(s) < mA(1) for s < 1 (since

µ(·) is strictly increasing in s). Observe that A benefits from such deviation since it admits more

students without having over-enrollment. Hence, we must have κ ≤ mA(1) in equilibrium. Similarly,

if mA(0) > κ, then A can benefit by rejecting a mass mA(0) − κ of students. Therefore, we must

have mA(0) ≤ κ ≤ mA(1) in any competitive equilibrium. The proof for college B is analogous. �

Proof of Part (iii). We consider college A here. The proof for college B will be analogous. Since

µ(·) is strictly increasing and continuous in s, so is mA(·). Thus, there exists ŝA ∈ [0, 1] such that

mA(ŝA) = κ by Part (i). We show that ŝA 6= 0, 1 in what follows.

Suppose ŝA = 0. Then, mA(s) > mA(0) = κ for all s > 0. Thus, college A’s payoff is

πA =

∫ 1

0
vα(v)(1− β(v) + µβ(v))dG(v)− λ

∫ 1

0
[mA(s)− κ]ds,
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where

mA(s) =

∫ 1

0
α(v)(1− β(v) + µ(s)β(v))dG(v).

Let A reject a positive measure of students, say (c, c+ δ) ∈ VA. Then, its payoff is

π̃A =

∫
[0,1]\(c,c+δ)

vα(v)(1− b(v) + µ)β(v))dG(v)− λ
∫ 1

s̃A

[m̃A(s)− κ]ds,

where

m̃A(s) = mA(s)−
∫ c+δ

c
α(v)(1− β(v) + µ(s)β(v))dG(v) (A.1.1)

and s̃A is such that m̃A(s̃A) = κ. Note that s̃A > ŝA = 0 since m̃A(s) < mA(s). Now, we can

choose δ such that s̃A < ε for sufficiently small ε > 0. Then, A’s net payoff from the deviation is

−
∫ c+δ

c
vα(v)(1− β(v) + µβ(v))dG(v)− λ

∫ 1

s̃A

[m̃A(s)− κ]ds+ λ

∫ 1

0
[mA(s)− κ]ds

=−
∫ c+δ

c
vα(v)(1− β(v) + µβ(v))dG(v) + λ

∫ 1

s̃A

[mA(s)− m̃A(s)]ds+ λ

∫ s̃A

0
[mA(s)− κ]ds

=−
∫ 1

s̃A

(∫ c+δ

c
vα(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds−

∫ s̃A

0

(∫ c+δ

c
vα(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds

+ λ

∫ 1

s̃A

(∫ c+δ

c
α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds+ λ

∫ 1

0
[mA(s)− κ]ds

=

∫ 1

s̃A

(∫ c+δ

c
(λ− v)α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds

−
∫ s̃A

0

(∫ c+δ

c
vα(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds+ λ

∫ s̃A

0
[mA(s)− κ]ds

>0,

where the second equality follows from (A.1.1) and the last inequality holds for sufficiently small ε.

Next, suppose ŝA = 1. Then, mA(s) < mA(1) = κ for all s < 1. Let A admit all students in

(c, c+ δ) /∈ VA for some c < 1. Then, the mass of students attending A becomes

m̃A(s) = mA(s) +

∫ c+δ

c
(1− β(v) + µ(s)β(v))dG(v). (A.1.2)

Let s̃A be such that m̃A(s̃A) = κ. Note that s̃A < ŝA = 1 since m̃A(s) > mA(s). We can choose δ

such that 1− s̃A < ε for sufficiently small ε. Then, A’s net payoff from the deviation is∫ c+δ

c
v(1− β(v) + µβ(v))dG(v)− λ

∫ 1

s̃A

(m̃A(s)− κ)ds

=

∫ c+δ

c
v(1− β(v) + µβ(v))dG(v)− λ

∫ 1

s̃A

(
mA(s) +

∫ c+δ

c
(1− β(v) + µ(s)β(v))dG(v)− κ

)
ds
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=

∫ c+δ

c
v(1− β(v) + µβ(v))dG(v)− λ

∫ 1

s̃A

(∫ c+δ

c
(1− β(v) + µ(s)β(v))dG(v)

)
ds+ λ

∫ 1

s̃A

[κ−mA(s)]ds

=

∫ s̃A

0

(∫ c+δ

c
v(1− β(v) + µ(s)β(v))dG(v)

)
ds−

∫ 1

s̃A

(∫ c+δ

c
(λ− v)(1− β(v) + µ(s)β(v))dG(v)

)
ds

+ λ

∫ 1

s̃A

[κ−mA(s)]ds

>0

where the first equality follows from (A.1.2) and the last inequality holds for sufficiently small ε. �

Proof of Part (ii). We first show sup{VA ∪ VB} = 1 and then show that VA ∪ VB is a connected

interval and inf{VA ∪ VB} > 0.

Step 1. sup{VA ∪ VB} = 1.

Proof . Suppose to the contrary that c := sup{VA ∪ VB} < 1. We show that at least one college

can benefit by rejecting some students in favor of those with [c, 1].

Suppose Vi \ VAB contains an open interval with positive measure for some i = A,B. Then, it

is clear that college i can benefit by rejecting a positive measure of students from the bottom of

Vi \ VAB and admits the same measure of students from 1.

Suppose now it is not the case. Let a college, say A, reject students in (c, c + δ) ∈ VAB and

admit those in (1− ε, 1] instead, where δ and ε satisfy∫ 1

1−ε
vdG(v) =

∫ c+δ

c
vdG(v) (A.1.3)

and ∫ 1

1−ε
1dG(v) =

∫ c+δ

c
α(v)(1− β(v) + µ(ŝA)β(v))dG(v), (A.1.4)

for given ŝA such that mA(ŝA) = κ. The mass of students attending A from this deviation is

m̃A(s) = mA(s) +

∫ 1

1−ε
1dG(v)−

∫ c+δ

c
α(v)(1− β(v) + µ(s)β(v))dG(v).

Note that m̃A(ŝA) = mA(ŝA). Denote A’s payoff from the deviation by π̃A. Then, A’s net payoff

from the deviation, π̃A − πA, is∫ 1

1−ε
vdG(v)−

∫ c+δ

c
vα(v)(1− β(v) + µβ(v))dG(v)− λEs[m̃A(s)−mA(s)|s > ŝA](1− ŝA)

≥
∫ 1

1−ε
vdG(v)−

∫ c+δ

c
vdG(v)− λ

∫ 1

ŝA

(∫ 1

1−ε
1dG(v)−

∫ c+δ

c
α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds

=− λ
∫ 1

ŝA

(∫ 1

1−ε
1dG(v)−

∫ c+δ

c
α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds
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>− λ
∫ 1

ŝA

(∫ 1

1−ε
1dG(v)−

∫ c+δ

c
α(v)(1− β(v) + µ(ŝA)β(v))dG(v)

)
ds

=0,

where the first inequality holds since α(v), β(v), µ ≤ 1 for any v, the first equality follows from

(A.1.3), and the last inequality follows from the fact that µ(·) is strictly increasing in s, and the

last equality follows from (A.1.4). �

Step 2. VA ∪ VB is a connected interval.

Proof . Suppose that there is gap in VA ∪ VB. The proof is analogous to Step 1, where (1− ε, 1] is

now replaced by the gap in VA ∪ VB. We omit the details. �

Step 3. inf{VA ∪ VB} > 0

Proof . Suppose to the contrary that inf{VA ∪ VB} = 0. Suppose inf{VA} = 0. Let A reject a

small fraction of students at the bottom, [0, ε), where 2ε < 1− ŝA and ŝA is such that mA(ŝA) = κ.

Then, the mass of students attending A from the deviation is

m̃A(s) =

∫ 1

ε
α(v)(1− β(v) + µ(s)β(v))dG(v).

Denote s̃A be the state such that m̃A(s̃A) = κ. Note that s̃A > ŝA since m̃A(s) < mA(s). Hence,

we can choose ε such that s̃A − ŝA < ε. Then, A’s net payoff from the deviation is

π̃A − πA = −
∫ ε

0
vα(v)(1− β(v) + µβ(v))dG(v)︸ ︷︷ ︸

(∗)

+λ

[∫ 1

ŝA

(mA(s)− κ)ds−
∫ 1

s̃A

(m̃A(s)− κ)ds

]
︸ ︷︷ ︸

(∗∗)

.

Note that

(∗) =

∫ 1

0

(∫ ε

0
vα(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds

< ε

[∫ 1

s̃A

(∫ ε

0
α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds+

∫ s̃A

0

(∫ ε

0
α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds

]
(A.1.5)

and

(∗∗) =

∫ 1

s̃A

(mA(s)− κ)ds+

∫ s̃A

ŝA

(mA(s)− κ)ds−
∫ 1

s̃A

(m̃A(s)− κ)ds

=

∫ 1

s̃A

(∫ ε

0
α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds+

∫ s̃A

ŝA

(mA(s)− κ)ds

34



>

∫ 1

s̃A

(∫ ε

0
α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds (A.1.6)

where the last inequality holds since mA(s) > κ for any s ∈ (ŝA, s̃). Thus, we have

π̃A − πA

>(λ− ε)
∫ 1

s̃A

(∫ ε

0
α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds− ε

∫ s̃A

0

(∫ ε

0
α(v)(1− β(v) + µ(s)β(v))dG(v)

)
ds

>(λ− ε)(1− s̃A)

∫ ε

0
α(v)(1− β(v) + µ(s̃A)β(v))dG(v)− ε s̃A

∫ ε

0
α(v)(1− β(v) + µ(s̃A)β(v))dG(v)

=
(
λ(1− s̃A)− ε

) ∫ ε

0
α(v)(1− β(v) + µ(s̃A)β(v))dG(v)

>ε(λ− 1)

∫ ε

0
α(v)(1− β(v) + µ(s̃A)β(v))dG(v)

≥0

where the penultimate inequality holds since λ(1− s̃A)− ε = λ((1− ŝA)− (s̃A− ŝA))− ε > λε− ε =

ε(λ− 1) because s̃A − ŝA < ε and 2ε < 1− ŝA. � �

A.2 Non-Competitive Equilibrium

In this section, we show that when κ < 1
2 is not too small or λ > 1 is not too large, there does not

exist a non-competitive equilibrium.

Lemma A1. Suppose that VAB has zero measure. Then, we have the followings:

(i) There is κ̂ < 1
2 such that for any κ > κ̂, one college has an incentive to deviate.

(ii) There is λ̂ > 1 such that for any λ < λ̂, one college has an incentive to deviate.

Proof. Since VAB has zero measure, mi(s) = κ for all s and

πi =

∫
Vi
v dG(v), i = A,B.

Now, let ci := inf {Vi} and ci := sup {Vi}.

Proof of (i) . Let cA = inf {VA ∪ VB}, without loss of generality. Then, cA = G−1(1 − 2κ) by

Lemma 1. We show that college A has an incentive to deviate. Suppose A rejects students in

[cA, cA + δ] but accepts those in [cB − ε, cB], where ε and δ are such that

G(cB)−G(cB − ε) = G(cA + δ)−G(cA). (A.2.1)
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Note that the mass of students attending A under this deviation is

m̃A(s) =

∫ cB

cB−ε
µ(s) dG(v) +

∫
VA\[cA,cA+δ]

1 dG(v)

= µ(s)[G(cB)−G(cB − ε)] + κ− [G(cA + δ)−G(cA)]

≤ κ,

where the second equality holds since mA(s) = κ for all s, and the last inequality follows from

(A.2.1) and the fact that µ(s) ≤ 1 for all s.

Since A is never over-demanded, its payoff from the deviation is

π̃A = µ

∫ cB

cB−ε
v dG(v) +

∫
VA\[cA,cA+δ]

v dG(v) = µ

∫ cB

cB−ε
v dG(v) + πA −

∫ cA+δ

cA

v dG(v).

Therefore,

π̃A − πA (A.2.2)

=µ

∫ cB

cB−ε
v dG(v)−

∫ cA+δ

cA

v dG(v)

=µ
[
cBG(cB)− (cB − ε)G(cB − ε)−

∫ cB

cB−ε
G(v)dv

]
−
[
(cA + δ)G(cA + δ)− cAG(cA)−

∫ cA+δ

cA

G(v)dv
]

>µ
[
cBG(cB)− (cB − ε)G(cB − ε)− εG(cB)

]
−
[
(cA + δ)G(cA + δ)− cAG(cA)− δG(cA)

]
=
[
G(cB)−G(cB − ε)

] [
µ cB − cA − µ ε− δ

]
, (A.2.3)

where the first equality follows from the integration by parts, and the last equality follows from

(A.2.1). Observe that if µ >
cA
cB

, then (A.2.2) is strictly positive for sufficiently small ε and δ, hence

π̃A > πA. Note that since cA = G−1(1 − 2κ) and mi(s) = κ for all s and i = A,B, we have that

G(cB) ≥ 1 − κ; that is, cB ≥ G−1(1 − κ). (Otherwise, college A must be admitting more than

measure κ of students.) Therefore,

cA
cB
≤ G−1(1− 2κ)

G−1(1− κ)
. (A.2.4)

Since the RHS of (A.2.4) is continuous in κ and converges to zero as κ approaches to 1
2 , there is

κ̂ < 1
2 such that for any κ > κ̂, µ >

cA
cB

for any given µ. �

Proof of (ii) . Let cB = sup {VA ∪ VB}, without loss of generality. Then, cB = 1 by Lemma 1. We

show that college A has an incentive to deviate. Suppose A rejects students in [cA, cA + δ] but

36



admits students in [1− ε, 1], where ε and δ satisfy

µ(1− cA)[1−G(1− ε)] = G(cA + δ)−G(cA). (A.2.5)

The mass of students attending A in state s under the deviation is

m̃A(s) =

∫ 1

1−ε
µ(s) dG(v) +

∫
VA\[cA,cA+δ]

1 dG(v) = µ(s)[1−G(1− ε)] + κ− [G(cA + δ)−G(cA)].

Let ŝA be such that m̃A(ŝA) = κ, i.e., µ(ŝA)[1 − G(1 − ε)] = [G(cA + δ) − G(cA)]. Since µ(·) is

strictly increasing in s, ŝA = 1− cA by (A.2.5).

Thus, A’s payoff from the deviation is

π̃A = µ

∫ 1

1−ε
v dG(v) +

∫
VA\[cA,cA+δ]

v dG(v)− λ
∫ 1

ŝA

[m(s)− κ] ds

= µ

∫ 1

1−ε
v dG(v) + πA −

∫ cA+δ

cA

v dG(v)

− λ
[
(1−G(1− ε))

∫ 1

ŝA

µ(s)ds− [G(cA + δ)−G(cA)](1− ŝA)
]
.

and the net payoff from the deviation is

π̃A − πA = µ

∫ 1

1−ε
v dG(v)−

∫ cA+δ

cA

v dG(v)

− λ
[
(1−G(1− ε))

∫ 1

ŝA

µ(s)ds− [G(cA + δ)−G(cA)](1− ŝA)
]

> µ(1− ε)[1−G(1− ε)]− (cA + δ)[G(cA + δ)−G(cA)]

− λ
[
(1−G(1− ε))

∫ 1

ŝA

µ(s)ds− [G(cA + δ)−G(cA)](1− ŝA)
]

= [1−G(1− ε)]
(
µ− η cA − µ ε− η δ − λ

[ ∫ 1

ŝA

µ(s)ds− η(1− ŝA)
])
, (A.2.6)

where η = µ(1− cA) and the last equality follows from (A.2.5).

Observe that if µ − η cA − λ
[ ∫ 1

ŝA
µ(s)ds − η(1 − ŝA)

]
> 0, then (A.2.6) is strictly positive for

sufficiently small ε and δ. Note that

µ− η cA − λ
[ ∫ 1

ŝA

µ(s)ds− η(1− ŝA)
]

= µ− λ
∫ 1

ŝA

µ(s) ds+ (λ− 1) η cA,

Since µ =
∫ 1

0 µ(s) ds >
∫ 1
ŝA
µ(s) ds (which follows from the fact that ŝA < 1), there exists λ̂ > 1

such that for any λ < λ̂, π̃A > πA. � �
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A.3 Proof of Lemma 2

Observe first that Hi(·, x) is strictly increasing in v, since for v′ > v,

HA(v′, x)−HA(v, x) = (1− x+ µx)(v′ − v) > 0

and similar for HB.

Next, we show that there is an interior cutoff σ̂A such that HA(v, x) satisfies the single crossing

property with respect to x; that is, if HA(v, x) ≤ 0 for some x ∈ (0, 1), then HA(v, x′) < 0 for any

x′ > x. Suppose for any x ∈ (0, 1),

HA(v, x) = (1− x)[v − λ(1− ŝA)] + xµ
[
v − λ(1− ŝA)

µ+(ŝA)

µ

]
≤ 0. (A.3.1)

Consider any x′ > x. If v < λ(1− ŝA), then

HA(v, x′) = (1− x′)[v − λ(1− ŝA)] + x′µ
[
v − λ(1− ŝA)

µ+(ŝA)

µ

]
< 0,

where the inequality follows from (A.3.1) and the facts that x′ > x and µ+(ŝA) > µ. If v ≥ λ(1−ŝA),

then

HA(v, x)−HA(v, x′) = (x′ − x)
[
v(1− µ)− λ(1− ŝA)(1− µ+(ŝA))

]
> (x′ − x)[v − λ(1− ŝA)](1− µ+(ŝA))

≥ 0,

where the first inequality holds since x′ > x and µ+(ŝA) > µ, and the second inequality holds since

v ≥ λ(1− ŝA). Since HA(v, x) ≤ 0, we thus have HA(v, x′) < 0. The proof for HB is analogous.

A.4 Proofs of Theorem 2

Suppose to the contrary that v̂ ≤ v̌ in a competitive equilibrium. Suppose further that

vB < vB ≤ vA < vA, (A.4.1)

without loss of generality, where the first and the last strict inequalities hold since (ŝA, ŝB) ∈ (0, 1)2

by Lemma 1-(iii). Note that we must have vA ∈ (0, 1) in equilibrium, since if vA = 1, then

mA(s) = 0 for all s, and if vA = 0, then vB = vB = vA = vA = 0, so mB(s) = 0 for all s. In

equilibrium, we have

mA(ŝA) = µ(ŝA)[1−G(vA)] = κ, (A.4.2)
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and

mB(ŝB) = (1− µ(ŝB))[1−G(vA)] +G(vA)−G(vB) = κ. (A.4.3)

From (A.4.2), 1−G(vA) = κ
µ(ŝA) . Substituting this into (A.4.3), we have

G(vA)−G(vB) = κ

(
µ(ŝA) + µ(ŝB)− 1

µ(ŝA)

)
.

Since vB < vA, this implies

µ(ŝA) + µ(ŝB) > 1⇔ µ(ŝB) > 1− µ(ŝA) = µ(1− ŝA),

where the last equality follows from the symmetry of µ(·). Since µ(·) is strictly increasing, we have

ŝB > 1− ŝA, and so vB = λ ŝB > λ (1− ŝA) = vA which contradicts (A.4.1).

A.5 Proof of Theorem 3

Step 1: Existence of a profile of admission strategies (α, β) that forms local best re-

sponses.

We first establish existence of a profile of admission strategies (α, β) : [0, 1]2 → [0, 1]2 such that

for each v ∈ [0, 1],

α(v; ŝ) =



1 if HA(v, 1; ŝ) > 0

0 if HA(v, 1; ŝ) < 0, HB(v, 1; ŝ) > 0

α0(v; ŝ) if HA(v, 1; ŝ) < 0 < HA(v, 0; ŝ), HB(v, 1; ŝ) < 0 < HB(v, 0; ŝ)

1 if HA(v, 0; ŝ) > 0, HB(v, 0; ŝ) < 0

0 if HA(v, 0; ŝ) < 0

(A.5.1)

and

β(v; ŝ) =



1 if HB(v, 1; ŝ) > 0

0 if HB(v, 1; ŝ) < 0, HA(v, 1) > 0

β0(v; ŝ) if HB(v, 1; ŝ) < 0 < HB(v, 0; ŝ), HA(v, 1; ŝ) < 0 < HA(v, 0; ŝ)

1 if HB(v, 0; ŝ) > 0, HA(v, 0; ŝ) < 0

0 if HB(v, 0; ŝ) < 0

, (A.5.2)

where α0(·) and β0(·) are respectively given by (3.2) and (3.3), and ŝ = (ŝA, ŝB) is given by (3.4).22

22One can also structure the strategy profile to satisfy the requirements of an A-priority equilibrium by replacing
α0(·) and β0(·) with 1 and 0, respectively, and of a B-priority equilibrium by replacing them with 0 and 1, respectively.
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Now, fix any ŝ ∈ S ≡ [0, 1]2 and consider the resulting profile (α(·; ŝ), β(·; ŝ)). This strategy

profile in turn induces the mass of students enrolling in colleges A and B: For college A,

mA(s; ŝ) =

∫ 1

0
α(v; ŝ)[1− β(v; ŝ) + µ(s)β(v; ŝ)] dG(v)

and similarly for college B,

mB(s; ŝ) =

∫ 1

0
β(v; ŝ)[1− α(v; ŝ) + (1− µ(s))α(v; ŝ)] dG(v).

Observe that mA(·; ŝ) and mB(·; ŝ) in turn yield a new profile of cutoff states:

s̃A = inf {s ∈ [0, 1]|mA(s; ŝ)− κ > 0} , (A.5.3)

if the set in the RHS is nonempty, or else s̃A ≡ 1, and

s̃B = sup {s ∈ [0, 1]|mB(s; ŝ)− κ > 0} , (A.5.4)

if the set in the RHS is nonempty, or else s̃B ≡ 0.

Next, define a mapping T such that T (ŝ) = s̃, where s̃ = (s̃A, s̃B) is given by (A.5.3) and (A.5.4).

The next lemma shows that T is continuous. Therefore, it has a fixed point by the Brouwer’s fixed

point theorem. From the construction of T , it is immediate that given the fixed point, say ŝ∗, the

profile (α(·; ŝ∗), β(·; ŝ∗)) satisfies the local incentives.

Lemma A2. T (·) is continuous in s for s ∈ S.

Proof. Notice, first, that vA and vA are continuous in ŝA, and vB and vB are continuous in ŝB.

Now, let

v := min {vA, vB} , v̌ := max {vA, vB} , v̂ := min {vA, vB} , v := max {vA, vB} .

For any given ŝ, T (ŝ) = s̃ is given by (A.5.3) and (A.5.4). Consider now any ŝ′ = (ŝ′A, ŝ
′
B) ∈ S,

where ŝ′ 6= ŝ. Then, α′ ≡ α(·; ŝ′) and β′ ≡ β(·; ŝ′) are defined by (A.5.1) and (A.5.2). Let

v′ := min
{
v′A, v

′
B

}
, v̌′ := max

{
v′A, v

′
B

}
, v̂′ := min

{
v′A, v

′
B

}
, v′ := max

{
v′A, v

′
B

}
.

Again, s̃′ = (s̃′A, s̃
′
B) ∈ S is defined by T through (A.5.3) and (A.5.4).

Next, let

v1 := min
{
v, v′

}
, v2 := max

{
v, v′

}
, v3 := min

{
v̌, v̌′

}
, v4 := max

{
v̌, v̌′

}
,

v5 := min
{
v̂, v̂′

}
, v6 := max

{
v̂, v̂′

}
, v7 := min

{
v, v′

}
, v8 := max

{
v, v′

}
,
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and consider a partition of [0, 1] such that

V1 = (∪i=2,4,6,8[vi−1, vi]) ∩ [0, 1], V2 = [v4, v5] ∩ [0, 1], V3 = [0, 1] \ (V1 ∪ V2).

Consider α and α′. For any v ∈ [0, 1], we have

∫ 1

0

∣∣α′(v)− α(v)
∣∣ dG(v) =

3∑
i=1

∫ 1

0

∣∣α′(v)− α(v)
∣∣ 11Vi(v) dG(v),

where 11Vi(v) is 1 if v ∈ Vi or 0 otherwise.

Observe, first, that by the continuity of vi and vi, i = A,B, there is a δ1 > 0 such that for any

ε > 0, if ‖ŝ′ − ŝ‖ < δ1, then ∫ 1

0
11V1(v) dG(v) <

ε

6
. (A.5.5)

Second, for any v ∈ V2, the continuity of α0(·), given by (3.2), implies that there is δ2 such that

‖ŝ′ − ŝ‖ < δ2 implies ∣∣α′(v)− α(v)
∣∣ =

∣∣α′0(v)− α0(v)
∣∣ < ε

6
, (A.5.6)

Lastly, for any v ∈ V3, α′(v) and α(v) are either 0 or 1 at the same time, hence we have that

∣∣α(v′)− α(v)
∣∣ = 0. (A.5.7)

Now, let δ := min {δ1, δ2} and suppose ‖ŝ′ − ŝ‖ < δ. Then, we have∫ 1

0

∣∣α′(v)− α(v)
∣∣ dG(v) =

∫ 1

0

∣∣α′(v)− α(v)
∣∣ 11V1(v) dG(v) +

∫ 1

0

∣∣α′o(v)− αo(v)
∣∣ 11V2(v) dG(v)

<
ε

6
+
ε

6
=
ε

3
, (A.5.8)

where the equality follows from (A.5.7) and the inequality follows from (A.5.5) and (A.5.6).

Similarly, we also have that ∫ 1

0

∣∣β′(v)− β(v)
∣∣ dG(v) <

ε

3
. (A.5.9)

Observe that∣∣∣∣∫ 1

0
α′(v)[1− β′(v) + µ(s)β′(v)] dG(v)−

∫ 1

0
α(v)[1− β(v) + µ(s)β(v)] dG(v)

∣∣∣∣
=

∣∣∣∣∫ 1

0

[
[α′(v)− α(v)]− (1− µ(s))[α′(v)β′(v)− α(v)β(v)]

]
dG(v)

∣∣∣∣
≤
∫ 1

0

∣∣α′(v)− α(v)
∣∣ dG(v) + (1− µ(s))

∫ 1

0

∣∣α′(v)β′(v)− α(v)β(v)
∣∣ dG(v) (A.5.10)
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The first part of (A.5.10) is smaller than ε/3 by (A.5.8). The second part of (A.5.10) is∫ 1

0

∣∣α(v)β′(v)− α(v)β(v)
∣∣ dG(v) =

∫ 1

0

∣∣a′(v)β′(v)− α′(v)β(v) + α′(v)β(v)− α(v)β(v)
∣∣ dG(v)

≤
∫ 1

0

∣∣β′(v)− β(v)
∣∣ dG(v) +

∫ 1

0

∣∣α′(v)− α(v)
∣∣ dG(v)

<
2

3
ε,

where the first inequality holds since α′(v), β(v) ≤ 1, and the last inequality follows from (A.5.8)

and (A.5.9). Therefore, if ‖ŝ′ − ŝ‖ < δ, then∣∣∣∣∫ 1

0
α′(v)[1− β′(v) + µ(s)β′(v)]dG(v)−

∫ 1

0
α(v)[1− β(v) + µ(s)β(v)]dG(v)

∣∣∣∣ < ε. (A.5.11)

Similarly, we also have∣∣∣∣∫ 1

0
β′(v)[1− α′(v) + (1− µ(s))α′(v)]dG(v)−

∫ 1

0
β(v)[1− α(v) + (1− µ(s))α(v)]dG(v)

∣∣∣∣ < ε.

(A.5.12)

Combining (A.5.11) and (A.5.12), we conclude that there is δ > 0 such that for any ε > 0, if

‖ŝ′ − ŝ‖ < δ, then ‖s̃′ − s̃‖ < ε. Since ŝ is chosen arbitrary, T is continuous on S. �

Step 2: VAB has a positive measure in the strategy profile identified in Step 1.

Suppose to the contrary that VAB has measure zero. Then, ŝ∗B = 0 and ŝ∗A = 1. But in that

case, HA(v, 1) > 0 and HB(v, 1) > 0 for all v. Hence, vA = vB = 0. Therefore, we cannot have a

non-competitive equilibrium.

Step 3: The identified strategies are mutual (global) best responses.

Here, we focus on college A, since the proof for college B is analogous. We first show that πA

is concave in α and then show that V (·) is concave in t.

Lemma A3. πA is concave in α.

Proof. Recall that

πA =

∫ 1

0

[ ∫ 1

0
vα(v)[1− β(v) + µ(s)β(v)]dG(v)

]
ds

− λ
∫ 1

0
max

{∫ 1

0
α(v)[1− β(v) + µ(s)β(v)]dG(v)− κ, 0

}
ds.

(A.5.13)

Consider any feasible α and α′. Note that for η ∈ [0, 1], the first part of (A.5.13) is linear in α,
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since ∫ 1

0
v[ηα(v) + (1− η)α′(v)][1− β(v) + µ(s)β(v)]dG(v)

= η

∫ 1

0
vα(v)[1− β(v) + µ(s)β(v)]dG(v) + (1− η)

∫ 1

0
vα′(v)[1− β(v) + µ(s)β(v)]dG(v),

and the second part is convex in α, since

max

{∫ 1

0
[ηα(v) + (1− η)α′(v)][1− β(v) + µ(s)β(v)]dG(v)− κ, 0

}
= max

{
η
[ ∫ 1

0
α(v)[1− β(v) + µ(s)β(v)]dG(v)− κ

]
+ (1− η)

[ ∫ 1

0
α′(v)[1− β(v) + µ(s)β(v)]dG(v)− κ

]
, 0

}
≤ ηmax

{∫ 1

0
α(v)[1− β(v) + µ(s)β(v)]dG(v)− κ, 0

}
+ (1− η) max

{∫ 1

0
α′(v)[1− β(v) + µ(s)β(v)]dG(v)− κ, 0

}
.

Therefore, we have πA(ηα+ (1− η)α′) ≥ η πA(α) + (1− η)πA(α′). �

Lemma A4. V (·) is concave in t for any t ∈ [0, 1].

Proof. Observe that α(v; t), given by (3.5), is linear in t, since for any t, t′ ∈ [0, 1],

α(v; η t+ (1− η) t′) = (η t+ (1− η) t′)α̃(v) + (1− (η t+ (1− η) t′))α(v)

= [η t α̃(v) + η (1− t)α(v)] + [(1− η) t′α̃(v) + (1− η) (1− t)α(v)]

= η α(v; t) + (1− η)α(v; t′). (A.5.14)

We thus have

V (η t+ (1− η) t′) = πA(α(v; η t+ (1− η) t′)) = πA(η α(v; t) + (1− η)α(v; t′))

≥ η πA(α(v; t)) + (1− η)πA(α(v; t′))

= ηV (t) + (1− η)V (t′),

where the second equality follows from Lemma A3 and the inequality follows from (A.5.14). �

We establish one more lemma showing that V ′(0) ≤ 0.

Lemma A5. V ′(0) ≤ 0.
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Proof. Let

W (t, ŝA(t)) :=

∫ 1

0
vα(v; t)[1− β(v) + µβ(v)] dG(v)

− λ
∫ 1

ŝA(t)

[ ∫ 1

0
α(v; t)[1− β(v) + µ(s)β(v)] dG(v)− κ

]
ds

and denote it by V (t) := W (t, ŝA(t)). Observe that

V ′(t) = W1(t, ŝA(t)) +W2(t, ŝA(t))ŝ′A(t),

where

W1(t, ŝA(t)) =

∫ 1

0
(α̃(v)− α(v))

[
v[1− β(v) + µβ(v)]− λ

∫ 1

ŝA(t)
[1− β(v) + µ(s)β(v)]ds

]
dG(v)

and

W2(t, ŝA(t)) = λ
[ ∫ 1

0
α(v; t)[1− β(v) + µ(ŝA(t))β(v)] dG(v)− κ

]
.

Notice that W2(0, ŝA(0)) = 0 by definition of ŝA. Therefore, we have

V ′(0) = W1(0, ŝ(0)) =

∫ 1

0
(α̃(v)− α(v))HA(v, β(v)) dG(v) ≤ 0,

where the inequality holds since if HA(v, β(v)) ≥ 0 for some v, then α(v) = 1 and α̃(v) ≤ 1 for

such v; if HA(v, β(v) ≤ 0 for some v, then α(v) = 0 and α̃(v) ≥ 0 for such v; and HA(v, β(v)) = 0

otherwise. �

Observe that

πA(α̃) = V (1) ≤ V (0) + V ′(0) ≤ V (0) = πA(α),

where the first inequality follows from the concavity of V (·) and the second inequality follows from

Lemma A5. This completes the proof.

A.6 Proof of Theorem 4

Proof of Part (i). Consider any non-competitive equilibrium. For each state s except µ(s) = 0

or 1, the equilibrium must admit a positive measure of students who prefer A but are assigned

to B and a positive measure of students who are assigned to A but have scores lower than those

of the first group of students; that is, justified envy arises. Since justified envy arises for a positive

measure of students for almost every state,23 the outcome is unfair. Also, for almost every state,

23since µ(·) is strictly increasing and continuous in s, µ(s) ∈ (0, 1) for almost every state.
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there must be a positive measure of students assigned to A but prefer B and a positive measure of

students assigned to B but prefer A. Thus, the outcome is student inefficient.

Next, the equilibrium is college efficient. To see this, recall that in any non-competitive equi-

librium, almost all top 2κ students are assigned to either college. Suppose to the contrary that for

a given state, there is another assignment that makes both colleges weakly better off and at least

one college strictly better off. Then, it must also admit almost all top 2κ students, or else at least

one college is strictly worse off. Therefore, it is a reallocation of the initial assignment, hence if

one college is strictly better off, then the other college must be strictly worse off. Thus, we reach

a contraction. �

Proof of Part (ii). Suppose that almost all top κ students are assigned to one college, and the

next top κ students are assigned to the other college. Then, any change of assignments by positive

measure of students will leave the former college strictly worse off, hence it is Pareto efficient.

Suppose it is not the case in a non-competitive equilibrium. Note that for a fixed s, there are

some V ′i,V ′′i ⊂ Vi and V ′j ⊂ Vj , i 6= j, all with positive measures, such that v′ < v̂ < v′′ whenever

v′ ∈ V ′i, v′′ ∈ V ′′i and v̂ ∈ V ′j . Let i = A and j = B without loss of generality. We can choose V ′A,

V ′′A and V ′B that satisfy ∫
V ′A∪V

′′
A
v dG(v)∫

V ′A∪V
′′
A

1 dG(v)
=

∫
V ′B
v dG(v)∫

V ′B
1 dG(v)

(A.6.1)

and

(1− µ(s))

∫
V ′A∪V

′′
A

1 dG(v) = µ(s)

∫
V ′B

1 dG(v). (A.6.2)

(If either (A.6.1) or (A.6.2) is violated, we can adjust V ′A, V ′′A and/or V ′B by adding or subtracting

a positive mass of students.) Note that the LHS (resp. RHS) of (A.6.2) is the measure of students

who prefer B (resp. A) in V ′A ∪ V ′′A (resp. V ′B). From (A.6.1), we have∫
V ′A∪V

′′
A
v dG(v)

(1− µ(s))
∫
V ′A∪V

′′
A

1 dG(v)
=

∫
V ′B
v dG(v)

(1− µ(s))
∫
V ′B

1 dG(v)

⇔

∫
V ′A∪V

′′
A
v dG(v)

µ(s)
∫
V ′B

1 dG(v)
=

∫
V ′B
v dG(v)

(1− µ(s))
∫
V ′B

1 dG(v)

⇔ (1− µ(s))

∫
V ′A∪V

′′
A

v dG(v) = µ(s)

∫
V ′B
v dG(v),

where the first equivalence follows from (A.6.2). The last equivalence shows that the average value

of students who prefer B in V ′A ∪ V ′′A is the same as that of students who prefer A in V ′B. Thus,

in state s, a fraction 1 − µ(s) of students in V ′A ∪ V ′′A who prefer B to A can be swapped with a

fraction of µ(s) of students in V ′B who prefer A to B. This reassignment leaves both colleges the

same in welfare and makes all students weakly better off and some positive measure of students
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strictly better off. Since this argument holds for all s except µ(s) = 0 or 1, the outcome is Pareto

inefficient. �

Proof of Part (iii). Recall that there are cutoff states (ŝA, ŝB) such that colleges have a mass of

unfilled seats in a positive measure of states, [0, ŝA) for A and (ŝB, 1] for B, despite the fact that

there are unmatched and acceptable students (inf {VA ∪ VB} > 0 in Lemma 1-(ii)). By assigning

those unmatched students to a college with excess capacity, both the students and college are better

off. Thus, it is student, college and Pareto inefficient. �

Proof of Part (iv). Suppose a competitive equilibrium exhibits strategic targeting; i.e., v̌ < v̂.

Fix a state s such that µ(s) 6= 0, 1. For those students in [v̌, v̂], there is a positive measure of

students who are assigned to a college, say B, but prefer A, and their scores are higher than those

of a positive measure of students who are assigned to A, even though both colleges prefer the

high-score students. Moreover, students in [v̌, v̂] get no admission from either college with positive

probabilities even when their scores are high. Thus, it entails justified envy for a positive measure

of states for almost every state.

Suppose now a competitive equilibrium does not exhibit strategic targeting; i.e., v̂ < v̌. Let

vB < vA, as depicted in Figure 3.4, without loss of generality, so students in [vB, vA] admitted

only by B and those in (vA, 1] are admitted by both colleges. Observe that only the students who

are not admitted by either college or admitted only by college B may have envies. However, the

students whom they envy have higher scores. So, no justified envy arises in any state s, making

the outcome fair. �

A.7 Proofs of Theorem 5 and the Existence of Cutoff Equilibrium

A.7.1 Proof of Theorem 5

Suppose there is a cutoff equilibrium with strategy profiles (α, β) where α(v, e) = 11{e≥η(v)} and

β(v, e′) = 11{e′≥ξ(v)}, for some η(·) and ξ(·) which are nonincreasing.

Here, we focus on college A, since college B’s behavior is analogous. Since Ue > 0, by the

Implicit Function Theorem, HA(v, e, β(v)) = 0 implicitly defines η(v). Since µ+(ŝA) > µ, we must

have

1− β(v) + µ+(ŝA)β(v) > 1− β(v) + µβ(v).

Then, HA(v, η(v), β(v)) = 0 implies that by (4.1),

U(v, η(v)) > λ(1− ŝA). (A.7.1)
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Next, totally differentiate HA to obtain:

Uv(v, η(v)) + Ue(v, η(v))η′(v)

=
1

1− β(v) + µβ(v)

(
U(v, η(v))(1− µ)− λ(1− ŝA)(1− µ+(ŝA))

)
β
′
(v). (A.7.2)

Since college B adopts a cutoff strategy, β(v) = 1− Y (ξ(v)|v), we have that

β
′
(v) = −y(ξ(v)|v)ξ′(v)− Yv(ξ(v)|v) > 0, (A.7.3)

where the inequality holds since ξ′(v) ≤ 0 and Yv(e|v) < 0.24

Further, µ < µ+(ŝA) ≤ 1, so it follows from (A.7.1) that the RHS of (A.7.2) is strictly positive

for any v such that η(v) ∈ (0, 1). Hence, for all v,

− η′(v) ≤ Uv(v, η(v))

Ue(v, η(v))
, (A.7.4)

and the inequality is strict for a positive measure of v.

A.7.2 Existence of Cutoff Equilibrium

Step 1: Existence of a profile of cutoff strategies for A and B.

Define

δ := max
v,e,e′

{
x(e|v)

(
Uv(v, e)

Ue(v, e)

)
−Xv(e|v)

∨
y(e′|v)

(
Vv(v, e

′)

Ve′(v, e′)

)
− Yv(e|v)

}
.

LetM be the set of Lipschitz-continuous nondecreasing functions mapping from [0, 1] to [0, 1] with

Lipschitz bound given by δ.

We define an operator T : [0, 1]2 ×M2 → [0, 1]2 ×M2 as follows. For any (ŝA, ŝB, α, β) ∈
[0, 1]2 ×M2, the third component of T (ŝA, ŝB, α, β) is a function a defined as follows. First, η(v)

is implicitly defined via HA(v, η(v), β(v)) = 0 according to the Implicit Function Theorem (since

Ue > 0). For v such that η(v) ∈ (0, 1), the same argument as in the proof of Theorem 5 implies

that

0 ≤ −η′(v) ≤ Uv(v, η(v))

Ue(v, η(v))
.

Hence, η−1((0, 1)) forms an interval. For v ≤ inf η−1((0, 1)), we extend η such that η(v) = 1 and for

24When v and e are independent, β
′
(v) = −y(ξ(v))ξ′(v) ≥ 0. This implies that each college under-weights a

students’ common performance and over-weights her non-common performance at least weakly and one college does
so strictly. Further, together with college B’s condition (total differentiation of HB), one can show that β

′
(v) > 0 for

a positive measure of v, generically.
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v ≥ sup η−1((0, 1)), we set η(v) = 0. We now define α(v, e) := 11{e≥η(v)}. Let a(v) = Ee[α(v, e)|v].

Then,

a(v) = 1−X(η(v)|v).

Since η is nonincreasing, a is nondecreasing. Further,

a′(v) = −x(η(v)|v)−Xv(η(v)|v)η′(v) ≤ x(η(v)|v)
Uv(v, η(v))

Ue(v, η(v))
−Xv(η(v)|v) ≤ δ.

It thus follows that a ∈M.

The fourth component of T (ŝA, ŝB, α, β), labeled b, is analogously constructed via e′ = ξ(v)

determined implicitly by HB(v, ξ(v), α) = 0, analogously, and belongs to M. This process also

determines B’s strategy β.

The first two components (ŝ′A, ŝ
′
B) are determined by the mA(ŝ′A) = mB(ŝ′B) = κ, much as in

the earlier proofs, using α and β, along with (ŝA, ŝB) as input.

In sum, the operator T maps from (ŝA, ŝB, α, β) ∈ [0, 1]2 ×M2 to (ŝ′A, ŝ
′
B, a, b) ∈ [0, 1]2 ×M2.

By Arzela-Ascoli theorem, the set M endowed with sup norm topology is compact, bounded and

convex. Hence, the same holds for the Cartesian product [0, 1]2×M2. Following the techniques used

in Appendix B, the mapping T is continuous (with respect to sup norm). Hence, by the Schauder’s

theorem, T has a fixed point. The fixed point then identifies a profile of cutoff strategies (α, β) via

α(v, e) = 11{e≥η(v)} and β(v, e′) = 11{e′≥ξ(v)}. See Appendix B for technical details.

Step 2: The cutoff strategies identified in Step 1 form an equilibrium under a condition.

Consider the following condition:(
Uv(v, e)

U(v, e)
+ Yv(ξ(v)|v)

)
Ve′(v, ẽ)

Vv(v, ẽ)
≥ y(ẽ|v)

(
µ+(s)− µ
µ+(s)µ

)
, ∀v, e, ẽ, s,

and (
Vv(v, e

′)

V (v, e′)
+Xv(η(v)|v)

)
Ue(v, ẽ)

Uv(v, ẽ)
≥ x(ẽ|v)

(
µ− µ−(s)

(1− µ−(s))(1− µ)

)
, ∀v, e′, ẽ, s,

where µ+(s) := E[µ(s̃)|s̃ ≥ s] and µ−(s) := E[µ(s̃)|s̃ ≤ s].
Since the RHS of each inequality is bounded by some constant, the conditions can be interpreted

as requiring that each college values the non-common performance sufficiently highly. For instance,

if U(v, e) = (1− ρ)v + ρe and V (v, e′) = (1− ρ)v + ρe′, then the LHS of each inequality will be no

less than ρ − γ, where γ := maxv,e,e′ {|Xv(e|v)| , |Yv(e′|v)|}. So the condition will hold if the RHS

is less than ρ− γ.

We now show the cutoff strategies identified by Step 1 form an equilibrium, given this condition.

We show this only for college A, since the argument for college B is completely analogous. For the
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proof, note first that HA(v, e, β(v)) is nondecreasing, so it suffices to show that

∂HA(v, e, β(v))

∂v
≥ 0 whenever HA(v, e, β(v)) = 0.

This result holds since

sgn

(
∂HA(v, e, β(v))

∂v

)
=Uv(v, e)−

(U(v, e)(1− µ)− λ(1− ŝA)(1− µ+(ŝA))

1− β(v) + µβ(v)
β
′
(v)

=Uv(v, e)− U(v, e)
1

1− β(v) + µβ(v)

(
(1− µ)− 1− β(v) + µβ(v)

1− β(v) + µ+(ŝA)β(v)
(1− µ+(ŝA))

)
β
′
(v)

=Uv(v, e)− U(v, e)
µ+(ŝA)− µ

(1− β(v) + µβ(v))(1− β(v) + µ+(ŝA)β(v))
β
′
(v)

≥Uv(v, e)− U(v, e)
(µ+(ŝA)− µ)

µ+(ŝA)µ
β
′
(v)

=Uv(v, e) + U(v, e)
(µ+(ŝA)− µ)

µ+(ŝA)µ

(
y(ξ(v)|v)ξ′(v) + Yv(ξ(v)|v)

)
≥Uv(v, e)− U(v, e)

(µ+(ŝA)− µ)

µ+(ŝA)µ

(
y(ξ(v)|v)

Vv(v, ξ(v))

Ve′(v, ξ(v))
− Yv(ξ(v)|v)

)
≥0,

where the second equality is obtained by substituting HA(v, e, β(v)) = 0, the first inequality follows

since µ, µ+(ŝS) ≤ 1, the penultimate equality follows from the fact that β(v) = 1− Y (ξ(v)|v), the

second inequality follows since the argument in the proof of Theorem 5 implies that −ξ′(v) ≤
Vv(v,ξ(v))
Ve′ (v,ξ(v)) , and the last inequality follows from the first part of the above condition.

A.8 Proofs of Lemma 3 and Theorems 7 and 8

A.8.1 Proof of Lemma 3

Fix any σ. To prove the optimality of the cutoff strategy, we show that T ′(y|σ) > 0 for any y. Note

that

T ′(y|σ) = PA(y|σ) + PB(y|σ) + yP ′A(y|σ)− (1− y)P ′B(y|σ)

≥ y
[
PA(y|σ) + P ′A(y|σ)

]
+ (1− y)

[
PB(y|σ)− P ′B(y|σ)

]
= y

∫ 1

0
qA(s)

[
l(s|y) + ly(s|y)]ds+ (1− y)

∫ 1

0
qB(s)

[
l(s|y)− ly(s|y)]ds.
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Observe that

l(s|y) + ly(s|y) =
k(y|s)∫ 1

0 k(y|s)ds

[
1 +

ky(y|s)
k(y|s)

−
∫ 1

0 ky(y|s)ds∫ 1
0 k(y|s)ds

]
>

k(y|s)∫ 1
0 k(y|s)ds

(1− 2δ),

where the inequality holds since

ky(y|s)
k(y|s)

> −δ and

∫ 1
0 ky(y|s)ds∫ 1
0 k(y|s)ds

=

∫ 1
0
ky(y|s)
k(y|s) k(y|s)ds∫ 1
0 k(y|s)ds

< δ

because
∣∣∣ky(y|s)
k(y|s)

∣∣∣ < δ. Similarly,

l(s|y)− ly(s|y) =
k(y|s)∫ 1

0 k(y|s)ds

[
1− ky(y|s)

k(y|s)
+

∫ 1
0 ky(y|s)ds∫ 1
0 k(y|s)ds

]
>

k(y|s)∫ 1
0 k(y|s)ds

(1− 2δ),

where the inequality holds since

ky(y|s)
k(y|s)

< δ and

∫ 1
0 ky(y|s)ds∫ 1
0 k(y|s)ds

=

∫ 1
0
ky(y|s)
k(y|s) k(y|s)ds∫ 1
0 k(y|s)ds

> −δ.

Therefore, we have that T ′(y|σ) > 0 since δ ≤ 1
2 .

It remains to show that there exists an equilibrium in cutoff strategy. Let ŷ be a cutoff. Then,

we have nA(s|ŷ) =
∫ 1
ŷ k(y|s) = 1−K(ŷ|s). Hence,

PA(y|ŷ) =

∫ 1

0
min

{ κ

1−K(ŷ|s)
, 1
}
l(s|y)ds and PB(y|ŷ) =

∫ 1

0
min

{ κ

K(ŷ|s)
, 1
}
l(s|y)ds,

Now, let

T (y|ŷ) := yPA(y|ŷ)− (1− y)PB(y|ŷ).

Note that

T (0|ŷ) = −PB(0|ŷ) = −
∫ 1

0
min

{ κ

K(ŷ|s)
, 1
}
l(s|0)ds < 0,

where the inequality holds since min
{

κ
K(ŷ|s) , 1

}
> 0 and l(s|0) ≥ 0 for all s, and l(s|0) > 0 for a

positive measure of states. Similarly, T (1|ŷ) > 0. By the continuity of T (·|ŷ), there is a ỹ such that

T (ỹ|ŷ) = 0. Moreover, such a ỹ is unique since T ′(y|ŷ)
∣∣
y=ỹ

> 0.

Next, let τ : [0, 1]→ [0, 1] be the map from ŷ to ỹ, which is implicitly defined by T (τ(ŷ)|ŷ) = 0

according to the Implicit Function Theorem (since T ′(y|ŷ)
∣∣
y=ỹ

> 0). Since PA(y|·) is nondecreasing

and PB(y|·) is nonincreasing ŷ, τ(·) is decreasing. Therefore, there is a fixed point such that

τ(ŷ) = ŷ, and hence there is ŷ such that T (ŷ|ŷ) = 0.
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A.8.2 Proof of Theorem 7

We first show ŷ < 1. Suppose ŷ = 1. Then, nA(s|1) = 1 −K(1|s) = 0, so PA(y|ŷ) = 1 for any y.

Hence, T (1|1) = PA(1|1) = 1, which contradicts the fact that T (ŷ|ŷ) = 0.

We now show that ŷ > 1
2 whenever µ(s) > 1

2 . Suppose to the contrary ŷ ≤ 1
2 . We then have

1
2 < µ(s) = 1−K(1

2 |s) ≤ 1−K(ŷ|s), so K(ŷ|s) < 1−K(ŷ|s). Therefore,

PA(y|ŷ)− PB(y|ŷ) =

∫ 1

0
min

{ κ

1−K(ŷ|s)
, 1
}
l(s|y)ds−

∫ 1

0
min

{ κ

K(ŷ|s)
, 1
}
l(s|y)ds ≤ 0. (A.8.1)

Hence, if ŷ < 1
2 , then

T (ŷ|ŷ) = ŷPA(ŷ|ŷ)− (1− ŷ)PB(ŷ|ŷ) <
1

2

[
PA(ŷ|ŷ)− PB(ŷ|ŷ)

]
≤ 0, (A.8.2)

where the first inequality holds since ŷ < 1
2 . Thus, T (ŷ|ŷ) < 0, a contradiction. Suppose now

ŷ = 1
2 . Notice that since K(ŷ|s) < 1−K(ŷ|s), we have K(1

2 |s) <
1
2 < 1− κ, where the the second

inequality holds since κ < 1
2 . So, κ/(1 − K(1

2 |s)) < 1. Therefore, the last inequality of (A.8.1)

becomes strict, and hence

T (ŷ|ŷ) =
1

2

[
PA(1

2 |
1
2)− PB(1

2 |
1
2)
]
< 0,

a contradiction again.

Lastly, let µ(s) = 1
2 . If ŷ < 1

2 , then 1
2 = µ(s) = 1 − K(1

2 |s) < 1 − K(1
2 |s), so we have

K(ŷ|s) < 1−K(ŷ|s). By (A.8.1) and (A.8.2), we reach a contradiction. If ŷ > 1
2 , then 1

2 = µ(s) =

1−K(1
2 |s) > 1−K(ŷ|s) and so K(ŷ|s) > 1−K(ŷ|s). We then have PA(y|ŷ)− PB(y|ŷ) ≥ 0 and

T (ŷ|ŷ) = ŷPA(ŷ|ŷ)− (1− ŷ)PB(ŷ|ŷ) >
1

2

[
PA(ŷ|ŷ)− PB(ŷ|ŷ)

]
≥ 0,

where the first inequality holds since ŷ > 1
2 . Thus, T (ŷ|ŷ) > 0, a contradiction again.

A.8.3 Proof of Theorem 8

For the first part of the theorem, observe that for a given s, justified envy arises whenever cA(s) 6=
cB(s) as depicted in Figure 5.1. We thus show that there is a positive measure of states in which

cA(s) 6= cB(s). Suppose to the contrary cA(s) = cB(s) for almost all s. Recall that equilibrium

admission cutoff of each college satisfies

G(cA(s)) = max

{
1− κ

1−K(ŷ|s)
, 0

}
and G(cB(s)) = max

{
1− κ

K(ŷ|s)
, 0

}
.

Since G(·) is strictly increasing, if cA(s) = cB(s), then we must have either ni(s) < κ for all i = A,B

(so that cA(s) = cB(s) = 0) or nA(s) = nB(s) ≥ κ.
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First, we cannot have ni(s) < κ for all i in equilibrium, since this means that all applicants are

admitted by either college, and this contradicts to 2κ < 1. Second, suppose nA(s) = nB(s) ≥ κ.

This implies that K(ŷ|s) = 1
2 for all s (recall that nA(s) = 1 − K(ŷ|s) and nB(s) = K(ŷ|s)).

However, by (5.1), we have K(ŷ|s′) < K(ŷ|s) for all s′ > s. Therefore, we reach a contradiction

again.

To see the second part of the theorem, recall that for given ŷ in equilibrium, the mass of students

applying to B is K(ŷ|s). Thus, if there is a positive measure of states in which K(ŷ|s) < κ, college

B faces under-subscription in such states. Therefore, the equilibrium outcome is inefficient.

A.9 Proof of Theorem 9

Suppose there is a symmetric equilibrium as described in the theorem. Then, colleges A and B will

admit all acceptable students with v > ṽ, where ṽ is such that each of A and B fills its capacity

in the popular state, i.e., sa(1− ε)[1−G(ṽ)] = κ and (1− sb)(1− ε)[1−G(ṽ)] = κ, and wait-lists

the remaining students. College C will offer admissions to all of these students (i.e., those whose

scores are above ṽ), knowing that exactly measure ε2 of them will accept its offer. It will also offer

κ− ε2 admissions to all students with v ∈ [v̂, ṽ], where v̂ is such that G(ṽ)−G(v̂) = κ− ε2.

The students in [v̂, ṽ] now have a choice to make. If a student accepts C, then she will get u′′

for sure, but if she turns down C’s offer, then with probability 1− ε the less popular one between

A and B will offer an admission to her (assuming all other students admitted by C have accepted

that offer), and the student will earn the payoff u if she happens to like the college, or u′ otherwise.

Since u′′ > (1− ε)u, she will accept C.

Given this, consider now the incentive for deviation of college A. If it does not deviate, there

will be seats left in the less popular state, equal to κ− sb(1− ε)[1−G(v̂)]. Thus, A will fill those

vacant seats with students whose scores are below v̂. Thus, its payoff is

πA =
1

2
sa(1− ε)

∫ 1

ṽ
v dG(v) +

1

2

[
sb(1− ε)

∫ 1

ṽ
v dG(v) + (1− ε)

∫ v̂

v̌
v dG(v)

]
=

1

2
(1− ε)

[ ∫ 1

ṽ
v dG(v) +

∫ v̂

v̌
v dG(v)

]
,

where v̌ is such that

(1− ε)[G(v̂)−G(v̌)] = κ− sb(1− ε)[1−G(ṽ)]. (A.9.1)

and the second equality follows from sa = 1− sb.
Suppose now A admits a small fraction, say δ′, of (acceptable) students just below ṽ instead

of admitting those who are acceptable and slightly above ṽ, say [ṽ, ṽ + δ], where δ and δ′ are such

that

G(ṽ + δ)−G(ṽ) = G(ṽ)−G(ṽ − δ′). (A.9.2)
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Notice that students in [ṽ − δ′, ṽ] accept A’s admission offer, since they prefer it over C. Hence,

A’s payoff under the deviation is

πdA = (1− ε)
∫ ṽ

ṽ−δ′
v dG(v) +

1

2
sa(1− ε)

∫ 1

ṽ+δ
v dG(v)

+
1

2

[
sb(1− ε)

∫ 1

ṽ+δ
v dG(v) + (1− ε)

∫ v̂

v
v dG(v)

]
= (1− ε)

∫ v̂

ṽ−δ′
v dG(v) +

1

2
(1− ε)

[ ∫ 1

ṽ+δ
v dG(v) +

∫ v̂

ṽ
v dG(v)

]
,

where v satisfies

(1− ε)[G(v̂)−G(v)] = κ− (1− ε)[G(ṽ)−G(ṽ − δ′)]− sb(1− ε)[1−G(ṽ + δ)],

that is, v is set to meet the capacity in the less popular state. Observe that v > v̌, since

(1− ε)[G(v̂)−G(v)] = κ− sb(1− ε)[1−G(v̂)]− sa(1− ε)[G(ṽ)−G(ṽ − δ′)]

= (1− ε)[G(v̂)−G(v̌)]− sa(1− ε)[G(ṽ)−G(ṽ − δ′)], (A.9.3)

where the first equality follows from (A.9.2) and the fact that sa = 1 − sb, and the last equality

follows from (A.9.1). Thus, we have

2(πdA − πA)

1− ε
= 2

∫ ṽ

ṽ−δ′
v dG(v)−

[ ∫ ṽ+δ

ṽ
v dG(v) +

∫ v

v̌
v dG(v)

]
= 2
[
ṽ G(ṽ)− (ṽ − δ)G(ṽ − δ′)−

∫ ṽ

ṽ−δ′
G(v)dv

]
−
[
(ṽ + δ)G(ṽ + δ)− ṽ G(ṽ)−

∫ ṽ+δ

ṽ
G(v)dv

]
−
[
v G(v)− v̌ G(v̌)−

∫ v

v̌
G(v)dv

]
= ṽ
[
G(ṽ)−G(ṽ − δ′)

]
+ 2
[
δ′G(ṽ − δ′)−

∫ ṽ

ṽ−δ′
G(v)dv

]
−
[
δG(ṽ + δ)−

∫ ṽ+δ

ṽ
G(v)dv

]
−
[
v G(v)− v̌ G(v̌)−

∫ v

v̌
G(v)dv

]
≥ (ṽ − 2δ′)

[
G(ṽ)−G(ṽ − δ′)

]
− δ
[
G(ṽ + δ)−G(ṽ)

]
− v
[
G(v)−G(v̌)

]
where the second equality follows from the integration by parts, and the third equality follows

from (A.9.2). The inequality holds since
∫ ṽ
ṽ−δ′ G(v) ≤ δ′G(ṽ),

∫ ṽ+δ
ṽ G(v)dv ≥ δG(ṽ) and

∫ v
v̌ G(v) ≥

(v − v̌)G(v̌). Observe that by rearranging (A.9.3), we have G(v) − G(v̌) = sa

[
G(ṽ) − G(ṽ − δ′)

]
.

Hence, using (A.9.2) again, we get

2(πdA − πA)

1− ε
≥ [G(ṽ)−G(ṽ−δ′)

]
(ṽ−2δ′−δ−v sa) = [G(ṽ)−G(ṽ−δ′)

](
sa(ṽ−v)+sb ṽ−(2δ′+δ)

)
.
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Therefore, for sufficiently small δ, we have πdA > πA.

A.10 Proof of Lemma 4

Recall that when both colleges A and B report truthfully up to the capacity, they achieve jointly

optimal matching for the two colleges. Now suppose college A unilaterally deviates by either

reporting untruthfully about its preferences or its capacity and is strictly better off for some state s.

Then, college B must be strictly worse off. Thus, there must exist a positive measure set of

students whom A must obtain from the deviation which it prefers to some students it had before

the deviation. At the same time, it must be the case that either college B gets a positive measure

set of students who are worse than the former set of students or it has some unfilled seats left after

A’s deviation. Note that students in the former set (who are assigned to A in the new matching)

must prefer B, or else the original matching would be not be stable. But then since B prefer each

of those students to some students it has in the new matching, this means that the new matching

is not stable (given the stated preferences).

B Appendix B: More than Two Colleges

Our main model in Section 2 considers the case with two colleges. In this section, we show that

our analysis extends to the case with more than two colleges. While the extension works for

any arbitrary number of colleges, we provide the result for the three-college case for expositional

simplicity. It will become clear that the method also extends to larger numbers.

Let σi : V → [0, 1] be college i’s admission strategy, where i = 1, 2, 3. In each state s ∈ [0, 1], let

µijk(s), where i, j, k = 1, 2, 3, denote the mass of students whose preference ordering is i � j � k.

Define the following notations.

• µi�j(s) := µijk(s) + µikj(s) + µkij(s) (the mass of students who prefer i over j in state s),

• µi�j,k(s) := µijk(s) + µikj(s) (the mass of students who prefer i over j and k in state s),

and

µi�j :=

∫ 1

0
µi�j(s) ds, µi�j,k :=

∫ 1

0
µi�j,k(s) ds.

For given σi(·), i = 1, 2, 3, let ni(v) be the probability that a student with score v attends

college i in state s when she is admitted by i. That is,

ni(v|s) :=
∏
t=j,k

(1−σt(v)) +µi�j(s)σj(v)(1−σk(v)) +µi�k(s)σk(v)(1−σj(v)) +µi�j,k(s)σj(v)σk(v).

(B.0.1)

The student will attend college i if she is admitted only by i, which happens with probability

(1−σj(v))(1−σk(v)); or is admitted by college i and one of the less preferred colleges, which happens
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with probability µi�j(s)σj(v)(1−σk(v))+µi�k(s)σk(v)(1−σj(v)) in state s; or is admitted by both

of the other colleges but prefers i the most, which happens with probability µi�j,k(s)σj(v)σk(v) in

state s.

Thus, for a given profile of admission strategies, σ = (σi)i=1,2,3, in equilibrium, the mass of

students who attend college i in state s is

mi(s) :=

∫ 1

0
σi(v)ni(v|s) dG(v),

and college i’s payoff is

πi =

∫ 1

0
v σi(v)ni(v) dG(v)− λ

∫ 1

0
max {mi(s)− κ, 0} ds, (B.0.2)

where

ni(v) :=

∫ 1

0
ni(v|s) ds. (B.0.3)

Recall that in the two-school case, the monotonicity of µ(·) yields cutoff states (ŝA, ŝB) that

trigger over-enrollment for each college, and the set of over-demanded states for each of them is

a connected interval, (ŝA, 1] and [0, ŝB). Using this, we project the admission strategies to state

space in order to establish the existence of MME. This allows us to use the Brouwer’s fixed point

theorem. When there are more than two colleges, however, we do not know the structure of the set

of over-demanded states in general, so we cannot directly define a map from cutoff states to cutoff

states. Nonetheless, the main idea of the proof can be carried over, although we use a fixed point

theorem (Schauder) in a functional space.

Define a subdistribution Fi : [0, 1]→ [0, 1], i = 1, 2, 3, such that Fi(0) = 0 and

Fi(s) := Prob
(
mi(t) > κ for t < s

)
. (B.0.4)

The subdistribution of college i places a positive mass only on the states in which college i is

over-demanded. Observe that Fi(·) is nondecreasing and

0 ≤ Fi(s′)− Fi(s) ≤ s′ − s, ∀ s′ ≥ s.25

25The second inequality holds because

Fi(s
′)− Fi(s) = Prob

(
mi(t) > κ for t < s′

)
− Prob

(
mi(t) > κ for t < s

)
= Prob

(
mi(t) > κ for s < t < s′

)
≤ Prob(s < t < s′)

= s′ − s.
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0 v00i v01i v10i v11i
v

Hi(v, 0, 0) < 0

Hi(v, 0, 1) < 0 < Hi(v, 0, 0)

Hi(v, 1, 0) < 0 < Hi(v, 0, 1)

Hi(v, 1, 1) < 0 < Hi(v, 1, 0)

Hi(v, 1, 1) > 0

σi = 0

σj = 0
σk = 0

}
⇒ σi = 1

σj = 0
σk = 1

}
⇒ σi = 0

σj = 0
σk = 1

}
⇒ σi = 1

σj = 1
σk = 0

}
⇒ σi = 0

σj = 1
σk = 0

}
⇒ σi = 1

σj = 1
σk = 1

}
⇒ σi = 0 σi = 1

Figure B.1: College i’s Admission Decision

Let Fi be the set of all such subdistributions and F := ×3
i=1Fi. (It will become clear that these

subdistributions will play a similar role to the cutoff states in the two-school case.)

Using the subdistributions, each college’s payoff is now given by26

πi =

∫ 1

0
v σi(v)ni(v) dG(v)− λ

∫ 1

0

(
mi(s)− κ

)
dFi(s) (B.0.5)

=

∫ 1

0
σi(v)Hi(v, σj(v), σk(v)) dG(v) + λ

∫ 1

0
κ dFi(s),

where

Hi(v, σj(v), σk(v)) := v ni(v)− λ
∫ 1

0
ni(v|s) dFi(s) (B.0.6)

is college i’s marginal payoff from admitting a student with score v. Note that this marginal payoff

depends on the subdistribution Fi, as ni(v) is a constant for given admission strategies (σi)i=1,2,3

(by (B.0.3)) and ni(v) is evaluated by the subdistribution.

Note that (B.0.6) can be decomposed as follow:

Hi(v, σj(v), σj(v)) = (1− σj(v))(1− σk(v))Hi(v, 0, 0) + σj(v)(1− σk(v))Hi(v, 1, 0)

+ (1− σj(v))σk(v)Hi(v, 0, 1) + σj(v)σk(v)Hi(v, 1, 1),

where Hi(v, 0, 0) is college i’s marginal payoff from admitting a student with score v if she is refused

by both of the other colleges, Hi(v, 1, 0) and Hi(v, 0, 1) are the marginal payoffs if the student is

admitted by college j (k) but rejected by k (j, respectively), and Hi(v, 1, 1) is the marginal payoff

if the student is admitted by both of the other colleges.

Let us now define v11
i , v10

i , v01
i and v00

i such that

Hi(v
11
i , 1, 1) = 0, Hi(v

10
i , 1, 0) = 0, Hi(v

01
i , 0, 1) = 0, Hi(v

00
i , 0, 0) = 0.

Similar to the two-school case, Hi(v, σj , σk) partitions the students’ type space. College i

admits type v students for sure if Hi(v, 1, 1) > 0 and rejects them if Hi(v, 0, 0) < 0. In the

26Note that since Fi is Lipschitz continuous, so it is absolute continuous. Thus, the integration is well defined.
Observe also that (B.0.5) does not involve max {·, ·} in the cost (see (B.0.2) for comparison), as the subdistribution
is defined for states where mi(s) > κ by (B.0.4), and the college’s cost is evaluated by the subdistribution.
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case Hi(v, 1, 1) < 0 < Hi(v, 0, 0), college i admits type v students only when Hi(v, 1, 0) > 0 or

Hi(v, 0, 1) > 0; that is, those students are worthy only in the case that they is admitted by one

of the other colleges. This shows that colleges engage in strategic targeting for those intermediate

range of scores.

Randomization may emerge for some students. For students with v such that

max
i=1,2,3

{Hi(v, 1, 0), Hi(v, 0, 1)} < 0 < min
i=1,2,3

{Hi(v, 0, 0)} ,

all three colleges engage in mixed-strategies, where the mixed-strategies satisfy

Hi(v, σj(v), σk(v)) = 0 ∀i, j, k = 1, 2, 3.

For students with v such that Hk(v, 0, 0) < 0 and

max {Hi(v, 1, 0), Hj(v, 1, 0)} < 0 < min {Hi(v, 0, 0), Hj(v, 0, 0)} ,

college k does not admit such students, but colleges i and j engage in mixed-strategies satisfying

Hi(v, σj , 0) = 0 and Hj(v, σi, 0) = 0.

A typical mixed-strategy equilibrium is depicted in Figure B.2 when, for instance,

v00
3 < v00

2 < v00
1 < v01

3 < v01
2 < v01

1 < v10
3 < v10

2 < v10
1 < v11

3 < v11
2 < v11

1 .

Note that, as in the two-school case, there are many ways that colleges could coordinate (even

in a mixed-strategy equilibrium). Hence, we consider the maximally mixed-strategy as before and

provide the existence of such equilibrium.

For a given profile of subdistributions (Fi)
3
i=1, let σ := (σi)

3
i=1 be the profile of admission

strategies that satisfy the local conditions described above. Then, such σ in turn determines a new

profile of subdistributions, (Fi)
3
i=1 via (B.0.4). Next, we define T : F → F , a self-map from the set

of subdistributions to itself, where F = ×3
i=1Fi. The existence of equilibrium is achieved when T

has a fixed point (on the functional space of F).

As mentioned earlier, the idea of proving the existence of equilibrium is similar to the idea

of Theorem 3, projecting the strategy profile into a simpler space. The difference is that in the

two-school case, the strategy profiles are projected into the state space, but in the general case,

they are projected into the set of subdistributions F .

Theorem 11. There exists an equilibrium with maximally mixed-strategies.

We first show that F is a compact and convex subset of a normed linear space, and T : F → F
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Figure B.2: Admission Strategies
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is continuous. Then, T has a fixed point by Schauder’s fixed point theorem.27 We then show that

the identified strategies indeed constitute mutual (global) best responses. We provide a formal

proof in the next subsection.

B.1 Proof of Theorem 11

For given (Fi)i=1,2,3, consider colleges’ strategy profile (σi)i=1,2,3 which satisfies the following local

conditions:

• σi(v) = 1 if H1(v, 1, 1) > 0, i = 1, 2, 3.

• σ1(v) = 0 if H1(v, 1, 1) < 0, H2(v, 1, 1) > 0, H3(v, 1, 1) > 0.

σ2(v) = 0 if H1(v, 1, 1) > 0, H2(v, 1, 1) < 0, H3(v, 1, 1) > 0.

σ3(v) = 0 if H1(v, 1, 1) > 0, H2(v, 1, 1) > 0, H3(v, 1, 1) < 0.

• σ1(v) = 0, σ2(v) = 1, σ3(v) = 1 if


H1(v, 1, 1) < 0

H2(v, 1, 1) < 0, H2(v, 0, 1) > 0

H3(v, 1, 1) < 0, H3(v, 0, 1) > 0

• σ1(v) = 1, σ2(v) = 0, σ3(v) = 1 if


H1(v, 1, 1) < 0, H1(v, 0, 1) > 0

H2(v, 1, 1) < 0

H3(v, 1, 1) < 0, H3(v, 1, 0) > 0

• σ1(v) = 1, σ2(v) = 1, σ3(v) = 0 if


H1(v, 1, 1) < 0, H1(v, 1, 0) > 0

H2(v, 1, 1) < 0, H2(v, 1, 0) > 0

H3(v, 1, 1) < 0

• σ1(v) = 1, σ2(v) = 0, σ3(v) = 0 if


H1(v, 1, 1) < 0, H1(v, 0, 0) > 0

H2(v, 1, 1) < 0, H2(v, 1, 0) < 0

H3(v, 1, 1) < 0, H3(v, 1, 0) < 0

• σ1(v) = 0, σ2(v) = 1, σ3(v) = 0 if


H1(v, 1, 1) < 0, H1(v, 1, 0) < 0

H2(v, 1, 1) < 0, H2(v, 0, 0) > 0

H3(v, 1, 1) < 0, H3(v, 0, 1) < 0

27Schauder’s fixed point theorem is a generalization of Brouwer’s theorem on a normed linear space. It guarantees
that every continuous self-map on a nonempty, compact, convex subset of a normed linear space has a fixed point
(see Ok, 2007).
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• σ1(v) = 0, σ2(v) = 0, σ3(v) = 1 if


H1(v, 1, 1) < 0, H1(v, 0, 1) < 0

H2(v, 1, 1) < 0, H2(v, 0, 1) < 0

H3(v, 1, 1) < 0, H3(v, 0, 0) > 0

• σi(v) = 0 if H1(v, 0, 0) < 0, i = 1, 2, 3.

• σi(v)’s satisfy H1(v, σ2(v), σ3(v)) = H2(v, σ1(v), σ3(v)) = H3(v, σ1(v), σ2(v)) = 0, if

max
i=1,2,3

{Hi(v, 1, 0), Hi(v, 0, 1)} < 0 < min
i=1,2,3

{Hi(v, 0, 0)}

• σi(v) and σj(v) satisfy Hi(v, σj , 0) = 0 and Hj(v, σi, 0) = 0 if Hk(v, 0, 0) < 0 and

max {Hi(v, 1, 0), Hj(v, 1, 0)} < 0 < min {Hi(v, 0, 0), Hj(v, 0, 0)}

Now, let CB([0, 1]) be the space of continuous and bounded real maps on [0, 1]. Then, CB([0, 1])

is a normed linear space, with a sup norm ‖·‖, i.e., for any F, F ′ ∈ CB([0, 1]),

∥∥F − F ′∥∥ = sup
s∈[0,1]

∣∣F (s)− F ′(s)
∣∣ .

Lemma B1. F is compact and convex.

Proof. We first show that Fi, i = 1, 2, 3, is closed. To this end, consider any sequence {Fni }, where

Fni ∈ Fi for each n, such that ‖Fni − Fi‖ → 0 as n→∞. We prove that Fi ∈ Fi.
Observe first that Fi is nondecreasing. Suppose to the contrary that Fi(s

′)−Fi(s) < 0 for some

s′ > s. But then,

‖Fni − Fi‖ ≥ max
{∣∣Fni (s′)− Fi(s′)

∣∣ , |Fi(s)− Fni (s)|
}

≥ 1
2(
∣∣Fni (s′)− Fi(s′)

∣∣+ Fi(s)− Fni (s))

≥ 1
2

∣∣Fni (s′)− Fi(s′) + Fi(s)− Fni (s)
∣∣

≥ 1
2

∣∣Fi(s)− Fi(s′)∣∣
> 0

which is a contradiction. Likely, for s′ > s, we must have that Fi(s
′) − Fi(s) ≤ s′ − s. If Fi(s

′) −
Fi(s) > s′ − s, then

‖Fni − Fi‖ ≥ max
{∣∣Fi(s′)− Fni (s′)

∣∣ , |Fni (s)− Fi(s)|
}

≥ 1
2(
∣∣Fi(s′)− Fni (s′)

∣∣+ |Fni (s)− Fi(s)|)
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≥ 1
2

∣∣Fi(s′)− Fi(s) + Fni (s)− Fni (s′)
∣∣

≥ 1
2

∣∣Fi(s′)− Fi(s)− (s′ − s)
∣∣

> 0,

which is a contradiction again. Combining these, we have Fi ∈ Fi, proving that Fi is closed.

Next, we show that Fi is compact. Note that for any Fi ∈ Fi and s, s′ ∈ [0, 1],

∣∣Fi(s′)− Fi(s)∣∣ ≤ ∣∣s′ − s∣∣ ,
Hence, Fi is Lipschitz continuous and so is equicontinuous and bounded. By the Arzèla-Ascoli

theorem,28 Fi is compact.

We now show that Fi is convex. Observe that for any Fi, F
′
i ∈ F and s, s′ ∈ [0, 1], for and

η ∈ (0, 1),

(ηFi + (1− η)F ′i )(s
′)− (ηFi + (1− η)F ′i )(s) = η(Fi(s

′)− Fi(s)) + (1− η)(F ′i (s
′)− F ′i (s))

≤ η(s′ − s) + (1− η)(s′ − s)

= s′ − s,

which proves that Fi is convex.

Since Fi is compact and closed, so is its Cartesian product F = ×3
i=1Fi (with respect to the

product topology). �

Lemma B2. T is continuous.

Proof. The proof involves several steps:

Step 1. vjki ’s are continuous on F1, F2, F3.

Proof . We first show that vjki ’s are continuous in Fi. Fix any Fi ∈ Fi and ε > 0. Take δ =
µi�j,k

2λ ε.

Then, for any Fi, F
′
i ∈ Fi such that ‖Fi − F ′i‖ < δ, we have that

∣∣∣vjki − vjk′i

∣∣∣ =

∣∣∣∣ λ

µi�j,k

∫ 1

0
µ(s)i�j,k[dFi(s)− dF ′i (s)]

∣∣∣∣
=

λ

µi�j,k

∣∣∣∣µi�j,k(1)[Fi(1)− F ′i (1)]−
∫ 1

0
µ′i�j,k(s)[Fi(s)− F ′i (s)]ds

∣∣∣∣
≤ 2

∥∥Fi(s)− F ′i (s)∥∥
< ε,

28Arzèla-Ascoli theorem gives conditions for a set of C(T ) to be compact, where C(T ) is the space of continuous
maps on T and T is a compact metric space. A subset of C(T ) is compact if and only if it is closed, bounded, and
equicontinuous.
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where the third equality follows from the integration by parts and Fi(0) = F ′i (0) = 0, and the first

inequality holds since
∫ 1

0 µ
′
i�j,k(s)ds = µi�j,k(1)− µi�j,k(0) ≤ 1. �

Step 2. σi’s in mixed-strategies are continuous.

Proof . Consider, at first, students with score v such that

Hk(v, 0, 0) < 0, (B.1.1)

Hi(v, 1, 0) < 0 < Hi(v, 0, 0), (B.1.2)

Hj(v, 1, 0) < 0 < Hj(v, 0, 0). (B.1.3)

That is, college k puts zero probability for those students (by (B.1.1)), and colleges i and j use

mixed-strategies σi and σj which satisfy Hi(v, σj , 0) = 0 and Hj(v, σi, 0) = 0.

Now, let Ji : [0, 1]2 × [0, 1]2 → [0, 1] such that

Ji(Fi, Fj , σi, σj) ≡ Hi(v, σj , 0) = v
[
(1− σj) + µi�jσj(v)

]
− λ

∫ 1

0

[
(1− σj) + µi�j(s)σj(v)

]
dFi(s),

Jj(Fi, Fj , σi, σj) ≡ Hj(v, σi, 0) = v
[
(1− σi) + µj�iσi(v)

]
− λ

∫ 1

0

[
(1− σi) + µj�i(s)σi(v)

]
dFj(s).

Then, σi and σj are the solutions to Ji = 0 and Jj = 0 in terms of Fi and Fj . Observe that

Ji = (1− σj)Hi(v, 0, 0) + σjHi(v, 1, 0).

Hence,
∂Ji
∂σj

= −Hi(v, 0, 0) +Hi(v, 1, 0) < 0,

where inequality follows from (B.1.2). Similarly, we also have by (B.1.3)

∂Jj
∂σi

= −Hj(v, 0, 0) +Hj(v, 1, 0) < 0.

Therefore,

∆ij :=

∣∣∣∣∣∣
∂Ji
∂σi

∂Ji
∂σj

∂Jj
∂σi

∂Jj
∂σj

∣∣∣∣∣∣ =

∣∣∣∣∣ 0 ∂Ji
∂σj

∂Jj
∂σi

0

∣∣∣∣∣ = − ∂Ji
∂σj

∂Jj
∂σi

< 0.

Since ∆ji 6= 0, the Implicit function theorem implies that there are unique σi and σj such that

Ji(Fi, Fj , σi, σj) = 0 and Jj(Fi, Fj , σi, σj) = 0.

Furthermore, such σi and σj are continuous.
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Consider now the case that H1(v, σ2, σ3) = H2(v, σ1, σ3) = H3(v, σ1, σ2) = 0 when

max
i=1,2,3

{Hi(v, 1, 0), Hi(v, 0, 1)} < 0 < min
i=1,2,3

{Hi(v, 0, 0)} . (B.1.4)

Similar as before, let

J1(F1, F2, F3, σ1, σ2, σ3) ≡ H1(v, σ2, σ3) = 0,

J2(F1, F2, F3, σ1, σ2, σ3) ≡ H2(v, σ1, σ3) = 0,

J3(F1, F2, F3, σ1, σ2, σ3) ≡ H3(v, σ1, σ2) = 0.

Observe that

Ji = (1− σj)(1− σk)Hi(v, 0, 0) + σj(1− σk)Hi(v, 1, 0) + (1− σj)σkHi(v, 0, 1) + σjσkHi(v, 1, 1)

= (1− σj)Hi(v, 0, 0) + σj(1− σk)Hi(v, 1, 0)− (1− σj)σkHk(v, 1, 0) + σjσkHi(v, 1, 1).

where the second inequality holds after some rearrangement using the fact that 1 − µi�k(s) =

µk�i(s). Therefore,

∂Ji
∂σj

= −Hi(v, 0, 0) + (1− σk)Hi(v, 1, 0) + σkHk(v, 1, 0) + σkHi(v, 1, 1) < 0,

where the inequality holds since Hi(v, 0, 0) > 0, Hi(v, 1, 0) < 0, Hk(v, 1, 0) < 0 and Hi(v, 1, 1) < 0

by (B.1.4). This implies that

∆ :=

∣∣∣∣∣∣∣∣
∂J1
∂σ1

∂J1
∂σ2

∂J1
∂σ3

∂J2
∂σ1

∂J2
∂σ2

∂J2
∂σ3

∂J3
∂σ1

∂J3
∂σ2

∂J3
∂σ3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
0 ∂J1

∂σ2
∂J1
∂σ3

∂J2
∂σ1

0 ∂J2
∂σ3

∂J3
∂σ1

∂J3
∂σ2

0

∣∣∣∣∣∣∣∣ =
∂J1

∂σ2

∂J2

∂σ3

∂J3

∂σ1
+
∂J1

∂σ3

∂J2

∂σ1

∂J3

∂σ2
< 0

Using the Implicit function theorem again, we conclude that such σ1, σ2, σ3 exist and they are

continuous. �

Observe that from Step 1 and Step 2, Hi(v, σj , σk), i = 1, 2, 3, is continuous in (Fi)i=1,2,3 for a

given s and fixed v.

Step 3. mi(s) is continuous.

Proof . Consider any Fi, F
′
i ∈ Fi such that ‖Fi − F ′i‖ < δ for all i = 1, 2, 3. Let σi and σ′i are

admission strategies of college i which correspond to Fi and F ′i , respectively. Then, for a given s

and v, ni(v|s) is defined by (B.0.1) and n′i(v|s) is defined similarly using σ′i.
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Let X := {v ∈ [0, 1]| |σi(v)− σ′i(v)| ≥ ε/2}. Clearly,

∣∣σi(v)− σ′i(v)
∣∣ =

∣∣σi(v)− σ′i(v)
∣∣ 11X(v) +

∣∣σi(v)− σ′i(v)
∣∣ 11Xc(v),

where 11X(v) is the indicator function which is 1 if v ∈ X or 0 otherwise, andXc is the complementary

set of X. Since vjki are continuous by Step 1, we have

∫ 1

0
11X(v) dG(v) <

ε

2
. (B.1.5)

For v ∈ Xc, it must be the case that either σi = σ′i, or σi and σ′i are the mixed-strategies. Thus,

we have for v ∈ Xc, ∣∣σi(v)− σ′i(v)
∣∣ < ε

2
. (B.1.6)

Observe that∫ 1

0

∣∣σi(v)− σ′i(v)
∣∣ dG(v) =

∫ 1

0

∣∣σi(v)− σ′i(v)
∣∣ 11X(v) dG(v) +

∫ 1

0

∣∣σi(v)− σ′i(v)
∣∣ 11Xc(v) dG(v)

<

∫ 1

0
11X(v) dG(v) +

∫ 1

0

∣∣σi(v)− σ′i(v)
∣∣ 11Xc(v) dG(v)

< ε,

where the first inequality holds since σi, σ
′
i ≤ 1, and the last inequality follows from (B.1.5) and

(B.1.6). Thus, there exists δ1 such that ‖Fi − F ′i‖ < δ1, for all i, i′ = 1, 2, 3, implies∫ 1

0

∣∣σi(1− σj)(1− σk)− σ′i(1− σ′j)(1− σ′k)∣∣ dG(v)

≤
∫ 1

0

[ ∣∣σi − σ′i∣∣ (1− σj)(1− σk) +
∣∣σj − σ′j∣∣σ′i(1− σk) +

∣∣σk − σ′k∣∣σ′i(1− σ′j)] dG(v)

<
ε

4

Similarly, there are δt, t = 2, 3, 4, such that ‖Fi − F ′i‖ < δt respectively imply that

∣∣σiσj(1− σk)− σ′iσ′j(1− σ′k)∣∣ < ε

4
,
∣∣σiσk(1− σj)− σ′iσ′k(1− σ′j)∣∣ < ε

4
,
∣∣σiσjσk − σ′iσ′jσ′k∣∣ < ε

4
.

Now, let δ = mint=1,2,3,4 {δt}. We have that ‖Fi − F ′i‖ < δ implies

∣∣mi(s)−m′i(s)
∣∣ ≡ ∣∣∣∣∫ 1

0
σi(v)ni(v|s) dG(v)−

∫ 1

0
σ′i(v)n′i(v|s) dG(v)

∣∣∣∣ < ε.

That is, mi(s) is continuous on (Fi)i=1,2,3. � �
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Lemma B2 proves the existence admission strategies that satisfy the local conditions. The proof

that those strategies are mutual (global) best responses is analogous to that of the two college case.

We briefly summarize it below:

Consider a college, say i. For given σj(·) and σk(·), let σ̃i(v) ∈ [0, 1] be an arbitrary strategy

for v ∈ [0, 1]. Let σ̃i(v; t) be a variation of σi(·) such that for any t ∈ [0, 1],

σi(v; t) := tσ̃i(v) + (1− t)σi(v).

Define i’s payoff function in terms of σi(v; t),

V (t) :=

∫ 1

0
v σi(v; t)ni(v) dG(v)− λ

∫ 1

0
max

{∫ 1

0
σi(v; t)ni(v|s) dG(v)− κ, 0

}
ds.

Observe that V (·) is continuous and concave in t. Therefore, we have

πi(σ̃i) = V (1) ≤ V (0) + V ′(0) ≤ V (0) = πi(σi),

where the second inequality holds since

V ′(0) =

∫ 1

0
[σ̃i(v)− σi(v)]Hi(v, σj(v), σk(v)) dG(v) ≤ 0 (B.1.7)

because if Hi(v, σj(v), σk(v)) ≥ 0 for some v, then σi(v) = 1 ≥ σ̃i(v); and if Hi(v, σj(v), σk(v)) ≤ 0,

then σi(v) = 0 ≤ σ̃i(v); and Hi(v, σj(v), σk(v)) = 0 otherwise.
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