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1 Introduction

Dynamic games have had a major impact on both economic theoryand applied work over the

last four decades, and much of it has been inspired by the Markov perfect equilibrium (MPE)

solution concept due to Maskin and Tirole (1988). While there has been considerable progress in

the development of algorithms for computing or approximating an MPE of these games, includ-

ing the pioneering work by Pakes and McGuire 1994, it still remains an extremely challenging

computational problem to find even asingle MPE of a dynamic game, much lessall of them.

As Hörneret. al. 2011 note, “Dynamic games are difficult to solve. In repeatedgames, finding

some equilibrium is easy, as any repetition of a stage-game Nash equilibrium will do. This is

not the case in stochastic games. The characterization of even the most elementary equilibria for

such games, namely (stationary) Markov equilibria, in which continuation strategies depend on

the current state only, turns out to be often challenging.” (p. 1277).

Though there has also been recent progress onhomotopy methodsfor finding multiple equi-

libria of both static and dynamic games (Borkovskyet. al. 2010 and Besankoet. al. 2010) as

well as algebraic approaches for finding all equilibria in cases where the equilibrium conditions

can be expressed as certain classes of polynomial equations(Datta, 2010 and Juddet. al. 2012),

the homotopy methods do not generally find all equilibria, and the algebraic methods are limited

to problems where the equations defining the state-specific Nash equilibria can be expressed as

systems of polynomial equations that have specific forms.

This paper reports progress on a different approach for computing all MPE that is applicable

to a class of dynamic Markovian games that we refer to asdynamic directional gamesor DDG’s.

Of course,every dynamic game is inherently directional in the sense that theplay of the game

unfolds through time. However, we show that many dynamic games exhibit a different type of

directionality that is not directly linked to the passage ofcalendar time. Our new concept of

directionality pertains to the stochastic evolution of thestateof the game.

A DDG is a game where a subset of the state variables evolve in amanner that satisfies certain

conditions including an intuitive notion of “directionality.” When the state space is finite we can

exploit this directionality and partition it into a finite number of elements we call “stages”. Exam-

ples of DDGs include chess, Rubinstein’s (1982) model of bargaining, but over a stochastically
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shrinking pie, and many examples in industrial organization such as patent races where part of

the state of the game represents “technological progress” that improves over time. We solve a

model of Bertrand pricing with leapfrogging investments that is an example of this type.

Similar to the “arrow of time” the evolution of the directional component of the state space is

unidirectional: we can index the stages byτ and order them from 1 toT . Once the game reaches

stageτ there is zero probability of returning to any earlier stageτ′ < τ underanyfeasible Markov

strategy of the game. The partition of the state space into stages implies a corresponding partition

of the overall DDG into a finite number ofstage games. Our concept of stage game is different

than the traditional notion of a stage game in a repeated game, which is a single period or static

game. The stage games will also generally be dynamic games, though on a much reduced state

space that makes them much simpler than the overall game we are trying to solve.

We show that a MPE for the overall dynamic game can be recursively constructed from the

MPE selected for each of the component stage games. We propose a state recursion algorithm

that computes a MPE of the overall game in a finite number of steps. State recursion is a form of

backward induction, but one that is performed over the stages of the gameτ rather than over time

t. We start the backward induction by computing an MPE of the last stage of the DDG,T , which

we refer to as theend game.

State recursion can be viewed as a generalization of the method of backward induction that

Kuhn (1953) and Selten (1965) proposed as a method to findsubgame perfect equilibriaof finite

extensive form games. However, the backward induction thatKuhn and Selten analyzed is per-

formed on thegame treewhich is the extensive form representation of the game. State recursion

is not performed on the game tree, but rather can be viewed as atype of backward induction that

is performed on a different object, adirected acyclic graph(DAG) that summarizes the direction-

ality of the game in terms of the state space instead of the temporal ordering implied by the game

tree.

If a dynamic game exhibits directionality in the state space, state recursion can be a much

more effective method for finding an MPE than traditional time-based backward induction meth-

ods. For example, in an infinite horizon DDG there is no last period for performing backward

induction in time, as required to do backward induction on the game tree. The usual method
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for finding a MPE in infinite horizon problems involves iterating on the Bellman equations of

the players starting from some initial guess of the value functions. Thus, this type of time-based

backward induction is equivalent to using the method ofsuccessive approximationsto find a fixed

point of the system of Bellman equations for each of the players. However, it is well known that

in dynamic games the Bellman equations generally do not satisfy the requisite continuity condi-

tions to constitute contraction mappings that would be sufficient to guarantee that the successive

approximations will converge to a fixed point and hence a MPE of the DDG.1 Thus, there is no

guarantee that time-based backward induction methods of this type will even be able to find a

single MPE of the game.

State recursion, however, does not suffer from this problem: conditional on the availability

of the solution method for stage gamesit will return a MPE of the full dynamic game in a finite

number of stepsT which equals the total number of stages in the game. State recursion will

not cycle or fail to converge, or approach a candidate MPE only asymptotically as the number

of iterations or steps tends to infinity, unlike what happenswith time-based recursions such as

successive approximations on the players’ Bellman equations.

State recursion finds asingle MPE of the overall DDG, but when the game has multiple

equilibria the found MPE depends on which equilibrium is chosen in the end game and all other

stages of the game by the state recursion algorithm. Assume that there is an algorithm that can

find all MPE of each of the stage games of the DDG and that the number of MPE in each stage

is finite. We introduce theRecursive Lexicographical Search(RLS) algorithm that repeatedly

invokes state recursion in an efficient way to computeall MPE of the DDG by systematically

cycling through allfeasible equilibrium selection rules(ESRs) for each of the component stage

games of the DDG.

The general idea of how the presence of multiple equilibria of a stage game can be used to

construct a much larger set of equilibria in the overall gamewas used by Benoit and Krishna

(1985) to show that a version of the “Folk Theorem” can hold infinitely repeated games. The

1Note that the contraction property does hold in single agentgames which we can view as Markovian games against
nature. This implies that traditional time-based backwardinduction reasoning will compute an approximate MPE for these
problems, where the MPE is simply an optimal strategy for thesingle agent, his “best reply to nature”. Nevertheless, we
show that when there is directionality in single agent dynamic programming problems, state recursion will be far fasterthan
time-based backward induction, and will actually convergeto the exact solution of the problem in a finite number of steps.
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prevailing view prior to their work was that the sort of multiplicity of equilibria implied by the

Folk Theorem for infinitely repeated games cannot happen in finitely repeated games because a

backward induction argument from the last period of the gamewas thought to generally result

in a unique equilibrium of the overall repeated game. However Benoit and Krishna showed that

when there are multiple equilibria in the stage games, this can be used to create a much larger

set of subgame perfect equilibria in the finitely repeated game, and that Folk Theorem sorts of

multiplicity can emerge even in finitely repeated games whenthe time horizon is sufficiently

large. However, Benoit and Krishna did not propose an algorithm or a constructive approach for

enumerating all possible subgame perfect equilibria of a finitely repeated game, whereas the RLS

algorithm we propose can be used to find and enumerate all suchequilibria.

Though we do not claim that all dynamic games will have exploitable directional structure,

we show there is a sense in which the RLS algorithm can approximate the set of all MPE to a wide

class of finite and infinite-horizon dynamic games, even if there is no exploitable directionality

in the game other than the passage of time. Fudenberg and Levine (1983) showed that infinite

horizon dynamic games that satisfy a continuity condition have the property that the limit of the

set of all MPE of a sequence ofT period games converges to the set of all MPE of the infinite

horizon game asT → ∞. If we can find all Nash equilibria of each of the (static) stage games

that are encountered in the process of finding a subgame perfect equilibrium of theT-period

game via standard (time-based) backward induction, then the RLS algorithm will find all MPE

of the T period game. IfT is sufficiently large, this set will be close to the set of all MPE of

the infinite horizon game. In effect, we show how the standardbackward induction procedure

performed in the right way(not as successive approximations to the players’ Bellman equations)

can approximate all MPE of a fairly broad class of infinite horizon games. We view this as an

analog of Benoit and Krishna’s Folk Theorem approximation result for finitely repeated games.

We use the RLS algorithm to find all MPE of two variants of a dynamic duopoly model of

Bertrand price competition with leapfrogging investments. These are not trivial examples, but

rather substantive contributions to the literature in their own right. The RLS algorithm revealed

important new insights into the nature of long run price competition between duopolists when

there is stochastic evolution of a state of the art production technology — a class of models that
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are not well understood since they have not been analyzed previously. In our first example, we

use RLS to find all MPE of a simultaneous move version of the investment and pricing game ana-

lyzed by Iskhakov et. al. 2013, (hereafter abbreviated IRS). The IRS model is a dynamic duopoly

model of Bertrand price competition with cost-reducing investments, where the duopolists can

invest in an exogenously improving state of the art production technology in an attempt to gain

a production cost advantage over their rival, at least temporarily. IRS assume a constant returns

to scale production technology, so the state of the game can be described by the triple(c1,c2,c),

wherec1 is the marginal cost of firm 1,c2 is the marginal cost of firm 2, andc represents the

marginal cost under the state of the art production technology. The directionality of the game

results from the facts that a) the state of the art only improves over time, soc decreases stochas-

tically or deterministically but never increases, b) the legacy marginal costs of firms 1 and 2

will never deteriorate but will only improve if one or the other invests to acquire the state of

the art production technology. This implies that the state space of the game is a “quarter pyra-

mid”, S= {(c1,c2,c)|c1≥ c, c2 ≥ c, c≥ 0}. If we further assume that the state of the art marginal

costsc can only be one of a finite number of possible values and evolves as an exogenous Markov

chain, then we can show that this game satisfies our definitionof a finite state DDG.

We show that the stage games in this problem areanti-coordination gamesthat typically

have either one, three, or five MPE, and we provide an algorithm that efficiently computes all

of them. We then show how state recursion can be used to combine these stage game MPE to

find a MPE for the overall Bertrand duopoly game. Then we provide a detailed explanation of

how RLS can be applied to findall MPE. We show that even for problems where the state space

has a relatively small number of points, there can be hundreds of millions of MPE in the overall

duopoly pricing and investment game. We also show how traditional approaches such as value

function approximation can fail to find even a single MPE. Further, we illustrate the danger of

the common practice in modeling of restricting attention tosymmetric equilibriaof the game.

RLS reveals that only a small fraction of the full set of MPE are symmetric equilibria and these

are generally inefficient mixed strategy equilibria. Traditional backward induction (successive

approximation of the Bellman equations) fail to findanyof these symmetric mixed strategy MPE.

Our second example is the alternating move version of the IRSmodel. This example presents
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the complication that not all state variables are directional, since the right to move alternates forth

and back between the two firms (in deterministic or stochastic fashion). We show that this game

is still a DDG since we can partition the overall state variable s= (c1,c2,c,m) (wherem denotes

which of the firms has the current right to invest) into adirectional component d= (c1,c2,c) and

a non-directional component m. Consequently, we can still solve the alternating move version

of the leapfrogging model by state recursion and find all MPE using the RLS algorithm. We

show that in the alternating move case the structure of MPE are very different compared to the

simultaneous move case. Generally there are fewer equilibria and certain “extremal” equilibria

such as a zero profit mixed strategy equilibrium or two asymmetric monopoly equilibria no longer

exist in the alternating move version of the game. The RLS algorithm reveals that when the state

of the art costc improves in a strictly monotonic fashion (i.e. there is zeroprobability that it will

remain in the same state for more than one time period), then the DDG has auniqueMPE.

The rest of the paper is organized as follows. In section 2 we define a notion of directionality

and the class of DDGs. We introduce the concepts of stages of aDDG, define our new concept

of “stage games” and introduce the state recursion algorithm and prove that it finds a MPE of

the overall DDG in a finite number of steps. In section 3 we introduce the RLS algorithm and

provide sufficient conditions under which this algorithm will find all MPE of the DDG. In section

4 we illustrate the state recursion and RLS algorithms by using them to find all MPE of the two

variants of the duopoly Bertrand investment and pricing game of IRS described above. Section 5

discusses some extensions of our solution method, including the possibility of relaxing some of

the assumptions we make, and discussing broader areas of application of the state recursion and

RLS algorithms, and then concludes.

2 Finite state directional dynamic games and state recursion

In this section we define a class of Markovian games that have the property ofdirectionality,

and we refer to games that have this property asdynamic directional gamesor DDGs. We use

directionality to simplify the problem of finding equilibria of these games using astate recursion

algorithm that is a generalization of the standardbackward induction algorithmthat is typically

used to find equilibria of dynamic games. However, the traditional approach is to usetimeas the
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index for the backward induction, whereas the state recursion algorithm uses an index derived

from the directionality in the law of motion for thestates.The state recursion algorithm finds

a single MPE of the game in a finite number of steps, but it requires the user to specify an

equilibrium selection rule(ESR) that selects one equilibrium out a set of multiple equilibria at a

sequence of recursively definedstage gamesof the overall directional game.

2.1 Finite State Markovian Games

Following Kuhn (1953) and Shapley (1953), consider a dynamic stochastic gameG with nplayers

indexed byi ∈ {1, . . . ,n} andT periods indexed byt ∈ {1, . . . ,T}, where unless otherwise stated

we assumeT = ∞. We assume the players’ payoffs in any period of the game are given by von-

Neumann Morgenstern utility functionsui(st ,at), where playeri’s payoff in any periodt of the

game depends both on the state of the game at timet, st, and the vector of actions of all players is

given byat = (a1,t , . . . ,an,t), whereai,t is the action chosen by playeri at timet. Assume that the

players maximize expected discounted utility and discounttheir stream of payoffs in the game

using player-specific discount factors(β1, . . . ,βn) whereβi ∈ (0,1), i = 1, . . . ,n.

Let p(s′|s,a) denote a Markov transition probability that provides the probability distribution

of the next period states′ given the current period states and vector of actionsa taken by the

players. If we views as the move by ”Nature”, the Markovian law of motion for Nature’s moves

makes it natural to focus on theMarkov perfect equilibrium(MPE) concept of Maskin and Tirole

(1988) where we limit attention to a subset of all subgame perfect Nash equilibria of the game

G , namely equilibria where the players use strategies that are Markovian,i.e. they are functions

only of the current statest and not the entire past history of the game.2

In this paper we follow Haller and Lagunoff (2000) and focus on gamesG that have a finite

state space, since they provide general conditions under which the set of MPE of such games are

generically finite.To this end, letS denote the set of all states the game may visit at any time

2Though we do not take the space to provide a full extensive form description of the gameG we do assume that the
players haveperfect recalland are therefore able to condition on the entire history of states in actions at each timet to
determine their choice of action. However it is not difficultto show that if both Nature and all of playeri’s opponents are
using Markovian strategies, playeri can find a best reply to these strategies within the subclass of Markovian strategies.
Given this, we can provide a fully rigorous definition of Markov perfect equilibrium using Bellman equations for the players
without having to devote the space necessary to provide a complete extensive form description ofG .
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period and assume thatS is a finite subset ofRk for somek ≥ 1. In every period each playeri

chooses an actionai from a set of feasible actionsAi(s) for playeri when the state of the game is

s.3 Assume that for eachs∈ Sand for eachi we haveAi(s) ⊆ A whereA is a compact subset of

Rm for somem≥ 1.

Assume that the current states∈ S is known to all the players, and that their past actions are

observable (though current actions are not observed in simultaneous move versions ofG). We

can also allow for players to have and condition their decisions on private information in the form

of idiosyncratic shocks, perhaps dependent on the state4 though to keep notation simple we do

not cover this case here. We assume that all objects in the gameG , the players’ utility functions,

discount factors, the constraint setsAi(s), the law of motionp(s′|s,a), and the probability dis-

tributions for independently distributed private shocks to the payoffs of the players is common

knowledge.

Let σ denote a feasible set of Markovianbehaviorstrategies of the players in gameG , i.e. an

n-tuple of mappingsσ = (σ1, . . . ,σn) whereσi : S→ P (A) andP (A) is the set of all probability

distributions on the setA. Feasibility requires that supp(σi(s)) ⊆ Ai(s) for eachs∈ S, where

supp(σi(s)) denotes the support of the probability distributionσi(s). A pure strategy is a special

case whereσi(s) places a unit mass on a single actiona∈ Ai(s). Let Σ(G) denote the set of all

feasible Markovian strategies of the gameG .

If σ is a feasible strategyn-tuple, letσ−i denote an(n− 1)-tuple of feasible strategies for

all players except playeri, σ−i = (σ1, . . . ,σi−1,σi+1, . . . ,σn), and let(a,σ−i(s)) denote a strategy

where playeri takes actiona∈Ai(s)with probability one in states, whereas the remaining players

j 6= i chose their actions taking independent draws from the distributionsσ j(s).

Definition 1. A Markov perfect equilibriumof the stochastic gameG is a pair of feasible strategy

n-tupleσ∗ and ann-tuple ofvalue functions V(s) = (V1(s), . . . ,Vn(s)) whereVi : S→ R, such that

the following conditions are satisfied:

3This formulation includes both simultaneous and alternating move games: in the latter caseAi(s) is a singleton for all
players but the one who has the right to move, where one of the components of the statesdenotes which of then players has
the right to move.

4In this case theconditional independenceassumption of Rust (1987) holds, allowing the players to compute the expec-
tations over the actions of their opponents in Bellman equations (1).
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1. the system of Bellman equations

Vi(s) = max
a∈Ai(s)

[

E
{

ui(s,(a,σ∗
−i(s))

}
+βiE

{

∑
s′∈S

Vi(s
′)p(s′|s,(a,σ∗

−i(s)))

}]

, (1)

is satisfied for everyi = 1, . . . ,n, with the expectation in (1) taken over theIID probability

distributions given by the opponents’ strategiesσ∗
j , j 6= i, and

2. for i = 1, . . . ,n, if the maximizer in Bellman equation

a∗i (s) = argmax
a∈Ai(s)

[

E
{

ui(s,(a,σ∗
−i(s))

}
+βiE

{

∑
s′∈S

Vi(s
′)p(s′|s,(a,σ∗

−i(s)))

}]

, (2)

is a single point,σ∗
i is a probability distribution that places probability 1 ona∗i (s), and

if a∗i (s) has more than one point,σ∗
i (s) is a probability distribution with support that is a

subset ofa∗i (s). The expectation in (2) taken in the same way as in (1).

Let E(G) denote the set of all Markov-perfect equilibria of the gameG .

In definition 1 the notion of “subgame perfectness” is reflected by the restriction implicit in

equation (2) and the “Principle of optimality” of dynamic programming which require for each

player’s strategyσ∗
i , “that whatever the initial state and initial decision are,the remaining deci-

sions must constitute an optimal policy with regard to the state resulting from the first decision”

(Bellman, 1957). Thus, equation (2) implies that each player’s strategy must be a best reply to

their opponents’ strategies atevery point in the state spaces∈ S, but since the process is Marko-

vian, it follows that the strategyσ∗ constitutes a Nash equilibrium for all possible histories of the

gameG , see Maskin and Tirole 2001, p. 196.

2.2 Directional Dynamic Games

Before we formally define dynamic directional games, it is useful to provide intuitive examples

of what we mean by adirectionin a Markovian game. Roughly speaking, a gameG is directional

if we can single out some dimensions of the state spaceSsuch that the transitions between the

points identical in these dimensions can be represented as adirected acyclic graph(DAG), where

each vertex represents a pointd which is a part of state vector, and the arrows (directed edges)
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connecting the vertices correspond to positive probabilities of transiting from one value ofd to

another.5 We will refer to the component of the state vectord as “directional” component of the

state space below.

Figure 1 presents two directed graphs representing transitions in space state of two examples

of dynamic Markov games we discuss below. In these games state space is one dimensional, and

is given byS= {d1,d2,d3,d4}. The game presented in the left panel progresses (stochastically

according to the indicated transition probabilities) fromd1 to d4, and it is essential that indepen-

dent of what state the game is in, there is alway a zero probability of returning from a point with

higher index to the point with lower index. This intuitive notion of directionality is violated in the

right panel, where the game may indefinitely oscillate between statesd2 andd3. Consequently,

the directed graph representing the transitions among the states of this game is not acyclical, i.e.

not a DAG.

Directionality in the stochastic evolution of the states ina gameG can be captured by defining

a partial order over the state spaceS. This partial order of the states will generally bestrategy-

specificsince the stochastic evolution of the states will generallydepend on the strategiesσ used

by the players, and we use the symbol≻σ to denote this strategy-specific partial order ofS. Most

games that we analyze will exhibit directionality only in a subvector of the full vector of state

variables. Therefore our definition assumes there is a decomposition ofSas a cartesian product

of two setsD andX, so a generic element of the state space is written ass= (d,x) where we refer

to d as thedirectional componentof the state space, andx as thenon-directional component.

In the definition below, we letρ{d′|d,x,σ} denote theconditional hitting probability,i.e. the

conditional probability that a state with directional componentd′ is eventually reached given

that the process starts in states= (d,x) and the players use strategyσ.6

Definition 2 (Representation of state transitions). Let σ be a feasiblen-tuple of strategies for the

players in the dynamic gameG . SupposeS is a finite subset ofRk that can be decomposed as a

5Note that while the extensive form representation of a game,the game tree, is also an example of a DAG, it is different
from the DAG over state space. In particular, the game tree can not have “loop-backs” (transitions to itself) as in Figure1,
and its edges represent actions for each player rather than possible transitions between the points in the state space.

6Note thatρ(d′|d,x,σ) is different from a single step transition probability. In the terminology of Markov chains,
ρ{d′|d,x,σ} is the probability that thehitting timeof the set(d′ ×X) = {(d′,x′)|x′ ∈ X} is finite conditional on starting
in state(d,x) under strategyσ. The hitting time (orfirst passage time) is the smallest time it takes for the state to travel from
states= (d,x) to some state(d′,x′) wherex′ ∈ X.
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cartesian productS= D×X whereD ⊂ RN andX ⊂ Rk−N whereN ≤ k. A typical element of

S is a points= (d,x) ∈ D×X, where we allow for the possibility thatD or X is a single point

(to capture the cases whereS has no directional component and the case whereS has no non-

directional component, respectively). Then a binary relation ≻σ over the statess∈ S induced by

the strategy profileσ is defined as

d′ ≻σ d iff ∃x∈ X ρ{d′|d,x,σ}> 0 and ∀x′ ∈ X ρ{d|d′,x′,σ}= 0. (3)

Lemma 1 (Partial order over directional component of the state space). The binary relation≻σ

is a partial order of the set D.

Proof. The proofs of the lemma above and all subsequent results (except those that are short and

intuitive and are provided in the text) a provided in Appendix A.

The partial order of the states captures the directionalityin the game implied by the strategy

σ. The statementd′ ≻σ d can be interpreted intuitively as saying that the directional component

d′ comesafter the directional stated in the sense that there is a positive probability of going

from d to d′ but zero probability of returning tod from d′. Note that≻σ will generally not be

a total order of the directional componentsD because there may be pairs(d′,d) ∈ D×D that

arenon-comparablewith respect to the partial order≻σ. There are two ways in which a pair

of points(d′,d) can be non-comparable (a situation that we denote byd′ 6≻ d): there may be no

communication betweend andd′, i.e. zero probability of hitting stated′ from d and vice versa,

or there may be a two way transition (aloop) connectingd andd′, i.e. d′ can be reached with

positive probability fromd and vice versa.

The asymmetry and transitivity conditions guarantee that there cannot be any loops between

any of the comparable pairs(d′,d) of a strict partial order≻σ. However, loops that may exist

betweennon-comparablepairs(d′,d) that are not elements of the binary relation≻σ, also need

to be ruled out.

Definition 3 (No Loop Condition). Let σ be a feasiblen-tuple of strategies for the players in the

dynamic gameG . We say thatσ hasno loops in the directional component Dif the following
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condition is satisfied for alld′ 6= d ∈ D

d′ 6≻σ d =⇒∀x∈ X ρ{d′|d,x,σ}= 0 and ∀x′ ∈ X ρ{d|d′,x′,σ}= 0. (4)

It is not hard to show that when No Loop Condition is satisfied for a feasible strategyσ, the

transitions among the directional components of the state vectord induced by this strategy can

be visualized with a DAG. LetD(G ,σ) denote a directed graph with nodes corresponding to

elements ofD and edges connecting the pointsd andd′ if the hitting probabilityρ{d′|d,x,σ} is

positive. Then ifd andd′ are comparable with respect to≻σ, there can only be an edge fromd to

d′ or vise versa, and otherwise ifd andd′ are not comparable there is no edge between them due

to no communication by No Loop Condition. Therefore, directed graphD(G ,σ) does not have

loops, thus it is a DAG.

Example 1(Finite horizon). Consider afinite horizonMarkovian gameG which lasts forT < ∞

periods. We can recast this in the notation of a stationary Markovian game by writing the state

space asS= D×X whereD = {1,2, . . . ,T} is the directional component of the state space and

X are the other potentially non-directional components of the state space. The time indext is the

directional component of the state space, i.e.d = t and we define the partial order≻σ by d′ ≻σ d

if and only if d′ > d. Note that≻σ in this example is atotal orderof D, and thus there are no pair

of not comparable states (implying that No Loop condition isalso satisfied). Note as well that

the ordering≻σ holds for every strategy, and is thus independent ofσ.

In this simple case, no additional steps are needed to perform the state recursion algorithm

that we define below, which reduces here to ordinary backwardinduction in time. In more com-

plicated examples, a total, strategy independent order needed to do state recursion has to be

specifically constructed. We explain how to do this below.

Example 2(Directional bargaining over shrinking pie). Consider an extension of the Rubinstein

(1982) infinite horizon alternating offer bargaining gameG where two players make alternating

offers and the size of the amount the players are bargaining over (the “size of the pie)”, is given

by d which can take four possible valuesd∈ {d1,d2,d3,d4} with 0< d4 < d3 < d2 < d1. Suppose
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Figure 1: Bargaining over a stochastically shrinking pie (Example 2: left panel, Example 3: right panel)

thatd evolves as a Markov chain with an exogenous (strategy independent) transition probability

p(d j |di), i, j ∈ {1,2,3,4} with values such as in the left panel of Figure 1. Thus, if the pie starts

out at its largest sized1, it has a positive probability that it will remain this size for a geometrically

distributed period of time, and there is a positive probability that it will either decrease to sized3

ord2 but zero probability that it will shrink directly from sized1 to its smallest sized4. It is evident

from the left panel of Figure 1 that the transition diagram for the pie is a DAG. The transitions

hold for all feasibleσ and thus imply a strategy-independent partial order≻σ (∀σ) over thed

variable which consists of the ordered pairs{(d4,d3),(d4,d2),(d4,d1),(d3,d1),(d2,d1)}. Notice

thatd2 6≻σ d3 andd3 6≻σ d2, i.e. the ordered pairs(d3,d2) and(d2,d3) are non-comparable under

the partial order≻σ since there is zero probability of going fromd2 to d3 and vice versa.

Let x∈ {1,2} denote which of the players has the turn to make an offer, so playerx proposes

a division of the pie, which has sized, and the other player then either accepts or rejects the

proposed division. If the proposed division of the pie is accepted, the game ends and the players

consume their respective shares of the pie. Otherwise the game continues to the next stage. Them

variable may alternate deterministically or stochastically. In terms of our setup, the game involves

a two dimensional state spaces= (d,x) where directional variable is the size of the pied and

the non-directional variablex is the index of the player who has the turn to move first. A version

of this game was solved by Berninghaus, Güth and Schosser (2012) using a backward induction

calculation in thed variable that is an example of the state recursion algorithmwe define below.

Example 3(Non-directional bargaining over shrinking pie). Consider a game similar to the one

in example 2, but slightly modify the transition probabilities for the directional state variabled

as shown in the right panel of Figure 1. It is easy to verify that the shown transition probability

induces the same partial order≻σ overD as the transition probabilities in Example 2. However,

13



in this case there is a loop connecting the non-comparable points d2 andd3. This cycle implies

that the directed graph in the right panel of Figure 1 is not a DAG. This game will also fail to be

a directional dynamic game by the definition we provide below, because the existence of the loop

betweend2 andd3 makes it impossible to devise a total order to index the induction steps in the

state recursion algorithm.7

Different strategiesσ can potentially induce different partial orders of the directional compo-

nent of the state spaceD. To be able to construct a common total order for the state recursion

algorithm, it is important to ensure that strategy specific partial orders areconsistentwith each

other, i.e. that there is no pair of states for whichd′ follows from stated under strategyσ but d

follows from d′ underσ′.

Definition 4 (Consistent partial orders). Let σ andσ′ be any two feasiblen-tuple of strategies for

the players in the dynamic gameG and let≻σ and≻′
σ be the two corresponding induced partial

orders of the directional component of the state spaceD. We say that≻σ and≻σ′ areconsistent

partial orders if and only if for anyd′,d ∈ D we have

if d′ ≻σ d then d6≻σ′ d′, (5)

or equivalently that≻σ⊂6≻σ′ with inclusion operator defined as inclusion of the sets of ordered

pairs that constitute the binary relations.

It is worth noting that the definition of consistency is silent about the non-directional compo-

nent of the state space, allowing for various strategies to induce any transitions between points

that only differ in non-directional dimensions. Given the concept of consistent partial orders, we

can define the concept of adirectional dynamic game(DDG).

Definition 5 (Directional Dynamic Games). We say that a dynamic Markovian gameG with

state spaceS is adirectional dynamic game(DDG) if given the decomposition of the state space

in directional and non-directional componentsS= D×X, the following conditions hold:

7However, because the state space is finite, it is possible to reorganize the game so that the loop betweend2 andd3 is
“hidden away” in a separate dimension of the state space. With such manipulation, it would be possible to run state recursion
using the directionality over the three states (d1, joint (d2,d3) andd4) but as it will be evident below, the pointsd2 andd3
would not be treated independently in any of the solution algorithms.
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1. every strategyσ ∈ Σ(G) has no loops in directional componentD according to Definition

3, and

2. the set of induced partial orders onD, {≻σ |σ ∈ Σ(G)}, are pairwiseconsistentaccording

to Definition 4,

whereΣ(G) is the set of all feasible strategies of the dynamic Markovian gameG .

2.3 Stage games and subgame perfection

Even though the different strategy-specific partial orders≻σ are consistent with each other, they

may nevertheless be different from each other. In order to define thestate recursion algorithm

for computing a MPE of the gameG , we need to introduce a concept of strategy independent

common directionality. In doing so, we invoke the notion of the coarsest common refinement (i.e.

join) of the set of all strategy-specific partial orders{≻σ |σ ∈ Σ(G)}. In this section we prove

its existence and use this partial order to define thestagesof the overall DDG. We show how the

stages of the game are totally ordered by construction, enabling the backward induction in state

space. Moreover we prove that this ordering allows for the overall gameG to be decomposed into

a recursive sequence of subgames, the equilibria to which weuse to construct a Markov perfect

equilibrium of the overall game. We start with the definitionof a refinementof a partial order.

Definition 6 (Refinement of a partial order). Let≻σ and≻σ′ be two partial orders of the elements

of the setD. We say that≻σ′ is arefinementof ≻σ if and only if for anyd′,d ∈ D we have

d′ ≻σ d =⇒ d′ ≻σ′ d, (6)

or equivalently using the inclusion operation on partial orders,≻σ⊂≻σ′ .

It is possible for two strategy specific partial orders to be consistent, but neither to be the

refinement of the other. In this case the information on the possible transitions in the state space

under both strategies has to be aggregated into a common (strategy independent) notion of di-

rectionality. This is achieved with the help of refinements which by definition preserve such

information.
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Given a set of partial orders{≻σ |σ ∈ Σ(G)}, let≻G denote the coarsest common refinement

(join) of the partial orders≻σ induced by all feasible strategiesσ ∈ Σ(G). The following theorem

guarantees the existence of the join and characterizes it as(the transitive closure of) the union of

the strategy-specific partial orders≻σ, σ ∈ Σ(G).

Theorem 1. LetG be a directional dynamic game, and let{≻σ |σ ∈ Σ(G)} be the set of pairwise

consistent partial orders of D induced by all feasible Markovian strategies in the game. Then the

join of this set is given by

≻G= TC(∪σ∈Σ(G) ≻σ), (7)

where TC(·) denotes the transitive closure operator, i.e. the smallesttransitive binary relation

that includes the binary relation in the argument.

Definition 7 (Induced DAG for a DDG). Let G be a DDG with state spaceS= D×X whereD

is the directional component of the state space. LetD(G) denote the DAG whose vertices are

the elements ofD and whose edgesd → d′ correspond (one-to-one) tod ≻G d′ for every pair

d,d′ ∈ D. Then we say thatD(G) is theDAG induced by the DDGG .

Consider a vertexd ∈ D of the DAG induced byG . We say thatd has no descendantsif there

is nod′ ∈ D such thatd′ ≻G d. Theterminal nodesof D(G), given byN (D(G)) is a subset of

verticesd ∈ D that have no descendants. We can considerN to be anoperatorwhich returns the

terminal nodes of a DAG. Now letD1(G) = D(G) and defineD2(G) by

D2(G) = D(G)−N (D(G)), (8)

where the “−” sign denotes the set difference operator, i.e. the set of points that belong to the

first argument but not to the second. If follows thatD2(G) is also a DAG, but it is a “sub-DAG”

of the original DAGD(G) created by removing the terminal vertices ofD(G). Since a DAG has

no cycles, it is not hard to see thatN (D(G)) 6= /0 for every DAG, i.e. every finite DAG must have

at least one terminal node. Moreover the nodes of every DAG induced by a finite state DDGG

can be exhausted in finite number of applications of the recursive operator

D j+1(G) = D j(G)−N (D j(G)). (9)
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Figure 2: DAG recursion and stages of the DDG in Example 2 (T = 3).

Lemma 2 (DAG recursion). Let G be a finite state DDG with the induced DAG D(G). Let

D1(G) = D(G) and define the sequence{D j(G)}= {D1(G),D2(G), . . . ,DT (G)} by the recur-

sion (9). This sequence will terminate in a finite number of steps, i.e.T < ∞.

All the nodes in the DAGDT (G) have no descendants, and thus it represents the set ofinitial

nodesof the original DAGD(G). The corollary for Lemma 2 presented in the Appendix shows

that the recursion (9) can also be used to check if an arbitrary directed graph is a DAG when it is

not immediately obvious.

Example 4. Figure 2 provides an illustration of the described DAG recursion for a game we

considered in Example 2. Applying operator (9) to the DAG induced by this game (shown in left

panel of Figure 1) yields in step 1 the left-most sub-DAG where noded4 is removed. Terminal

noded4 is identified by the fact that all edges (except the loop to itself) point in and none point

out. Applying the same principle in step 2 to the sub-DAG obtained in step 1, we find two new

terminal nodes, namelyd2 andd3. Removing these two nodes produces the new sub-DAG shown

in the middle panel of Figure 2. Because the new sub-DAG contains only a single pointd1, the

recursion terminates on the third step, inducing the partition of the directional component of the

state space
{
{d1},{d2,d3},{d4}

}
as shown in the right panel of Figure 2.

Given the whole sequence of DAGs{D1(G),D2(G), . . . ,DT (G)} generated by the recursion

(9) in Lemma 2, let{D1, . . . ,DT } denote the partition of the directional componentD, which is

indexed with theinverted indexτ, such thatDτ contains the points corresponding to the vertices

of DAG DT − j(G). (The right-most panel of Figure 2 presents this partition graphically for the

game in Example 2.) We are now ready to define the stages of the gameG using this partition.
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Definition 8 (Stages of a DDG). Let G be finite state DDG, and let{D1, . . . ,DT } be the partition

of the directional component of the state spaceD induced by the DAG recursion (9) as explained

above. Let

Sτ = Dτ ×X (10)

denote thestage of the gameG , and indexτ denote theindex of the stage. Note thatτ is the

reverse of the original indexj, so thatS1 denotes the initial stage of the gameG andST denotes

the terminal stage.

The{S1, . . . ,ST } is a partition of the state spaceSinto stages. Recall that the DAG induced by

the DDGG represents all possible transitions between the elements of the directional component

of the state spaceD under any feasible strategies. Therefore by virtue of the way the stages are

constructed, once the state of the game reaches some points at stageτ, i.e. s∈ Sτ, there is zero

probability that the state will return to any points′ ∈ Sτ′ at any previous stageτ′ < τ under any

feasible strategyσ ∈ Σ(G). This ordering will allow us to define a new concept of “stage game”

that provides the basis for the backward induction solutionmethod for the overall DDGG that

we refer to asstate recursion.

Definition 9 (Subgames of a DDG). Let G be a finite state DDG, and let{S1, . . . ,ST } be the

partition ofS into stages. DefineΩτ as a subset ofSby

Ωτ = ∪T
t=τSt , (11)

and letGτ denote the DDG with state spaceΩτ and other elements of the game (number of play-

ers, time horizon, utility functions, discount factors, action sets and laws of motion) be properly

restricted for this state space versions of the element of the original gameG . Then we say that

Gτ is thestageτ subgameof the DDGG .

The state recursion algorithm, defined below, involves finding a MPE of the overall gameG

inductively, starting by finding MPEs at all points in theendgame,i.e. the stageT subgameGT ,

and proceeding by backward induction over the stages of the game, from stageT −1 to stage

T −2 until the initial stage 1 is reached and solved. When stage 1is solved in this backward

induction procedure, effectively the wholeG is also solved, as follows from the following lemma.
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Lemma 3. If G is a finite state DDG, andG1 is its stage 1 subgame, thenG = G1.

Note that if the partition elementsDτ contain more than one element ofD, then there can be

no transitions between the various elements inDτ by virtue of the way the partition{D1, . . . ,DT }

was constructed from the DAG recursion in Lemma 2. Suppose that Dτ = {d1,τ, . . . ,dnτ,τ} ⊂ D

wherenτ is the number of distinct points inDτ. It is useful to define an even finer grained notion

of subgames ofG that we call ad-subgames Gτ(d). Since there is zero probability of transitions

betweendi,τ andd j ,τ for i 6= j, these finer subgames can be solved independently of each other in

the state recursion algorithm below.

Definition 10 (d-subgames ofG). Let τ be a stage of the finite state DDGG . Consider

d ∈ Dτ ⊂ D. Thed-subgame ofG , denoted byGτ(d), is the subgame ofG defined in the similar

way as subgameGτ on the state spaceΩτ(d)⊂ Sgiven by

Ωτ(d) = {d×X}∪
(

∪T
t=τ+1St

)

. (12)

With the definition of stages and substages of the DDGG at hand, the state dynamics of

the DDG G can be described in the following way. Imagine that the game starts at a point

s1 = (d1,x1) ∈ S1 ⊂ S at the initial stageS1. It may remain in the substage{d1×X} for some

time, moving freely between the points that only differ froms1 in non-directional dimensions.

Yet, while the game is in stageτ = 1, there can be no transitions to the points(d′
1,x1) ∈ S1 ⊂ S if

d1 6= d′
1 due to the No Loop condition (4) which rules out any transitions between the substages

of the same stage. At some time period a transition occurs to one of the subsequent stagesSτ,

τ > 1, namely to some pointsτ = (dτ,xτ) ∈ Sτ ⊂ S. Again, any transitions are possible within

the substage{d1×X}, but the game will remain in the same substage until the stateof the game

transitions to the next stage.

The DAG-recursion that constructs the stages ofG rules out the possibility that a substage of

some stageSτ for τ < T could be an absorbing class of states, since such states willbe identified

as terminal nodes of the DAGD(G) of the DAG-recursion, (9). Thus, these will all betransient

statesand only the final stageST of the game will be an absorbing class of states. The final stage
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too will be partitioned into substages that do not communicate with each other, so each substage

of the terminal stageST will constitute separate absorbing sets of points.

Let E(G) denote the set of all MPE ofG . In case there are multiple MPEs in some of the

d-subgamesGτ(d) in the stageτ, the equilibria in thed′-subgames at the earlier stagesτ′ < τ

from which a transition is possible tod (d ≻G d′) will be dependent on which of the MPEs of the

d-subgames will eventually be played on the later stage. Thisimplies that in case of multiplicity

of equilibria inG (and thus it’s subgames), the solution computed with the backward induction

approach is dependent on theequilibrium selection rule(ESR) that selects one of the equilibria

at everyd-subgame ofG , and thus induces (or selects) a particular MPE in the whole game. Let

e(G) ∈ E(G) denote a particular selected MPE from the set of all MPE ofG .

Definition 11 (Equilibrium selection rule). Let Γ denote adeterministicrule for selecting one of

the MPE from everyd-subgameGτ(d), i.e.

e(Gτ(d)) = Γ(E(Gτ(d))) ∀d ∈ D. (13)

By selecting an equilibrium in everyd-subgame, ESRΓ also induces (or selects) an equilib-

rium in every subgameGτ, e(Gτ) = Γ(E(Gτ)). We can also interprete(Gτ) as a MPE formed

from the union the equilibria at eachd-subgameGτ(d).

Recall from the Definition 1 of MPE, that an equilibrium consists of two objects: then-tuple

of the players’ strategies and then-tuple of the value functions, soe(G) = (σ∗,V). Define the

projectionseσ(G) = σ∗ andeV(G) =V that pick each of these objects from a given equilibrium.

The state recursion algorithm is a method for constructing aMPE for the overall DDGG by

recursively calculating MPEs for a recursively defined sequence of “smaller games” that we refer

to asgeneralized stage games(though in what follows below, for brevity we refer to them simply

as “stage games”). Note that our definition of stage game is different from the definition that is

traditionally used in the theory of repeated games. In a repeated game, the stage game is asingle

period gameand the repeated gameG is a finite or infinite repetition of these stage games. Each

stage game is itself generally a dynamic game. This dynamic game is played for a random length
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of time until the state of the system transits out of the substage(d×X) that defines the (restricted)

state space of this stage game.

A MPE of each stage game involves calculating the set of all equilibria on a much smaller

subset of the state space than the full state spaceSof the overall DDGG . The state space for each

of the stage games is(d×X)whered∈Dτ for some stage of the gameτ∈ {1, . . . ,T }. Further, we

can restrict our search for MPE of the stage games tocontinuation strategieswhich only require

calculating all MPE (and then selecting a particular one of them) on the state space(d×X) of

the stage game, and then reverting to an already calculated and selected MPE for all subsequent

stages of the game after stageτ. The power of the state recursion algorithm comes from its

ability to decompose the problem of finding a MPE of the much larger and more complex overall

DDG G into the much more tractable problem of recursively finding aMPE for an appropriately

defined sequence of these stage games. This need only be done once, so that state recursion will

find a MPE ofG using only one “pass” of a recursive, backward induction process that loops

through all of thed-stage games (which can be solved independently of each other at every stage

of the backward induction overτ) and sequentially over the various stages of the gameτ starting

at τ = T and working backward.

Definition 12 (Continuation strategies). Let G be a finite state DDG, and consider a particular

stage of this gameτ ∈ {1, . . . ,T }. If Gτ(d) is a d-subgame, define thed-continuation strategy

στ(s|(d×X),eσ(Gτ+1)) to be any feasible Markovian strategy for pointss∈ (d×X) andd ∈ Dτ

that reverts to a MPE strategyeσ(Gτ+1) in the stageτ+1 subgameGτ+1. That is,

στ(s|(d×X),eσ(Gτ+1)) =







σ(s) if s∈ (d×X), d ∈ Dτ

eσ(Gτ+1) otherwise,
(14)

whereσ : (d×X) → A is any feasible, Markovian strategy on(d×X), i.e. σi(s) ∈ Ai(s) for

s∈ (d×X) andd ∈ Dτ. Similarly, define astageτ continuation strategyστ(s|Sτ,eσ(Gτ+1)) to be

any feasible Markovian strategy for pointss∈ Sτ that reverts to a MPE strategyeσ(Gτ+1) in the

stageτ+1 subgameGτ+1. That is,

στ(s|Sτ,eσ(Gτ+1)) =







σ(s) if s∈ Sτ,

eσ(Gτ+1) otherwise.
(15)
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Definition 13 (Stage game). Let G be a finite state DDG, and consider a particular stage of the

gameτ∈ {1, . . . ,T } andd∈Dτ. A d-stage game,SGτ(d), is ad-subgameGτ(d) where the set of

feasible strategies is restricted to continuation strategies, i.e. ifΣ(SGτ(d)) is the set of feasible,

Markovian strategies of the stage game andΣ(Gτ(d)) is the set of feasible Markovian strategies

of thed-subgameGτ(d), then we have

σ ∈ Σ(SGτ(d)) iff σ(s) = στ(s|(d×X),eσ(Gτ+1)), s∈ (d×X)∪Ωτ+1. (16)

Similarly, we defineSGτ to be thestage game at stageτ by restricting the set of all fea-

sible Markovian strategies in the stageτ subgame to continuation strategies. It follows that

Σ(SGτ)⊂ Σ(Gτ) where we have

σ ∈ Σ(SGτ) iff σ(s) = στ(s|Sτ,eσ(Gτ+1)). (17)

Lemma 4. Let G be a finite state DDG, and consider the final stage of the gameT . For each

d ∈ DT we have

SGT (d) = GT (d), d ∈ DT , (18)

and

SGT = GT . (19)

It follows that Σ(SGτ(d)) ⊂ Σ(Gτ(d)), i.e. the set of feasible Markovian strategies in ad-

stage gameSGτ(d) is a subset of the set of feasible Markovian strategies in thed-subgame

Gτ(d). Similarly the set of feasible Markovian strategies in the stage gameGτ is a subset of the

feasible Markovian strategies in the stageτ subgameGτ. By restricting strategies in this way, we

reduce the problem of finding MPE strategies of a stage gameSGτ(d) to the much smaller, more

tractable problem of computing a MPE on the reduced state space (d×X) instead of the much

larger state spaceΩτ(d) given in equation (12) of definition 10.

Theorem 2 (Subgame perfection). Let E(SGτ(d)) be the set of all MPE of the stage game

SGτ(d) and letE(Gτ(d)) be the set of all MPE of the d-subgameGτ(d). Then we have

E(SGτ(d)) = E(Gτ(d)) (20)
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i.e. there is no loss in generality from computing all MPE of every d-subgameGτ(d) by restricting

the search for equilibria to finding all MPE of the corresponding stage gameSGτ(d) using only

continuation strategies.

Corollary 2.1. Let E(SGτ) be the set of all MPE of the stage game at stageτ and letE(Gτ) be

the set of all MPE equilibria of the stageτ subgameGτ. Then we have

E(SGτ) = E(Gτ). (21)

Theorem 2 and its corollary 2.1 provide the foundation for the validity of the state recursion

algorithm. They justify a backward recursion process for computing a MPE of the DDGG that is

very similar in spirit to the use of backward induction to compute a subgame-perfect equilibrium

of an extensive form game. We require one final result before providing a formal statement of

the state recursion algorithm and proving the key result of this section, namely that this algorithm

will compute a MPE of the DDGG .

Theorem 3 (Decomposition of the stage game). Let G be a finite state DDG withT stages. At

each stageτ ∈ {1, . . . ,T }, let Dτ = {d1,τ, . . . ,dnτ,τ} be the set of possible values of the directional

state variable d that can occur at stageτ. We have the following decomposition of the MPE of the

stage game at stageτ, E(SGτ), as a partition of the equilibria of its d-stage gamesE(SGτ(d)):

E(SGτ) = ∪nτ
i=1E(SGτ(di,τ)) (22)

where

E(SGτ(di,τ))∩E(SGτ(d j ,τ)) = /0, i ∈ j (23)

where the union of the possible equilibria in the various component d-stage games can be

interpreted as defining an equilibrium(σ,V) whose domain is the union of the disjoint do-

mains(di,τ ×X), for i = 1, . . . ,nτ. The stage games comprising stageτ are payoff-independent

of each other, i.e. the players’ payoffs inSGτ(di,τ) is unaffected by the choice of strategy

σ ∈ Σ(SGτ(d j ,τ)) in any other stage gameSGτ(d j ,τ), dj ,τ 6= di,τ, in the same stageτ of G .

23



2.4 State Recursion

Definition 14 (State Recursion Algorithm). Consider a finite state DDGG with T stages. The

state recursion algorithm consists of the following nesteddo-loop of operations:

for τ = T ,T −1, . . . ,1 do

for i = 1, . . . ,nτ do

• computeE(SGτ(di,τ)).

• using an equilibrium selection ruleΓ, select a particular MPE fromE(SGτ(di,τ)),

e(SGτ(di,τ)) = Γ(E(SGτ(di,τ))).

• By Theorem 2,e(SGτ(di,τ)) is a MPE of thed-subgameGτ(di,τ),

◦ End of i do-loop. Using the decomposition property (22) of Theorem 3, the union of the

MPEs for eachd-stage game{e(SGτ(di,τ)|i = 1, . . . ,nτ} is a MPE for the overall stage

game at stageτ, e(SGτ).

◦ By Theorem 2 a MPE of theτ-stage gameSGτ is also a MPE of the stageτ subgame,Gτ.

That is,e(SGτ) = e(Gτ).

Theorem 4 (Convergence of State Recursion). Let G be a finite state DDG. The state recursion

algorithm given in Definition 14 computes a MPE ofG .

The state recursion algorithm given in definition 14 leads toa recursively defined MPE for

each stageτ stage gameSGτ, τ = (1, . . . ,T ). By Theorem 2, these MPE also constitute MPE of

the stageτ subgamesGτ, τ = (1, . . . ,T ). However by Lemma 3 we haveG1 = G , so it follows

that e(G1) = e(G), i.e. the state recursion algorithm has computed a MPE of theDDG G by

computing MPE for a total of

N =
T

∑
τ=1

nτ (24)

d-stage games of the gameG . By Lemma 3 we haveG1 = G , so it follows thate(G1) = e(G).

Thus, it follows that the state recursion algorithm has computed a MPE of the DDGG .
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Figure 3: Graphical illustration of state recursion on the DAG D(G) in Example 2.

Example 5. Continuing with the DDG shrinking pie example (Example 2), Figure 3 illustrates

state recursion on the induced DAGD(G) that we introduced in the left panel of Figure 1, and

partitioned into stages in the right panel of Figure 2. Because the game has three stages (T = 3),

state recursion algorithm requires three steps of the outerloop overτ. In the first step, we solve

the end game which in this example is given by a single pointd4. Note that because there are

no non-directional dimensions of the state space,d4 should be interpreted as a point of the state

spaceS. Thus, the terminald-stage game constitutes theτ = T stage game, which is by Lemma 4

is also a terminal subgame of the whole DDG. This subgame is essentially a repeated game in

which the same stated4 reappears in every period with probability 1 (as shown in theleft panel

of Figure 3). By assumption, solution method exists for every d-stage game, and at the first step

of the state recursion algorithm it is applied tod4-stage game.

Given the solution of thed4-stage game, the algorithm moves on to stage gameτ = 2 shown

in middle panel of Figure 3. This stage consists of two pointsd2 andd3, son2 = 2, which can

be solved in any order during two iterations of the inner loopof the state recursion algorithm. In

both cases, the continuation strategies are based on the equilibrium chosen in thed4-stage game

solved in step 1. After all MPE in the stage games are found, one particular equilibrium is chosen

using the exogenously fixed ESR.

Once stageτ = 2 is solved, the algorithm moves on to stageτ = 1 shown in the right panel of

Figure 3, where the lastd-stage game, namelyd1-stage game is solved using the already known

solutions in the rest of the points. By Lemma 3 the whole DDG isthen solved.
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3 Recursive Lexicographical Search

The state recursion algorithm described in section 2 finds asingleMPE of the DDGG via a re-

cursion that involves (a) findingall equilibria among continuation strategies at eachd-stage game

of the DDGG , and then (b) selecting a single equilibrium from this set using some equilibrium

selection ruleΓ. TheRecursive Lexicographical Searchalgorithm (RLS) presented in this sec-

tion findsall MPE of G by systematically examining all feasible ESRs while at the same time

recognizing theinterdependency of choices of MPE for stage games in different stages ofG . That

is, a choice of a particular MPE for any stage game at any stageτ of G can potentially alter the

set of possible MPE at all earlier stagesτ′ < τ. For example, it is possible that the one choice

of MPE for a stage game of the end gameτ = T of G might result in a unique MPE at a stage

game at some earlier stageτ < T , whereas a different choice of MPE of the same stage game of

the end game ofG could result inmultipleMPE existing at the same earlier stage game at level

τ < T of G .

3.1 Prerequisites

Note that our theoretical presentation of the RLS algorithmpresumes the existence of a solution

method to findall MPE in everyd-stage game (i.e. equilibria within the class of continuation

strategies). We show below that when this condition is satisfied RLS findsall MPE of the DDG

G . However, RLS also works if this algorithm can only findsomeof the equilibria ofd-stage

games. In the latter case RLS is not guaranteed to findall MPE of G , but it can still find,

potentially,very manyMPE of G . It is more likely that we can find all MPE of each of the stage

games ofG than forG itself because the stage games have a state space{d×X} that is generally

a small subset of of the overall state spaceS for G itself, and also because we restrict our search

for MPE in the stage games to continuation strategies.

We can interpret RLS as a systematic way of directing the state recursion algorithm to “build”

all possible MPE ofG by enumerating all possible equilibrium selection rules and constructing

all possible MPE of every stage game ofG . Theorem 2 implies that this results in the set of all

possible MPE forG itself. RLS is a remarkably efficient procedure for enumerating and building
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all possible MPE ofG . It achieves this efficiency by a) re-using solutions from previously com-

puted stage games ofG wherever possible, and b) by efficiently and rapidly disregarding large

numbers of potential butinfeasiblecombinations of stage game MPE ofG .

RLS is applicable to DDGs that have afinitenumber of possible MPE. If we assume that the

algorithm that computes all of thed-stage game equilibria can also detect if a particular stage

game has an infinite number of equilibria then even though RLSwill not be able to compute all

MPE of G , it will be able to establish that the game has infinite numberof MPE. Otherwise, the

RLS will provide a complete enumeration of all of them.

Finally, we also assume that eachd-stage game has at least one equilibrium, implying that the

whole DDGG also has at least one MPE.

3.2 Equilibrium Selection Strings (ESS)

Let K denote the least upper bound on the number of possible equilibria in any stage game ofG .

We introduceK to simplify the explanation of the RLS algorithm, but we willshow that is it not

necessary for the user to know the valueK a priori. Instead, the RLS algorithm will reveal the

valueK to the user when the algorithm terminates. Recall thatN given equation (44) of section 2

represents the total number of substages of the DDGG . The state recursion algorithm must loop

over allN of these substages to find a MPE in the stage games that correspond to each of theseN

substages to construct a MPE ofG .

Definition 15 (Equilibrium Selection Strings). An equilibrium selection string(ESS), denoted

by γ, is a vector inZN
+ (the subset of all vectors inRN that have non-negative integer coordinates)

where each coordinate ofγ is an integer expressed in baseK arithmetic, i.e. each coordinate (or

“digit”) of γ takes values in the set{0,1, . . . ,K−1}. Furtherγ can be decomposed into subvectors

corresponding to the stages ofG that is ordered from right to left in the same order of the stages

of G , i.e.

γ = (γT ,γT −1, . . . ,γ1), (25)

where γτ denotes a sub-vector (sub-string) ofγ with nτ components where each digit,γi,τ,
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i = 1, . . . ,nτ is also restricted to the set{0,1, . . . ,K−1}

γτ = (γ1,τ, . . . ,γnτ,τ) (26)

wherenτ equals the number of substages of stageτ of the DDGG .

We use the subscripts notationγi,τ andγτ to denote a subvector (substring) of the ESSγ , and

superscript to denote elements of a sequence of ESSs. Hence,γ j will represent thej th ESS in a

sequence rather than thej th component of the ESSγ. In particular, we letγ0 = (0, . . . ,0) denote

the initial ESS that consists ofN zeros.

We assume that the user fixes some ordering of the set of all equilibria at eachd-stage ofG ,

so that they can be indexed from 0 to at mostK −1. The individual components or “digits” of

the ESSγ j ,τ index (in baseK) which of theK possible MPE are selected in each of thed-stage

gamesSGτ(d j ,τ) of every stageτ of G . Thus, there is a one-to-one correspondence between an

ESSγ and an ESRΓ at least when the number of MPE of the gameG is finite (K < ∞). The

initial ESSγ0 is the selection rule that picks the first equilibrium in every d-stage game (which is

always possible due to our assumption of existence of at least one MPE in every stage game).

It is very important to note that the grouping of equilibriumstrings into substrings or “sec-

tions” γτ corresponding to a right to left ordering of the stages ofG as given in equation (25)

is essentialfor the RLS algorithm to work correctly. However, due to the payoff-independence

property for thenτ component stage gamesSGτ(di,τ), i = 1, . . . ,nτ at each stageτ of G (Theorem

3 of section 2), the ordering of thenτ digits in each of the subvectorsγτ (or “sections”) is irrele-

vant and the RLS will generate the same results regardless ofhow the digits in eachγτ substring

are ordered.

Example 6. Consider an arbitrary DDG with the induced DAG presented in the left panel of

Figure 1 and the stages of the game presented in Figure 2 and 3.This game hasT = 3 stages

given byS1 = {d1}, S2 = {d2,d3} andS3 = d4. Allow this game to deviate from the Rubinstein’s

bargaining model presented in Example 2 by the existence of multiple MPE and suppose that

the maximum number of MPE for any of the four d-subgames isK = 3. Then an example of

an equilibrium string would beγ = (0,2,2,1), indicating that thefirst MPE is selected in stage

τ = 3 (the index for equilibria starts from 0), thethird MPE is selected in both substages of the at
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stageτ = 2, and thesecondMPE is selected at stageτ = 1. Due to the decomposition property

(Theorem 3), the choice of an MPE for the first substage of stage τ = 2 has no effect on the set

of possible MPE in the second substage, but different choices of MPE in these stages may affect

the number of MPE and the values of the MPE at stageτ = 1.

Note that there areKN possible equilibrium strings for the DDGG , so this represents an

upper bound on the number of possible MPE ofG . However, there will generally be far fewer

MPE than this. We can enumerate all possible equilibrium strings by doing mod(K) addition,

starting from the base equilibrium stringγ0. If we form the baseK representations of the integers

{0,1, . . . ,KN − 1}, we obtainKN corresponding equilibrium strings{γ0,γ1, . . . ,γKN−1} which

form the set of allpossibleequilibrium selection strings that areN digits long.

Now consider the addition operation in baseK and its representation as an equilibrium string.

Starting from the always feasible equilibrium stringγ0 = (0, . . . ,0), which is the base-K repre-

sentation of the integer 0, we add 1 to this to get the next possible equilibrium string,γ1 which

is the base-K representation of the integer 1, i.eγ1 = (0,0, . . . ,0,1). The stringγ1 may or may

not be a feasible ESS because there may be only asingleMPE at thed1,n1-stage game ofG . If

there is only a single MPE in this substage, then the equilibrium stringγ1 is infeasiblebecause

it corresponds to choosing the first MPE (which is guaranteedto exist) at every stage game ofG

except forSG1(d1,n1), where the 1 in the right-most component ofγ1 indicates that thesecond

MPE is to be selected for this stage game. However, there is nosecond MPE for this stage game,

and hence we say thatγ1 is an infeasible equilibrium string. We show that the RLS algorithm can

quickly determine feasibility and will immediately skip over infeasible ESSs and “jump” directly

to the next feasible one, or terminate if it reaches the last ESSγKN−1. In the latter case, the RLS

algorithm will have established thatG has aunique MPE,namely the MPE corresponding to the

equilibrium stringγ0.

Definition 16 (Feasible Equilibrium Selection String). An equilibrium stringγ is feasibleif all

of its digits index a MPE that exists at each of the corresponding d-stage games ofG , ∀d ∈ D.

Define anN×1 vectorne(γ) to be the maximum number of MPE at each stage game ofG

under the ESR implied by the equilibrium stringγ. We definene(γ) using the same format as the
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equilibrium string, so that the digits of the equilibrium string γ are in one to one correspondence

with the elements of the vectorne(γ) as follows:

ne(γ) =
(

neT ,neT −1
(
γ>T −1

)
, . . . ,ne1

(
γ>1

))

, (27)

whereγ>τ =
(
γτ+1, . . . ,γT

)
is aT − τ×1 vector listing the equilibrium selection sub-string for

stages ofG higher thanτ. In turn,neτ(γ>τ) denotes thenτ×1 vector listing the maximum number

of MPE in each of the stage gamesSGτ(di,τ), i = 1, . . . ,nτ of stageτ of G ,

neτ(γ>τ) =
(

ne1,τ
(
γ>τ)

)
, . . . ,nenτ,τ

(
γ>τ

))

. (28)

The vectorne(γ) ∈ ZN
+ summarizes how the number of possible MPE at any stageτ of G

depends on the choices of the MPE at the endgame and all stagesafterτ that are represented by the

equilibrium selection substringγ>τ =
(
γτ+1, . . . ,γT

)
. We use the notationneτ(γ>τ) to emphasize

that the number of MPE at stageτ depends only on the equilibria selected at higher stages ofG .

Notice that in the endgameT there are no further stages of the game, so the maximum number

of MPE in this stage,nT does not depend on any substring of the equilibrium stringγ. Further,

by the decomposition property for stage games in any stageτ of G (Theorem 3 of section 2), the

number of possible MPE at every sub-stage gameSGτ(di,τ), i = 1, . . . ,nτ of stageτ depends only

on the equilibrium stringsγ>τ and not on the choice of MPE in other substage gamesSGτ(d j ,τ),

j 6= i of stageτ.

Lemma 5. The ESSγ is feasible if and only if it holds

γi,τ < nei,τ(γ>τ), τ = 1, . . . ,T , i = 1, . . . ,nτ (29)

By assumption, we haveK = maxτ=1,...,T maxi=1,...,nτ{nei,τ(γ>τ)}. However, in the operation

of the RLS algorithm it is clear that we do not have to loop through allK digits {0, . . . ,K −1}

for every component of a candidate equilibrium stringγ to check feasibility. We will generally

have to check far fewer thanKN possible equilibrium strings for feasibility. But it should be

evident that due to the one-to-one correspondence between an ESS and an integer (the ESS is

the base-K representation of an integer), a simple do-loop over the integers{0,1, . . . ,KN −1} is
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a way to systematically enumerate all possible equilibriumstrings, and thus all possible choices

of MPE at each substage ofG . However this “brute force” enumeration is not efficient because

typically there are huge gaps between the feasible ESSs in this full enumeration loop. We devise

a vastly more efficient approach thatjumps directly to the nextfeasibleESSγ. Consequently, the

RLS algorithm has a run time that islinear in |EG |, the total number of MPE ofG . However,

to describe this more efficient search procedure, we need to introduce some basic facts about

variable base arithmetic.

3.3 Variable Base Arithmetic

We say an ESSγ has avariable base(also known in computer science asmixed radix numeral

systems) if the integers in the different components or digits ofγ are expressed in different bases.

Let the bases for the individual components of the ESSγ be given by the vector of integersne(γ),

the number of MPE for each of the component stage games ofG after state recursion was run

with ESRγ. Continuing the example above, ifγ = (0,2,2,1) indexes a particular choice of MPE

in the 3 stages ofG , suppose the corresponding number of equilibria in these three stages is

ne(γ) = (1,3,3,3). Then the first componentγ1,3 = 0 is expressed in base=1 and can only have a

value of 0, while the other components are expressed in base-3 and can take values from 0 to 2.

An ESSγ is in one to one correspondence with an integer (i.e. it is a variable base represen-

tation of an integer) in very much the same way asγ is a representation of an integer when all

digits of γ have the same baseK. Let ι : ZN
+ → Z+ be the function that maps ESS of lengthN to

integers. Then we have

ι(γ) =
N

∑
j=1

γi( j),τ( j)

j−1

∏
j ′=1

nei( j ′),τ( j ′)(γ>τ( j ′)) (30)

where γi( j),τ( j) is the j th component of the ESSγ and nei( j),τ( j)(γ>τ( j)) is the j compo-

nent of the corresponding bases for the digits of the ESSγ. Continuing the example above,

ι(0,2,2,1) = 1+2×3+2×3×3+0×3×3×3= 25, andι(0,2,2,2) = 26, so(0,2,2,2) is the

largest number in this system.

Since an ESSγ can be viewed as a variable representation of an integer, we can do all of

the ordinary arithmetic, including addition and subtraction. Addition can be done as we were all
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taught in elementary school for numbers in base-10, namely to start on the right and add to the

first digit, “carrying” the remainder mod(10) to the next digit of the number if adding a number

causes the first digit to exceed 10. In variable base additionwe do the same thing, except we use

a different base for determining how much to carry in each successive digit of the number.

We can define thesuccessor functionS : ZN
+ → ZN by theγ′ that results from adding 1 to the

ESSγ and carrying out the addition process as described above in variable base arithmetic. Thus,

ι(S(γ)) = ι(γ)+1 except if the successor will not exist because it represents an integer that is

larger than the largest integer than can be represented withN and the variable basene(γ). Since

all of the components of a feasible ESSγ are nonnegative, we will define the result of successor

operator when there is “overflow” to be a vector inZN all of whose components equal−1.

Now we show how variable base arithmetic can be used to define avery effective procedure

for jumpingfrom one feasible ESSγ to another one.

Definition 17 (Jump function). Let J : ZN
+ → ZN

+ be defined by

J (γ) =







argminγ′{ι(γ′)|ι(γ′)> ι(γ) andγ′ is feasible}

(−1, . . . ,−1) if there is no feasibleγ′ satisfyingι(γ′)> ι(γ).
(31)

Thus,J (γ) is the “smallest” ESSafter γ that is also a feasible ESS.

Lemma 6. If γ is a feasible ESS, thenJ (γ) = S(γ).

What Lemma 6 tells us is that we can easily jump to the next feasible ESS in the lexicograph-

ical order by simply using variable base arithmetic with basesne(γ) and adding 1 to the ESSγ

using successor functionS(γ) defined above.

3.4 Recursive Lexicographical Search (RLS) Algorithm

Having set up the machinery and showing how it is possible to jump directly from one feasible

ESS to another using the jump (successor) functionJ (γ) we are now ready to provide a simple

description of how the RLS algorithm works.
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RLS initialization

• Seti = 0 and letγ0 = (0,0, . . . ,0,0) be the always feasibleN-digit ESS that corresponds to

the ESR for the DDGG where the first MPE is selected at each d-subgame. Run the state

recursion algorithm to calculate an MPE ofG corresponding to this ESR and label all of

the MPE in each stage game and record the number of possible MPE in each stage game of

G in theN×1 vectorne(γ0).

• Let Λ be the set of feasible ESS found by RLS. SetΛ = {γ0}.

Main RLS do-loop

• Computeγi+1 = J (γi), the next candidate feasible ESS. Letj0 denote the highest digit of

the ESS that changed.

• Stopping rule:If γi+1 = (−1, . . . ,−1) then RLS stops and has computed all MPE.

• Otherwiseγi+1 is a feasible ESS by Lemma 6. Runpartial state recursion for the stagesτ′

which are dependent on stageτ where j0 belongs, i.e.τ′ < τ, and using the ESR implied

by the ESSγi+1, index the MPE of every stage game ofG , and record the total number of

MPE found at each stage in theN×1 vectorne(γi+1).

• Update the set of feasible ESS found by RLS by settingΛ = Λ∪{γi+1}.

• Update the loop counter by settingi = i +1 and continue the main RLS do-loop.

3.5 RLS findsall MPE in a finite number of steps

The RLS algorithm must terminate in a finite number of steps since there at mostKN ESSs

of length N. Upon termination the setΛ will contain a finite numberJ of feasible ESSs,

Λ = {γ0, . . . ,γJ−1}. We now prove thatJ = |E(G)|, i.e. the RLS algorithm has foundall MPE

of the DDGG . We first prove a stepping stone result, namely that RLS finds all MPE that are

“generated” by a given selection of MPE for the stage games instagesT to τ of G .

We introduce some final notation so we can state and prove a Lemma that is a key stepping

stone to the proof of the main result of this section, Theorem5 below. If γ ∈ Λ is a feasible ESS
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returned by the RLS algorithm, leteγ be the MPE ofG that is implied by the ESSγ. That is, each

ESSγ corresponds to an ESRΓ and so ifΓ(γ) is the ESR implied by the ESSγ, then we have

eγ ≡ Γ(γ)(E(G)). (32)

Now if eγ is the MPE ofG implied by the ESSγ, Theorem 2 implies that via the use of contin-

uation strategies,eγ implies or induces a MPE for all of the stage games ofG , soeγ(SGτ(d))

denotes the MPE on thed-stage gameSGτ(d) induced by the ESSγ, andeγ(Sτ(d)) is the MPE

on thed-subgame induced byγ.

Lemma 7. Let γ ∈ Λ be a feasible ESS returned by the RLS algorithm, and let eγ be the MPE of

G induced byγ. LetEτ(G |eγ) denote the set of all MPE ofG that revert to the MPE eγ after stage

τ, i.e. the players use eγ to define a continuation strategy for stagesτ+1, . . . ,T . If e∈ Eτ(G |eγ),

then there exists aγ′ ∈ Λ such that e= eγ′.

With Lemma 7 in hand, it is now possible to prove the main theorem of this section, i.e. that

the RLS algorithm findsall MPE of the DDGG .

Theorem 5. Assume there exists an algorithm that can find all MPE of everystage game of the

DDG G , and that the number of these equilibria is finite in every stage game. Then the RLS

algorithm above will find all MPE of DDGG in at most|E(G)| steps, which is the total number

of MPE of the DDGG .

It is important to emphasize that theRLS algorithm requires no prior knowledge of the

maximum number of MPE K of any stage game ofG . This information is updated over the

course of running the RLS algorithm, starting with the initialization at the always feasible ESS

γ0 = (0, . . . ,0). Each time the RLS algorithm encounters a new feasible ESSγ, it updates the

maximum number of MPE in state points where the solution may have changed. In this way the

RLS algorithm can systematically search for all MPE ofG even though the user has no prior

knowledge of how many MPEG or any of its stage games might have.

We conclude this section by stating the approximation result that we discussed in the intro-

duction, that shows that the RLS algorithm is a very general method for approximating the set of

all MPE ofarbitrary infinite horizon dynamic games, including gamesG that have no exploitable

directionality other than the directionality of time itself.
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Theorem 6. Consider a finite state, infinite horizon dynamic gameG that has no exploitable

directional structure, indicated by the situation where the directional component of the state

space D contains only a single element. Consider approximating the infinite horizon gameG by

a finite horizon gameGT for some large but finite value of T< ∞. Let the directional component

of GT be the time index, i.e. D= {1, . . . ,T} and assume that there exists and algorithm that can

find all MPE of the T stage games ofGT . Then the RLS will find all MPE ofGT and under the

conditions of Fudenberg and Levine (1983), we have

lim
T→∞

E(GT) = E(G), (33)

so RLS is able to approximate the set of all MPE of finite state,infinite-horizon but non-directional

gamesG that satisfy the continuity conditions in Fudenberg and Levine (1983).

4 Applications of State Recursion and the RLS Algorithm

In this section we present an example of dynamic stochastic directional games and show how

we solve this game using the state recursion and the recursive lexicographical search algorithms

developed in the previous sections. We consider two versions of a dynamic model of Bertrand

price competition with cost-reducing investments analyzed by Iskhakov et. al (2013). The first

example is the simultaneous move version of this investmentand pricing game, all dimensions of

which are directional and thus the stage games are relatively easy to solve. Our second example

is the alternating move version of the same model. Because the right of move alternates back

and forth between the two duopolists, the state variable indicating whose turn it is to move in

a given time period becomes non-directional. We show however, that it is still possible to find

all stage game equilibria, despite the additional complications induced by the non-directional

dimension. Consequently, the alternating move version of the leapfrogging model is also suitable

to be handled by by the RLS algorithm and we can thus find all equilibria of this game as well.

4.1 Bertrand price and investment game with simultaneous moves

We begin with the simultaneous move formulate of the leapfrogging model of Iskhakov et al.

(2013). The description of the model is abridged. Please refer to Iskhakov et al. (2013) for
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economic motivation and greater detail on the model.

The model

We consider a discrete-time, infinite horizon stochastic game where two firmsj, j ∈ {1,2}, are

producing an identical good at a constant marginal cost ofc1 andc2, respectively. We assume

that the two firms are price setters, have no fixed costs and face no capacity constraints when

producing the good. We also assume that demand is perfectly elastic. Under these assump-

tions, the Bertrand equilibrium for the two firms is for the lower cost firm to serve the entire

market at a pricep(c1,c2) equal to the marginal cost of production of the higher cost rival,

p(c1,c2) = max[c1,c2]. We let r1(c1,c2) denote the expected profits that firm 1 earns in a sin-

gle period equilibrium play of the Bertrand-Nash pricing game when the two firms have costs of

productionc1 andc2, respectively.

r1(c1,c2) =







0 if c1 ≥ c2

max[c1,c2]−c1 otherwise.
(34)

and the profits for firm 2,r2(c1,c2) are defined symmetrically, so we haver2(c1,c2) = r1(c2,c1).

The two firms have the ability to make an investment to replacetheir existing plant with a

new state of the art production facility. If either one of thefirms purchases the current state of

the art technology, then after a one period lag, the firm can produce at the new marginal cost

of production,ct . Stochastic technological progress drives down the state of the art marginal

cost of production over time, such thatct evolves according to a exogenous Markov process with

transition probabilityπ(ct+1|ct). With probability π(ct |ct) we havect+1 = ct (i.e. there is no

improvement in the state of the art technology att + 1), and with probability 1− π(ct |ct) the

technology improves, so thatct+1 < ct andct+1 is a draw from some discrete distribution over

the interval[0,ct ]. Both firms have equal access to the new technology conditional on paying an

investment costK(ct).

Each firm j incurs idiosyncratic “disruption costs” (or subsidies)ηεt, j = (ηε0,t, j ,ηε1,t, j) as-

sociated with each of the choices ofnot to invest(ηε0,t, j ) andto invest(ηε1,t, j) respectively. It is

common knowledge among the two firms that{ηεt,1} and{ηεt,2} are independentIID Type I bi-

variate extreme value processes with common scale parameter η ≥ 0. Firm j observes its current
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and past idiosyncratic investment shocks{ηεt, j}, but does does not observe its future shocks or

it’s opponent’s past, present, or future idiosyncratic investment cost shocks.

The timing of events in the model is as follows. Each period, both firms observe the state

of the the industry, set their prices andsimultaneouslydecides whether or not to invest in the

state of the art production technology. In setting the prices, the two firms also act independently

and simultaneously. Production in periodt is performed with their existing plants independent of

their investment decisions.

Assuming that the two firms are expected discounted profit maximizers and have a common

discount factorβ ∈ (0,1), we define the stationaryMarkov Perfect Equilibriumof the duopoly

investment and pricing game as a pair of strategies(Pj(c1,c2,c), p j(c1,c2)), j ∈ {1,2} where

Pj(c1,c2,c) ∈ [0,1] is firm j ’s probability of investing andp j(c1,c2) = max[c1,c2] is firm j ’s

pricing decision. The investment functionPj(c1,c2,c) must maximize the expected discounted

value of firm j ’s future profit stream taking into account then investment and pricing strategies of

its opponent. The value functionsVj , j = 1,2 take the form

Vj(c1,c2,c,ε0, j ,ε1, j) = max
[
vI , j(c1,c2,c)+ηε0, j , vN, j(c1,c2,c)+ηε1, j

]
(35)

where,vN, j(c1,c2,c) denotes the expected value to firmj if it does not acquire the state of the art

technology, andvI , j(c1,c2,c,m) is the expected value to firmj if it does. These expected values

are given by

vN, j(c1,c2,c) = r j(c1,c2)+βEVj(c1,c2,c), (36)

vI , j(c1,c2,c) = r j(c1,c2)−K(c)+βEVj(c1,c2,c), (37)

whereEVj(c1,c2,c) denotes the conditional expectation of firmj ’s next period value functions

Vj(c1,c2,c,ε0, j ,ε1, j) depending on whether the firm invest this period or not. The expected value

function summarize firms’ expectations about future technological development governed by

π(ct+1|ct), opponent’s investment and pricing decisions and the future idiosyncratic cost compo-

nentsηεt, j . Since the two firms move simultaneously, firm j’s investmentdecision is probabilistic

from the standpoint of firmi 6= j because firmj ’s decision depends on the cost benefits/shocks

(ε0, j ,ε1, j) that only firm j observes. But since firmi knows the probability distribution of these

shocks, it can calculate it’s belief about the probability that firm j will invest given the mutually
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observed state(c1,c2,c). Let Pj denote such beliefs of firmi. Given the assumption of extreme

value distribution of(ε0, j ,ε1, j), Pj is given by the binary logit formula

Pj(c1,c2,c) =
exp{vI , j(c1,c2,c)/η}

exp{vN, j(c1,c2,c)/η}+exp{vI , j(c1,c2,c)/η}
. (38)

Firm i’s belief of firm j ’s probability of not investing is then 1−Pj(c1,c2,c).

Further, the distributional assumption for cost shocks(ε0, j ,ε1, j) also allow us to express the

conditional expectationEVj(c1,c2,c) for each firm j by the well known closed form log-sum

formula
∫

ε j
0

∫
ε j

1

Vj(c1,c2,c,ε0, j ,ε1, j)q(ε0, j)q(ε1, j)dε1, jdε0, j =

η log
[
exp{vN, j(c1,c2,c)/η}+exp{vI , j(c1,c2,c)/η}

]
=

φ(vN, j(c1,c2,c),vI , j(c1,c2,c)), (39)

where we useφ() to denote the log-sum formula. Using this notation, we are now ready to present

the system of Bellman equations for the simultaneous move version of the model, namely

vN,1(c1,c2,c) = r1(c1,c2)+β
∫ c

0

[
P2(c1,c2,c)φ(vN,1(c1,c,c

′),vI ,1(c1,c,c
′)) +

(1−P2(c1,c2,c))φ(vN,1(c1,c2,c
′),vI ,1(c1,c2,c

′))
]

π(dc′|c).

vI ,1(c1,c2,c) = r1(c1,c2)−K(c)+β
∫ c

0

[
P2(c1,c2,c)φ(vN,1(c,c,c

′),vI ,1(c,c,c
′)) +

(1−P2(c1,c2,c))φ(vN,1(c,c2,c
′),vI ,1(c,c2,c

′))
]

π(dc′|c),

vN,2(c1,c2,c) = r2(c1,c2)+β
∫ c

0

[
P1(c1,c2,c)φ(vN,2(c,c2,c

′),vI ,2(c,c2,c
′)) +

(1−P1(c1,c2,c))φ(vN,2(c1,c2,c
′),vI ,2(c1,c2,c

′))
]

π(dc′|c).

vI ,2(c1,c2,c) = r2(c1,c2)−K(c)+β
∫ c

0

[
P1(c1,c2,c)φ(vN,2(c,c,c

′),vI ,2(c,c,c
′)) +

(1−P1(c1,c2,c))φ(vN,2(c1,c,c
′),vI ,2(c1,c,c

′))
]

π(dc′|c). (40)

Directionality of the simultaneous move game

The state of the art marginal cost of production,ct , is trivially a directionalstate variable since it

can only improve. It also has a natural absorbing statect = 08 making finite discrete approxima-

tions of the state space possible. Moreover, it is easy to see, that the remaining two state variables

8We assume without loss of generality that state of the art cost may asymptotically approach but never cross zero.
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Figure 4: Possible transitions between points in the state space in dynamic Bertrand investment and pricing

game withN = 4. Each dot represents a vector(c1,c2,c). Dashed boxes enclose different layers of the

state space pyramid: from the apex to the end game. White colored dots in each layer represent interior

points (c1 > c, c2 > c), grey dots represent edges (c1 = c or c2 = c), and solid black dots represent the

corners (c1 = c2 = c). Only transitions from transitive reduction are shown between layers, full set of

transitions can be reconstructed by considering the transitive closure of the presented graph.

in this model,(c1 andc2) are directional as well although they are strategy dependent and thus

evolve endogenously. Since there is no depreciation in the model that would ever cause costs to

rise, it follows that once firms’ costs attain the state of theart level at some periodt, they will

remain at this level or below in all future periods. Hence, all state variables of the simultaneous

move Bertrand pricing and investment game belong to the “directional” component of the state

space. Under every feasible strategy, every component of the cost vector(c1,c2,c) will only

move towards the absorbing statec= 0.

The directional structure of Bertrand investment and pricing game is illustrated in Figure 4

for the case wherec is defined on the grid withN = 4 values. Each dot represents the state vector
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(c1,c2,c) and arrows represent possible transitions between points in the state space. Dashed

boxes enclose differentlayersof the state space pyramid corresponding to different values of c:

from the apex wherec = c1 = c2 = c0 to the base of the pyramid wherec = 0 (the rightmost

box). White colored dots in each layer represent “interior points” in each layer, i.e.(c1,c2,c)

wherec1 > c, c2 > c. The grey dots represent “edges”,(c,c2,c) and(c1,c,c). The solid black

dots represent the(c,c,c) “corners” wherec1 = c2 = c.

Consider first possible transitions from an interior point,(c1,c2,c). In absence of technolog-

ical improvement, the state variables will only move towards the “edges”(c,c2,c) and(c1,c,c)

if either firm 1 or firm 2 invest, or to the(c,c,c) “corner” if both firms invests simultaneously.

These transitions are indicated with arrows from white dotsto grey and black dots respectively.

From the edges it is only possible to move to the corner (unless the technology improves) as in-

dicated by the arrows from grey to black dots. If technology improves, so thatct+1 < ct , the state

of the industry can move to the interior points at lower levels of the state space pyramid. These

transitions are indicated with the arrows that cross the borders of the dashed boxes in Figure 4.

I terms the notation in section 2, the directional variable is equal to the entire state vector,

d = (c1,c2,c) since there are no non-directional variables in this game, i.e, S= D and X is

singleton. The endgame stage, denoted byτ = T , is the(0,0,0) corner in the present model,

corresponding to the right most black dot in Figure 4. In the endgameG(T ) consists of a single

point (0,0,0), where the state recursion starts.

The next stage corresponding toτ = T −1 consists of the 2(N−1) edge states of the form

(c1,0,0) and (0,c2,0). Thus, there are multiple values of the directional state variable in this

stage, but because they do not communicate among each other (i.e. there is zero probability of

going from one value ofd = (c1,0,0) to anotherd′ = (c′1,0,0)) each separate point induces an

infinite horizond-subgame in which the cost vector may remain the same or change to (0,0,0)

at some future time period. So, the only possible “direction” of movement is be to the stage

T . Because of no communication, each of thesed-subgames is solved independently in the

inner loop of the stage recursion algorithm. In accordance with Theorem 2 by solution here we

mean finding an equilibrium ind-stage game among continuation strategies which revert to the

optimal actions in state(0,0,0) (stageT ) that were already found in the previous step of the stage
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recursion algorithm.

State recursion algorithm proceeds to the next stageτ = T − 2 which is composed of the

interior points in the bottom layer wherec1 > c, c2 > c, andc= 0. These points also don’t com-

municate with each other, and thus form(N−1)2 d-subgames that are also solved independently

taking into account the solutions on the edges and in the corner of the bottom layer. The stage

after that,τ = T −3, equals the(c,c,c) corner stage in the second to last layer of the game where

c> 0. We then continue the backward induction in state space in this way through stages of the

gameτ = T −2,T −3, ....,2,1. At each stageτ all the differentd-subgames of the gameG(τ)

are solved independently given a particular equilibrium selection at lower stages of the game.

Once we have solved theG(1) subgame at the apex(c0,c0,c0), we have solved the entire game

sinceG(1) = G

Theorem 7 (Solution method for thed-stage games in simultaneous move leapfrogging game).

Given a fixed equilibrium selection ruleΓ, solution method for every d-subgame in the Bertrand

pricing and investment game with simultaneous moves existsand whenη = 0 is guaranteed to

find all d-subgame MPE for every d= (c1,c2,c).9

Finding all MPE using RLS

Theorem 7 establishes that state recursion is guaranteed tofind all d-subgame MPE given a

fixed equilibrium selection ruleΓ. We will now show how theRecursive Lexicographical Search

algorithm (RLS) presented in section 3 findsall MPE of the simultaneous move leapfrogging

game, by systematically examining all feasible ESSγ corresponding to all possible ESRsΓ. We

have illustrated this process in Figure 5 for the case wheren= 3.

The first five rows in Figure 5 describe an example of how a ordering of the states may be

constructed, so that the ordering of the stages of the game issatisfied. Each column corresponds

to a state point and thus do a digit in a ESS. The top row in Figure 5 presents the stages of the

game, the second row presents the digit number in the ESSγ for the case whenn = 3, and the

next three rows show values(c1,c2,c) that correspond to each digit (points of the grid for costs

are indexed from 0 to 2).

9Our numerical solution method for this game is prone to numerical errors for a range ofη close to zero.
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c e e e e i i i i c e e i c

Stage index 7 6 6 6 6 5 5 5 5 4 3 3 2 1

ESS digit index 14 13 12 11 10 9 8 7 6 5 4 3 2 1

c 1 1 1 1 1 1 1 1 1 2 2 2 2 3

c1 1 1 1 3 2 3 3 2 2 2 2 3 3 3

c2 1 3 2 1 1 3 2 3 2 2 3 2 3 3

Initial ESS 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ne 1 1 1 1 1 3 3 3 3 1 1 1 3 1

ESS 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

ne 1 1 1 1 1 3 3 3 3 1 1 1 3 1

ESS 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0

ne 1 1 1 1 1 3 3 3 3 1 1 1 3 1

ESS 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ne 1 1 1 1 1 3 3 3 3 1 1 1 5 1

ESS 4 0 0 0 0 0 0 0 0 1 0 0 0 1 0

ne 1 1 1 1 1 3 3 3 3 1 1 1 5 1

ESS 5 0 0 0 0 0 0 0 0 1 0 0 0 2 0

ne 1 1 1 1 1 3 3 3 3 1 1 1 5 1

ESS 6 0 0 0 0 0 0 0 0 1 0 0 0 3 0

ne 1 1 1 1 1 3 3 3 3 1 1 1 5 1

ESS 7 0 0 0 0 0 0 0 0 1 0 0 0 4 0

ne 1 1 1 1 1 3 3 3 3 1 1 1 5 1

ESS 8 0 0 0 0 0 0 0 0 2 0 0 0 0 0

ne 1 1 1 1 1 3 3 3 3 1 1 1 1 1

ESS 9 0 0 0 0 0 0 0 1 0 0 0 0 0 0

ne 1 1 1 1 1 3 3 3 5 1 1 1 5 1

!

0 0 0 0 0 4 4 2 2 0 0 0 1 0

ne 1 1 1 1 1 5 5 3 3 1 1 1 3 1

Last ESS 0 0 0 0 0 4 4 2 2 0 0 0 2 0

ne 1 1 1 1 1 5 5 3 3 1 1 1 3 1

Stop -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Figure 5: Graphic representation of RLS algorithm.

Note that while there areN = 14 state points, there are onlyT = 7 stages in this game as

indicated by the second row so there are multiple ways we can order the state points and still

obey the ordering of the stages of the game. Starting from theright, the lowest digit represents

the top layer the game with a single pointc1 = c2 = c= 2. The solution in this initial state depend

on all subsequent points of the state space, whereas the opposite is the case for the endgame where

c1 = c2 = c= 0. In fact, the digits of the ESS are ordered to preserve the directionality such that

the solution at any given point depends on points to the left,but not on points to the right.

Moving from right to left, the ESSγ then contains four points corresponding to second the

highest level of the game (c= 1 in Figure 5), and the rest of the blocks representing other layers.

The left-most block containsn2 = 9 points and corresponds to lowest layer of the game (c = 0

in Figure 5) and includes the end game corner, wherec1 = c2 = c = 0 . Thus, lower layers of
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the game which affect the values of the higher layers, are positioned to the left in the ESR string.

Points within each layer are also organized in accordance tothe dependency preserving property.

The corner point (wherec1 = c2 = c) is left-most in each layer, the two edges (wherec1 = c and

c2 = c) that depend on the corner, are positioned next, and the interior points of the layer (where

c1 < c andc2 < c) dependent on the edges are positioned on the right of each block. Figure 5

marks these blocks within each layer of the game with symbolsc, eandi above the ERS string.

We begin with the initial ESS,γ0 that consist of zeros at all 14 digits and solve for all MPE

given this equilibrium selection rule. This corresponds tosolving the game and selecting the first

equilibrium at each point in the state space. Accordingly wecan solve for all MPE given the

ESSγ0 to obtain the number of MPE at each state point, which we collect in the vector vector

ne(γ0). The feasibility of each particular ESR stringγ can be naturally defined through a set of

inequalities on the digits given in Lemma 5,γi,τ < nei,τ(γ>τ) to ensure that each of them is not

greater than the number of d-subgame equilibria found for the corresponding point in the state

space. But as mentioned above, the number of stage equilibria on each layer of the game depends

on the equilibria chosen on the lower layers of the game, and thus it is important to acknowledge

the recursive nature of feasibility of equilibrium selection rules.

Note that only part of the solution has changed when we one to the next equilibrium selection

string. In particular, the solution has only changed in stages that follow the stage where highest

digit has changed. We have shaded these states in pink in Figure 5.

As is clear from Figure 5 that if we compare to case with fixed base arithmetic whereK = 5,

the RLS algorithm jumps over huge blocks of infeasible ESS. For example the ninth ESS,γ8,

in the example Figure 5 would correspond the 15625′th ESS in base 5-number system, but RLS

jumped here in only 9 steps without even checking for feasibility of the remaining ESS.

4.2 Bertrand price and investment game with alternating moves

We now turn to our second example, which is an alternating move version model outlined above.

As before, we assume that firms simultaneously set their prices after having made their investment

choices. However their investment choices are no longer made simultaneously. Instead, the right

to move alternates between the two firms. Letmt ∈ {1,2} be a state variable that governs which
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of the two firms are allowed to undertake an investment at timet, i.e. the valuemt = 1 indicates

a state where only firm 1 is allowed to invest, andmt = 2 is the state where only firm 2 can

invest. We will assume that{mt} evolves as an exogenous two state Markov chain with transition

probability f (mt+1|mt) independent of the other state variables(c1,t ,c2,t ,ct).

In the alternating move case, the Bellman equations for the two firms lead to a system of eight

functional equations for(vN, j(c1,c2,c,m),vI , j(c1,c2,c,m)) for j,m∈ {1,2}. Below we write out

the four Bellman equations for firm 1, but we omit the value functions for firm 2 to save space

since they are defined similarly.

vN,1(c1,c2,c,1) = r1(c1,c2)+β f (1|1)
∫ c

0
φ(vN,1(c1,c2,c

′,1),vI ,1(c1,c2,c
′,1))π(dc′|c)+

β f (2|1)
∫ c

0
ev1(c1,c2,c

′)π(dc′|c)

vI ,1(c1,c2,c,1) = r1(c1,c2)−K(c)+β f (1|1)
∫ c

0
φ(vN,1(c,c2,c

′,1),vI ,1(c,c2,c
′,1))π(dc′|c)+

β f (2|1)
∫ c

0
ev1(c,c2,c

′)π(dc′|c)

vN,1(c1,c2,c,2) = r1(c1,c2)+β f (1|2)
∫ c

0
φ(vN,1(c1,c2,c

′,1),vI ,1(c1,c2,c
′,1))π(dc′|c)+

β f (2|2)
∫ c

0
ev1(c1,c2,c

′)π(dc′|c)

vI ,1(c1,c2,c,2) = r1(c1,c2)+β f (1|2)
∫ c

0
φ(vN,1(c1,c,c

′,1),vI ,1(c1,c,c
′,1))π(dc′|c)+

β f (2|2)
∫ c

0
ev1(c1,c,c

′)π(dc′|c). (41)

where

ev1(c1,c2,c) = P2(c1,c2,c,2)vI ,1(c1,c2,c,2)+ [1−P2(c1,c2,c,2)]vN,1(c1,c2,c,2). (42)

Note thatP2(c1,c2,c,1) = 0, since firm 2 is not allowed to invest when it is firm 1’s turn toinvest,

m= 1. A similar restriction holds forP1(c1,c2,c,c,2).

Directional and Non-directional states

This example presents the complication that not all state variable are directional, since the right

to move alternates forth and back between their two duopolist firms and thus the two values

that mt can take are non-comparable in the sense there may be aloop connectingm= 1 and
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m= 2, i.e. m= 2 can be reached with positive probability fromm= 1 and vice versa. Despite

this additional simultaneity, that seemingly complicatesthe partial ordering of the states, it is

still quite simple to find the solution of to the stage game equilibria in this example, despite the

additional complication induced by the non-directional state variables. First, the directionality of

the remaining state variables,(c1,c2,c) is unaffected by the alternation of moves, since changing

the timing the movies does change the property that nothing in this model could ever cause the

cost to increase to suddenly increase. Second, for a given value of d = (c1,c2,c), we can easily

solve the game for all values of the non-directional state variable m∈ {1,2} . In particular, it

can be shown that the eight functional equations (given by the four equations for firm 1 given in

(41) above and the four equations that are defined similarly for firm 2) at the each stage game

G(τ−1), can be solved almost analytically given the solution at thepreviously calculated stage

gamesG(τ) and a deterministic equilibrium selection rule,Γ, that selects the equilibrium to be

played at lower level stage games.

Theorem 8 (Solution method for thed-stage games in alternating move leapfrogging game).

Given a fixed equilibrium selection ruleΓ, solution method for every d-subgame in the Bertrand

pricing and investment game with alternating moves exists and is guaranteed to find all d-

subgame MPE for every d= (c1,c2,c).

4.3 Performance of the solution algorithms

Theorems 7 and 8 ensure that the key assumption under the stage recursion and RLS algorithms

is satisfied, and thus these methods can be applied for the Bertrand pricing and investments game.

When we apply RLS to the simultaneous and alternating move formulation of this game, we find

that these infinite horizon games turns out to have a surprisingly rich set of equilibrium outcomes.

Figure 6 displays the computed equilibrium expected profitsof the two firms in the Bertrand

investment and pricing game with simultaneous moves under deterministic (panel a) and stochas-

tic (panel b) technological improvement. With only 5 pointsin the grid of the costs, there are

around 200 million equilibria in each of the two versions of the game, although the number of

distinct payoffs is much larger under stochastic technological improvement (as indicated by the

size and color of the dots in Figure 6).
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Figure 6: Equilibrium outcomes in Bertrand pricing and investment game with simultaneous moves under

deterministic and stochastic technological progress.

Table 1 reports the times spent to compute the MPE equilibriain several specifications of the

Bertrand pricing and investment game of different sizes. Comparing the running times for the

three simultaneous moves games, it is obvious that due to a sharply increasing number of times

the state recursion (or partial state recursion) is invokedin the RLS loop the runtimes are in-

creasing highly non-linearly. Yet, comparing the runtimesfor the largest game with simultaneous

moves to that of the alternating moves, it becomes obvious that the RLS algorithm itself take a

negligible amount of time to loop through all feasible ESR strings compared to the time needed

for state recursions.

A comprehensive analysis of the Bertrand investment and pricing game, and a complete set

of theoretical results from this model can be found in the companion paper Iskhakov,Rust and

Schjerning (2013).

5 Discussion and conclusions

In this paper we introduce a concept of directionality in finite state Markov dynamic games,

define the class of directional dynamic games (DDGs) and devise two solution algorithms for the

games of this class. The first is state recursion algorithm that finds a single MPE in a DDG given
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Table 1: Run times for full solution of the leapfrogging game

Simultaneous moves Alternating moves

Number of points in cost grid 3 4 5 5

Total number ESRs 4,782,969 3,948,865,611 1.7445·1026 1.7445·1026

Number of feasible ESRs 127 46,707 192,736,405 1

Time used 0.008 sec. 0.334 sec. 45 min. 0.006 sec.

an equilibrium selection rule; the second is the recursive lexicographical search (RLS) algorithm

that efficiently finds all feasible equilibrium selection rules, effectively computing all MPE of the

game. The RLS algorithm is linear in the number of points in the directional part of the state

space, ensuring that negligible time is spent on enumeration of all feasible equilibrium selection

rules compared to the time spent on computing the corresponding equilibria.

The class of directional dynamic games we define in this paperappears to be quite large and

haves many examples in the existing literature. This is mainly a consequence of the fact that it

is sufficient for a Markov game to have just one directional dimension in the state space (so that

D⊂ R1) to become a DDG. The definition of directional games is silent about the non-directional

component of the state spaceX, although it is implied that this component is in some sense

secondary.

The other side of the generality of the class of directional dynamic games is the assumption

that a solution method must exist for the smallest indivisible subgames, i.e.d-subgames, having

the state space{d×X} ∪
(

∪T
t=τ+1St

)

, whereX enters under the cartesian product, see (12).

Therefore, it is likely that state recursion and RLS methodscan not be applied for a large fraction

of directional dynamic games which have numerous or complicated non-directional components

— simply due to intractability of theird-subgames. Yet, there are several extensions of the DDG

class where the RLS method of finding all MPE can be useful, provided that the atomic subgames

are solvable.

First, the already mentioned case of finite horizon Markov games. For these games, the direc-

tional componentD always contains time that can be thought of as a state variablet = 0, ..,T <∞.
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Then whether RLS is applicable is determined by whether it ispossible to find all equilibria within

the set of continuation strategies in each time periodt subgame given the value functions from

a selected equilibrium in the subgame starting fromt +1. This will most probably be decided

by the complexity of the non-directional componentsX that are the states of the original game.

Nevertheless, all finite horizon dynamic games belong to theclass of directional games.

Second, it is possible that a non-directional Markov game with finite state space can be trans-

formed to the DDG by rearranging the dimensions of the state space. For instance, Example 3 in

Section 2 presented in the left panel of Figure 1 has a loop in the directional component of the

state space, and yet after adding a second dimension and relabeling the points so that the points of

the loop have the same value on the directional dimension, and differ only in the non-directional

dimension, the game can be assign to the DDG class. Whether RLS is applicable is again decided

by whether it is possible to find equilibria in the points in the loop simultaneously, as they form a

d-subgame in the transformed example.

Third, it is not only the definition of DDGs that is silent about the non-directional component

of the state space — none of the arguments in the paper impose restrictions onX apart from the

assumption that the solution method ford-subgames must exist. This implies among other things

that, for example,X does not necessarily have to be finite, and provided that the assumption is

satisfied, state recursion can be applied to the games with finite directional componentD and

continuous state variables inX. If it can be shown that the number ofd-subgame equilibria is

finite, then RLS is applicable and all MPE of such game can be computed.

Forth, even if the key assumption on the existence of the solution method ford-subgame is not

satisfied, but instead a method for findingsomeequilibria ind-subgames is available, stage recur-

sion and RLS algorithms can be quite helpful. Here a prominent link to path-following homotopy

methods can be established. Even though in general homotopyapproach is not well suited for

the finite state DDGs with multiple equilibria like the leapfrogging game due to numerous bi-

furcations along the equilibrium correspondence (see Figure 7 for equilibrium correspondence in

the Bertrand pricing and investments game with alternatingmoves), it may be quite helpful in

finding equilibria ind-subgames, and thus be used together with stage recursion and RLS. From

our Bertrand pricing and investment game example we conjecture that multiplicity of MPEs in
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Figure 7: Equilibrium correspondence, alternating move game: expected profit of the firm 1 by different

values of cost shockη.

general dynamic games to a large extent may be due to discreteness of equilibria chosen at dif-

ferent stages. RLS naturally accounts for all such combinations of equilibria selected in different

subgames, and if the conjecture is true, to large extent accounts for the bifurcations along the

equilibrium correspondence. In this case, homotopy can be very efficient in findingd-subgame

equilibria that would have much less bifurcations along their equilibrium correspondences.

When the available solution method for thed-subgames is fast and reliably computes all the

equilibria in the generalizedd-subgames, stage recursion algorithm nested by the RLS algorithm

are very efficient to produce all MPE in the directional dynamic games. Yet, this solution method

is subject to the curse of dimensionality that may originatefrom both the number of points in the

directional component of the state spacek1 and the upper boundK of the number of equilibria in

d-subgames. The total number of equilibrium selection rulesis equal to the quantity of numbers

with k1 digits in K-base arithmetics, and thus equal toKk1. Even though RLS algorithm spends

negligible amount of time on the search of feasible ESR strings, in the case when there are in fact

many MPE, the solver for eachd-subgame has to be run every time, making the total solution

runtime increase exponentially.
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A Proofs

Lemma 1 (Partial order over directional component of the state space).

Proof. Recall that a (strict) partial order≻ of the elements of a setD is a binary relation (i.e. a

subset ofD×D) that is 1) irreflexive (d 6≻ d for all d ∈ D), 2) asymmetric (ifd′ ≻ d thend 6≻ d′

for all d′,d ∈ D) and 3) transitive (ifd3 ≻ d2 andd2 ≻ d1, thend3 ≻ d1 for all d1,d2,d3 ∈ D). It

is clear from (3) that≻σ is irreflexive, sinced ≻σ d would require thatρ{d|d,x,σ} be simulta-

neously equal to 0 and greater than 0. For similar reasons≻σ is asymmetric, since (3) can not

hold simultaneously for the pairs(d,d′) and(d′,d). Then suppose thatd3 ≻σ d2 andd2 ≻σ d1.

This means that there is a positive probability of going fromd1 to d2 (but zero probability of

going fromd2 back tod1) and similarly there is positive probability of going fromd2 to d3 (but

zero probability of going fromd3 back tod2). Via a probability chain formula (theChapman-

Kolmogorov equation) it follows that there is a positive probability of going from d1 to d3. It

remains to be shown that there must be a zero probability of a reverse transition fromd3 to d1.

Supposing the contrary. Then the chain formula implies thatthe probability of a transition from

d2 back tod1 via d3 is positive, contradicting the hypothesis thatd2 ≻σ d1.

Theorem 1(Join of pairwise consistent partial orders ofD).

Proof. We first demonstrate that≻G is irreflexive, asymmetric and transitive, and thus a partial

order ofD. For anyd ∈ D it cannot be the case thatd ≻G d because by the definition of≻G

it would have to be the case thatd ≻σ d for someσ ∈ Σ(G). However each strategy-specific

partial order≻σ is irreflexive by Lemma 1, so this is a contradiction. To establish asymmetry

of the partial order≻G suppose to the contrary that there is a pair of pointsd,d′ ∈ D such that

d′ ≻G d andd ≻G d′. Then since each partial order≻σ is asymmetric by Lemma 1, it must be

the case that there exist two feasible strategiesσ andσ′ in Σ(G) such thatd′ ≻σ d andd′ ≻σ′ d.

However this violates the consistency condition (5) in the definition of a DDG, Definition 4. The

transitivity of ≻G follows from the fact that this binary relation is the transitive closure of the

union of the transitive binary relations≻σ.
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It follows that≻G is a partial order that contains each strategy-specific partial order≻σ for

σ∈Σ(G), and hence it is a common refinement of the set of a partial orders induced by all feasible

strategies ofG , {≻σ |σ ∈ Σ(G)}. To show that it is the coarsest common refinement, suppose

to the contrary that there is another partial order≻ that is a strict subset of≻G . Let (d′,d) be a

ordered pair that is in the order≻G but not in≻. Then there are two possibilities. Eitherd′ ≻σ d

for someσ ∈ Σ(G), or (d′,d) is a point added to∪σ∈Σ(G) ≻σ to ensure it is transitive. In the

latter case, deleting this point implies that the relation≻ is no longer transitive, so it cannot be

a common refinement of the transitive{≻σ |σ ∈ Σ(G)}. The other possibility is thatd′ ≻σ d for

someσ ∈ Σ(G). However removing this point implies that≻ is no longer a refinement of≻σ and

thus it cannot be a common refinement of{≻σ |σ ∈ Σ(G)}.

Lemma 2 (DAG recursion).

Proof. The sequence starts at the DAGD(G) which is non-empty and has a finite number of

vertices, as gameG is a finite state DDG. Vertices are not added by the recursion (9), so it

follows at each stepj < T D j(G) is a DAG with finite number of vertices. Thus, theN operator

never returns the empty set, reducing the number of verticesremaining inD j(G) as j increases.

It follows that the recursion must eventually terminate at some valueT for which we have

DT (G) = N (DT (G)).

Corollary 2.1 (D is a DAG if DAG recursion terminates with no descendants after final step).

In an arbitrary directed graphD with a finite number of vertices, let recursion (9) terminateeither

in the case when the vertices ofD are exhausted, or whenN operator returns the empty set. Let

DT +1 denote the final element of the sequence{D0,D1, . . . ,DT +1}. ThenD is a DAG if and

only if DT +1 = /0.

Proof. Necessity follow from the proof of Lemma 2. To show sufficiency, imagine the contrary

thatDT 6= /0 and yetD is DAG. If T +1 is a terminal step, it must hold that every vertex inDT +1
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has a descendant. Because the number of vertices inDT +1 is finite, repeatedly following the link

to a descendant would result in a loop inDT +1, leading to a contradiction.

Lemma 3 (Stage 1 subgame).

Proof. From equation (11) we see thatΩ1 = S. ThereforeG1 has the same state space asG and

is identical in all other respects toG .

Lemma 4

Proof. This result follows easily since at the terminal stage of theDDG T the continuation game

for each stage gameSGT (d) is empty ford ∈ DT , so the set of feasible Markovian continu-

ation strategies for each stage game at stageT , Σ(SGT (d)), coincide with the set of feasible

Markovian strategies for the end game,Σ(GT (d)). This implies thatSGT (d) = GT , d ∈ DT ,

establishing equation (18). The second equation (19) follows from the fact thatT is the terminal

stage, so the set of all continuation strategies forSGT (d) is the same as the set of all feasible

strategies forGT (d).

Theorem 2(Subgame perfection).

Proof. Suppose(σ,V) = e(SGτ(d)) ∈ E(SGτ(d)). We want to show that it is also an element

of E(Gτ(d)). We prove the result by mathematical induction. The result holds trivially at the last

stageT by virture of Lemma 4. This implies thatSGT (d) = GT (d) for d ∈ DT which implies

that E(SGT (d)) = E(GT (d)) for d ∈ DT . Now suppose the result holds for alld-subgames

for all stagesτ′ = τ+ 1, . . . ,T . We now show that it holds for alld-subgames at stageτ as

well. By definition, e(SGτ(d)) is a MPE of the stage gameSGτ(d) in the restricted class of

continuation strategies. However, by definition, a continuation strategy is a MPE strategy in the

stageτ1 subgameGτ+1. It follows thate(SGτ(d)) is a MPE strategy on the set(d×X) for d∈ Dτ

and also on the stageτ+1 subgameGτ+1, so it must be a MPE for the fulld-subgameGτ(d),

since if it wasn’t it would have to fail to be a MPE at some points either fors∈ (d×X) or

s∈ Ωτ+1, whereΩτ+1 is the state space for the stageτ+1 subgame, given in equation (11) of
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Definition 9. In either case there would be a contradiction, since the property thate(SGτ(d))

is a continuation strategy implies that it must be a MPE at each s∈ Ωτ+1, and the fact that it is

also a MPE for the stage gameSGτ(d) implies that it is also must be a MPE strategy for each

s∈ (d×X). Thus,e(SGτ(d)) is a MPE strategy at each points∈ Ωτ(d). Sincce this is the state

space for thed-subgameGτ(d), it follows thate(SGτ(d)) must be a MPE ofGτ(d).

Conversely, suppose thate(Gτ(d)) is a MPE strategy of thed-subgameGτ(d). We can express

e(Gτ(d)) as a continuation strategy as follows

e(Gτ(d))(s) =







e(Gτ(d))(s) if s∈ (d×X) andd ∈ Dτ

e(Gτ+1)(s) otherwise.
(43)

This follows from the general definition of MPE in equation (1) of Definition 1, since the Bell-

man equation must hold at very point in the state space, and the state space forGτ(d) includes

Ωτ+1, soe(Gτ(d)) must be a MPE fors∈ Ωτ+1 which implies thate(Gτ(d)) = e(Gτ+1) for a par-

ticular equilibrium selection from the stageτ+1 subgameGτ+1. Thus, it follows thate(Gτ(d))

is a MPE in the restricted class of continuation strategies for the stage gameSGτ(d), and thus

e(Gτ(d)) ∈ E(SGτ(d)).

Theorem 4(Convergence of State Recursion).

Proof. The state recursion algorithm given in definition 14 leads toa recursively defined MPE

for each stageτ stage gameSGτ, τ = (1, . . . ,T ). By Theorem 2, these MPE also constitute MPE

of the stageτ subgamesGτ, τ = (1, . . . ,T ). However by Lemma 3 we haveG1 = G , so it follows

that e(G1) = e(G), i.e. the state recursion algorithm has computed a MPE of theDDG G by

computing MPE for a total of

N =
T

∑
τ=1

nτ (44)

d-stage games of the gameG . By Lemma 3 we haveG1 = G , so it follows thate(G1) = e(G).

Thus, it follows that the state recursion algorithm has computed a MPE of the DDGG .

Lemma 6 (Feasibility ofS(γ))
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Proof. If S(γ) = (−1, . . . ,−1), then there can be no feasibleγ′ ∈ ZN
+ satisfyingι(γ′) > ι(γ) be-

cause the successor is the result of incrementingγ by the smallest possible non-zero value,

1. It follows that J (γ) = (−1, . . . ,−1) and soJ (γ) = S(γ) in this case. Otherwise, if

S(γ) 6= (−1, . . . ,−1) then we haveι(S(γ))= ι(γ)+1, so ifS(γ) is feasible, it must be the smallest

ESS afterγ, and henceJ (γ) = S(γ). But if S(γ) 6= (−1, . . . ,−1) it must be feasible by the proper-

ties of the successor operator in variable base arithmetic.The long addition process insures that

we have for eachi = 1, . . . ,nτ andτ = 1, . . . ,T , γi,τ < nei,τ(γ>τ), but by Lemma 5 it follows that

S(γ) must be a feasible ESS.

Theorem 7(Solution method for thed-stage games in simultaneous move leapfrogging game).

Proof. The proof is by mathematical induction. The base of the induction is the bottom layer of

the leapfrogging game wherec= 0. In this case the system of Bellman equations (40) is greatly

simplified because no further technological improvement ispossible. It is simplified even further

in the corner and the edges of the game where investments by one or both firms don’t change

their future production cost. This makes it possible to solve Bellman equations analytically or

with simple numerical procedures, as described in AppendixB. The numerical method described

there is guaranteed to find all equilibria among continuation strategies ind-stage games where

d = (c1,c2,0). By Theorem 2 these equilibria constitute MPE equilibria inthe corresponding

d-subgames. The induction step is the following. Assume all layers below the layer given by

the value ofc are solved. Then we show thatd-subgames in the layerc given byd = (c1,c2,c)

can also be solved. This follows from the solution method described in Appendix B which is are

again applied in a sequence prescribed by the ordering of states within the layer. Whenη = 0, the

solution algorithm is guaranteed to find all equilibria in everyd-stage as fixed points in the second

order best response function in a particular state(c1,c2,c) and taking into account the solutions

on the lower layers. Again, applying Theorem 2 we conclude that found equilibria constitute the

MPE equilibria in everyd-subgame on the layerc.

Theorem 8(Solution method for thed-stage games in the alternating move leapfrogging game).
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Proof. The proof is analogous to the proof of Theorem 8, with solution method for thed-stage

games are presented in Appendix C.

B Solving the Simultaneous Move Pricing and Investment Game

B.1 (T )-End Game,(c1,c2,c) = (0,0,0) Corner

The simplest “end game” end corresponds to the state(0,0,0), i.e. when the zero cost absorbing

state has been reached and both firms have adopted this state-of-the-art production technology.

In the absence of randomIID shocks(εi
0,ε

i
1) corresponding to investing or not investing, respec-

tively, neither of the firms would have any further incentiveto invest since we assume there is no

depreciation in their capital stock, and they have both already achieved the lowest possible state-

of-the-art production technology. When there are idiosyncratic shocks affecting investment deci-

sions, there may be some short term reason (e.g. a temporary investment tax credit) that would

induce one or both of the firms to invest, but such investmentswould be purely idiosyncratic

unpredictable events with no real strategic consequence totheir opponent, since the opponent has

already achieved the minimum cost of production and thus, there is no further possibility of leap

frogging its opponent. In this zero-cost, zero-price, zero-profit, absorbing state the equations for

the value functions(vN, j ,vI , j) can be solved “almost” analytically.

vN, j(0,0,0) = r j(0,0)+βP∼ j(0,0,0)φ(vN, j(0,0,0),vI , j(0,0,0))

+ β[1−P∼ j(0,0,0)]φ(vN, j(0,0,0),vI , j(0,0,0))

= r i(0,0)+βφ(vI , j(0,0,0),vN, j(0,0,0)) (45)

whereP∼ j(0,0,0) is a shorthand for firmi’s opponent’s probability of investing,

P∼ j(0,0,0) =
exp{vI ,∼ j(0,0,0)/η}

exp{vN,∼ j(0,0,0)/η}+exp{vI ,∼ j(0,0,0)/η}
. (46)

Due to the fact that(0,0,0) is an absorbing state, it can be easily shown that the value ofinvesting,

vI , j(0,0,0), is given by

vI , j(0,0,0) = vN, j(0,0,0)−K(0), (47)

57



which implies via equation (46) that

P∼ j(0,0,0) =
exp{−K(0)/η}

1+exp{−K(0)/η}
. (48)

Thus, asη → 0, we haveP∼i(0,0,0)→ 0 andvN, j(0,0,0) = r i(0,0)/(1−β), and in the limiting

case where the two firms are producing perfect substitutes, thenr i(0,0) = 0 andvN, j(0,0,0) = 0.

For positive values ofη we have

vN, j(0,0,0) = r i(0,0)+βφ(vN, j(0,0,0),vN, j(0,0,0)−K(0)). (49)

This is a single linear equation with one unknown, and we can easily express the solution as

vN, j(0,0,0) =
r i(0,0)+βφ(0,−K(0))

1−β

Note that symmetry property forr i(0,0) implies that symmetry also holds in the(0,0,0) end

game:vN,1(0,0,0) = vI ,2(0,0,0) andvI ,1(0,0,0) = vI ,2(0,0,0).

B.2 (T −1)-Stage Game,(c1,0,0) and (0,c2,0) Edges

The next simplest end game state is(c1,0,0). This is where firm 1 has not yet invested to attain

the state-of-the-art zero cost plant, and instead has an older plant with a positive marginal cost of

productionc. However firm 2 has invested and has attained the lowest possible marginal cost of

production 0. In the absence of stochastic shocks, in the limiting Bertrand case, it is clear that

firm 1 would not have any incentive to invest since the investment would not allow it to leap frog

its opponent, but only to match its opponent’s marginal costof production. But doing this would

unleash Bertrand price competition and zero profits for bothfirms. Therefore for any positive

cost of investmentK(0) firm 1 would choose not to invest, leaving firm 2 to have a permanent

low cost leader position in the market and charge a price ofp= c1.

In the case with stochastic shocks, just as in the(0,0,0) endgame analyzed above, there may

be transitory shocks that would induce firm 1 to invest and thereby match the 0 marginal cost of

production of its opponent. However this investment is driven only by stochasticIID shocks and

not by any strategic considerations, given that once the firminvests, it will generally not be in

much better situation than if it had not invested (that is, even thoughr1(0,0) > r1(c,0), both of
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these will be close to zero and will approach zero asη ↓ 0). In the general case whereη ≥ 0 we

have

vN,1(c1,0,0) = r1(c1,0)+βφ(vN,1(c1,0,0),vI ,1(c1,0,0)) (50)

vI ,1(c1,0,0) = r1(c1,0)−K(0)+βφ(vN,1(0,0,0),vI ,1(0,0,0)). (51)

Note that the solution forvI ,1(c1,0,0) in equation (51) is determined from the solutions ofvN,1

and vI ,1 to the (0,0,0) endgame in equations (45) and (47) above. Substituting the resulting

solution for vI ,1(c1,0,0) into the first equation in (51) results in a nonlinear equation with a

single unique solutionvN,1(c1,0,0) that can be computed by Newton’s method.

The probability that firm 1 will invest,P1(c1,0,0) is given by

P1(c1,0,0) =
exp{vI ,1(c1,0,0)]/η}

exp{vI ,1(c1,0,0)]/η}+exp{vN,1(c1,0,0)]/η}
(52)

We now turn firm 2. In the(c1,0,0) end game, firm 2 has no further incentive to invest since

it has achieved the lowest possible cost of production. However in the presence of random cost

shocks (i.e. in the case whereη > 0), firm 2 will invest if there are idiosyncratic shocks that

constitute unpredictable short term benefits from investing that outweigh the cost of investment

K(0). But since this investment confers no long term strategic advantage in this case, the equa-

tions for firm 2’s values of not investing and investing, respectively, differ only by the cost of

investmentK(0). That is,

vI ,2(c1,0,0) = vN,2(c1,0,0)−K(0). (53)

The probability that firm 2 invests in this case,P2(c1,0,0) is given by

P2(c1,0,0) =
exp{−K(0)/η}

1+exp{−K(0)/η}
(54)

since firm 2 has achieved the lowest possible cost of production and its decisions about investment

are governed by the same idiosyncratic temporary shocks, and result in the same formula for the

probability of investment as we derived above in equation (48) for the(0,0,0) endgame.

The equation forvN,2(c1,0,0) is more complicated however, due to the chance that firm 1

might invest,P1(c1,0,0). We have

vN,2(c1,0,0) = r2(c1,0) + βP1(c1,0,0)φ(vN,2(0,0,0),vI ,2(0,0,0))

+ β[1−P1(c1,0,0)]φ(vN,2(c1,0,0),vN,2(c1,0,0)−K(0)). (55)
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Using the solution forvN,2(c1,0,0) and vI ,2(c1,0,0)) in equation (51) above, these solutions

can be substituted into equation (52) to obtain the probability that firm 1 invests, and then this

probability can be substituted into equation (55) to obtaina unique solution forvN,2(c1,0,0)

vN,2(c1,0,0)=
r2(c1,0)+βP1(c1,0,0)φ(vN,2(0,0,0),vI ,2(0,0,0))+β[1−P1(c1,0,0)]φ(0,−K(0))

1−β[1−P1(c1,0,0)]

Finally the value of investingvI ,2(c1,0,0) is given by equation (53).

The value functions in the(0,c2,0) end game can be derived in a complete analogous way.

In this part of the game, firm 1 is now the low cost leader and firm2 is the high cost follower.

We first derive the value functions for the cost followervI ,2(0,c2,0) andvN,2(0,c2,0). Using

the implied investment probabilities ,P2(0,c2,0), we can derive the value functions for firm 1,

vI ,1(0,c2,0) andvN,1(0,c2,0).

It is not hard to see that the symmetry condition holds in the(c,0,0) and(0,c,0) end game:

vN, j(c,0,0) = w∼ j(0,c,0), andv j(c,0,0) = v∼ j(0,c,0), j = 1,2.

B.3 (T −2)-Stage Game,(c1,c2,0) Interior Points

The final case to consider is the end game where both firms have positive marginal costs of

production,c1 andc2, respectively. We begin by showing how to solve the equations for the

values to firm 1 of not investing and investing, respectively, which reduce to

vN,1(c1,c2,0) = r1(c1,c2)+βP2(c1,c2,0)φ(vN,1(c1,0,0),vI ,1(c1,0,0))

+β[1−P2(c1,c2,0)]φ(vN,1(c1,c2,0),vI ,1(c1,c2,0))

vI ,1(c1,c2,0) = r1(c1,c2)−K(0)+βP2(c1,c2,0)φ(vN,1(0,0,0),vI ,1(0,0,0))

+β[1−P2(c1,c2,0)]φ(vN,1(0,c2,0),vI ,1(0,c2,0)). (56)

Given the equation forvI ,1(c1,c2,0) in equation (56) depends on known quantities on the right

hand side (the values forvN,1 andvI ,1 inside theφ functions can be computed in the(0,0,0) and

(0,c2,0) end games already covered above), we can treatvI ,1(c1,c2,0) as a linear function ofP2

which is not yet “known” because it depends on(vN,2(c1,c2,0),vI ,2(c1,c2,0)) via the identity:

P2(c1,c2,0) =
exp{vN,2(c1,c2,0)/η}

exp{vN,2(c1,c2,0)/η}+exp{vI ,2(c1,c2,0)/η}
. (57)
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We write vI ,1(c1,c2,0,P2) to remind the reader that it can be viewed as an implicit func-

tion of P2: this is the value ofvI ,1 that satisfies equation (56) for an arbitrary value of

P2 ∈ [0,1]. Substituting this into the equation forvN,1, the top equation in (56), there will be

a unique solutionvN,1(c1,c2,0,P2) for anyP2 ∈ [0,1] since we have already solved for the val-

ues(vN,1(c1,0,0),vI ,1(c1,0,0)) in the(c,0,0) end game (see equation (51) above). Using these

values, we can write firm 1’s probability of investingP1(c1,c2,0) as

P1(c1,c2,0,P2) =
exp{vI ,1(c1,c2,0,P2)/η}

exp{vN,1(c1,c2,0,P2)/η}+exp{vI ,1(c1,c2,0,P2)/η}
. (58)

Now, the values for firm 2(vN,2(c1,c2,0),vI ,2(c1,c2,0)) that determine firm 2’s probability of

investing in equation (57) can also be written as functions of P1 for anyP1 ∈ [0,1]. This implies

that we can write firm 2’s probability of investing as a function of its perceptions of firm 1’s

probability of investing, or asP2(c1,c2,0,P1). Substituting this formula forP2 into equation (58)

we obtain the following fixed point equation for firm 1’s probability of investing

P1 =
exp{vI ,1(c1,c2,0,P2(c1,c2,0,P1))/η}

exp{vN,1(c1,c2,0,P2(c1,c2,0,P1))/η}+exp{vI ,1(c1,c2,0,P2(c1,c2,0,P1))/η}
. (59)

By Brouwer’s fixed point theorem, at least one solution to thefixed point equation (59) exists.

Further, whenη > 0, the objects entering this equation (i.e. the value functionsvN,1(c1,c2,0,P2),

vI ,1(c1,c2,0,P2), vN,2(c1,c2,0,P1), andvI ,2(c1,c2,0,P1) and the logit choice probability function

P2) are allC∞ functions ofP2 andP1, standard topological index theorems be applied to show

that for almost all values of the underlying parameters, there will be an odd number of separated

equilibria.

Figure 1 plots the equilibria computed by plotting the second order best response function

in equation (59) against the 45 degree line. We see that firm 1 is the low-cost leader with a

substantially lower marginal cost of production than firm 2.In the mixed strategy equilibrium,

firm 1 invests with probability 0.484, whereas the firm 2, the high cost follower, invests with

probability 0.82. Thus, the high cost follower has a significantly higher chance of leap frogging

its rival to attain the position of low cost leadership. Thisleadership is permanent (unless the firms

happen to simultaneously invest) since by assumption, the production technology has reached the
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Figure 8: End game equilibria

zero marginal cost absorbing state and there can be no further future improvements in production

cost.

To safe space we will not elaborate further on how fixed pointsare found in the(c1,c2,0)

endgame. The solution strategy is complete analogous to howwe solve for the equilibria at

higher levels of the game, and we will therefore return to this below. As we will show below, the

best response functions can be characterized by solution toa second order polynomial, allowing

us to express the equilibrium solution almost analytically.

B.4 Solving the(T −3),(T −4), ...,1-Stage Games

With the end game solutions in hand, we are now ready to proceed to discuss the solution of the

full game. To solve the full game, i.e. the functional equations in (40), it is helpful to rewrite

them in the following way,

vN,1(c1,c2,c) = r1(c1,c2)+β[P2(c1,c2,c)H1(c1,c,c)+(1−P2(c1,c2,c))H1(c1,c2,c)] (60)

vI ,1(c1,c2,c) = r1(c1,c2)−K(c)+β[P2(c1,c2,c)H1(c,c,c)+(1−P2(c1,c2,c))H1(c,c2,c)](61)

where the functionH1 is given by

H1(c1,c2,c) = (1−π(c|c))
∫ c

0
φ(vN,1(c1,c2,c

′),vI ,1(c1,c2,c
′)) f (c′|c)dc′

+π(c|c)φ(vN,1(c1,c2,c),vI ,1(c1,c2,c)), (62)
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whereπ(c|c) is the probability that a cost-reducing innovation will notoccur, andf (c′|c) is the

conditional density of the new (lower) state-of-the-art marginal cost of production conditional on

an innovation having occurred. We assume that the support off (c′|c) is in the interval[0,c), as

indicated also by the the interval of integration in equation (62).

For completeness, we present the corresponding equation for firm 2 below.

vN,2(c1,c2,c) = r2(c2,c1)+β[P1(c1,c2,c)H2(c,c2,c)+(1−P1(c1,c2,c))H2(c1,c2,c)] (63)

vI ,2(c1,c2,c) = r2(c2,c1)−K(c)+β[P1(c1,c2,c)H2(c,c,c)+(1−P1(c1,c2,c))H2(c1,c,c)](64)

where the functionH2 is given by

H2(c1,c2,c) = (1−π(c|c) =
∫ c

0
φ(w2(c1,c2,c

′),vI ,2(c1,c2,c
′)) f (c′|c)dc′

+π(c|c)φ(vN,2(c1,c2,c),vI ,2(c1,c2,c)), (65)

We will assume initiallydeterministicequilibrium selection rules, i.e. a function that picks

out one of the set of equilibria in each possible state of the game,(c1,c2,c). Given an equilibrium

selection rule, we can assume that the integral term in equation (62) is “known” at this stage of

the game. This is because we can structure a recursive algorithm for solving the game by starting

with the end game solution and recursively solving the equilibria and value functions for positive

valuesc′ that are less than the current valuec that we are computing. Then for eachc′ < c, the

value functionsvN, j(c1,c2,c′) andvI , j(c1,c2,c′) will be “known” for all (c1,c2) in the rectangle

R(c′) = {(c1,c2)|c′ ≤ c1 ≤ c,c′ ≤ c2 ≤ c′}. Since however, there may be multiple equilibria at

lover levels of the game, the integral obviously depend on which of the equilirbia that are played

whenc′ < c. This is how the equilibrium selection rule at “lower cost nodes” of the game tree

(i.e. at states(c1,c2,c′) with c′ < c) affect the set of possible equilibria at each node(c1,c2,c).

Since integral term in equation (62) is “known” at this stage, we can use a similar to the

strategy to the one we used to solve the value functions(vN, j ,vI , j) j = 1,2 in the end game. As

before, we first solve for the equilibrium at the(c,c,c) corners, then at the(c1,c,c) and(c,c2,c)

edges, and finally at the interior nodes of the game.
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B.5 Corners and Edges

In the(c,c,c) corner, where all firms have invested and have the state-of-the-art production tech-

nology in place, there is no further incentive for either firmto invest. If we set the arguments

(c1,c2,c) to (c,c,c) in equation (60) forw1, and similarly in equation (61) forv1, we deduce that

vI ,1(c,c,c) = vN,1(c,c,c)−K(c) (66)

vI ,2(c,c,c) = vN,2(c,c,c)−K(c) (67)

We can then substitute equation (66) into equation (60) and solve a simple linear equation in

vN,1(c,c,c). With vN,1(c,c,c) at hand we can easily computevI ,1(c,c,c). By analogous opera-

tions we obtain the value functions for firm 2,vN,2(c,c,c) andvI ,2(c,c,c).

We now move to the(c1,c,c) edge in the state space lattice. If we set the arguments(c1,c2,c)

to (c1,c,c) in equation (61) it is easy to see thatvI ,1(c1,c,c) is uniquely determined from the

solutions at corner,vN,1(c,c,c) andvI ,1(c,c,c). Substituting the resulting solution forvI ,1(c1,c,c)

into equation in (60) results in a single nonlinear equationwith a unique solutionvN,1(c1,c,c)

that can be computed by Newton’s method. OncevN,1(c1,c,c) is known we can easily compute

P1(c1,c,c).

With these solutions at hand, it is straight forward to compute the(c1,c,c) value functions

of firm 2. Since firm 2 that has already invested in the state-of-the-art production technology,

investing again will not change it’s marginal cost of production. Again, it is easy to see that the

equations for firm 2’s values of not investing and investing,respectively, differ only by the cost

of investment,K (c)

vI2(c1,c,c) = vN,2(c1,c,c)−K(c) (68)

The solution forP1(c1,c,c) andvI ,2(c1,c,c) given by equation (68), can be substituted into

equation (63) to obtain a unique solution forvN,2(c1,c,c). Using the solution forvN,2c1,c,c) we

can then computev2(c1,c,c) from by equation (68) and derive the implied investment probabili-

ties,P2(c1,c,c).

As in the end game, the value functions in the(c,c2,c)game can be derived in a com-

pletely analogous to the(c1,c,c)game by switching firm indices. Since, firm 1 is now the

low cost leader and firm 2 is the high cost follower, we first derive value functions for firm 2.
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The value of investing,vI ,2(c,c2,c), is again uniquely determined from the solutions at corner.

The value of not investing,vN,2(c,c2,c), is solved using newtons method. Using the implied

investment probabilities,P2(c,c2,c), we then derive the value functions for firm 1 using that

vI ,1(c,c2,c) = vN,1(c,c2,c)−K(c).

B.6 Equilibrium Solutions at Interior (c1,c2,c) Nodes

In the(c1,c2,0) end game mentioned above, either of the two firms will have incentive to invest

in equilibrium if K(c) is below a critical threshold, and thus may thus leapfrog their opponent

to become the low cost leader forever. But at this higher level of the game,(c1,c2,c), where the

state of the art has not yet reached it’s absorbing state, thecoordination between the two firms is

dynamic and much richer: If one firm leapfrogs its opponent, the game does not end, but rather

the firms must anticipate additional leapfrogging and cost reducing investments in the future.

In the (c1,c2,c) interior nodes, both firms have not yet invested in the current state of the

art production technology, and there is therefore still room for strategic investment for each of

the two firms. The best responses for each firm, therefore depends crucially on the investment

probability of the opponent. Thus, the main complication ofsolving the game at the interior

nodes of the game, is that the value functions,.that are solutions to the functional equations in

(40), must be solved simultaneously with determining the equilibrium decision rules.

Following the procedure we used to solve for equilibria in the(c1,c2,0) end game, the the set

of all equilibria for the investment “stage game” at state(c1,c2,c) can be computed by finding all

fixed points to the following “second order best response function” for firm 1:

P1 =
exp{vI ,1(c1,c2,c,P2(c1,c2,c,P1))/η}

exp{vN,1(c1,c2,c,P2(c1,c2,c,P1))/η}+exp{vI ,1(c1,c2,c,P2(c1,c2,c,P1))/η}
. (69)

Depending on the rule we choose to select among the possible equilibria in each state

(c1,c2,c) (and similarly the selection rule for equilibria at all feasible points in the state space

(c1,c2,c′) with c′ < c) we can construct a wide variety of equilibria for the overall game. The

restriction is that any equilibrium selection rule must be such that the functional equations for

equilibrium (see equations (60) and (61) above) are satisfied. The following steps are used to

solve for the set of all equilibria at each state point(c1,c2,c) in the full Bertrand/investment

game.
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1. For eachP1 ∈ [0,1] we compute the value functions(vN,2(c2,c1,c,P1),vI ,2(c2,c1,c,P1) rep-

resentingfirm 2’s values of not investing and investing in state(c1,c2,c), respectively, by

solving the system (63) and (64) for eachP1 ∈ [0,1].

2. Compute firm 2’s “best response”, i.e. its probability of investing,P2(c1,c2,c,P1), in re-

sponse to its perception of firm 1’s probability of investing, P1, via the equation

P2(c1,c2,c,P1) =
exp{vI ,2(c1,c2,c,P1)/η}

exp{vN,2(c1,c2,c,P1)/η}+exp{vI ,2(c1,c2,c,P1)/η}
. (70)

using the value functions for firm 2 computed in step 1 above.

3. Using firm 2’s best response probability,P2, calculate the value functionsvN,1(c1,c2,c,P2)

and vI ,1(c1,c2,c,P2) representingfirm 1’s values of not investing and investing in state

(c1,c2,c), respectively, by solving the system (60) and (61).

4. Using the values for firm 1, compute firm 1’s probability of investing,the second order best

response functionfor firm 1, and search for all fixed points in equation (69).

B.7 Polynomial representation of the best response functions

Once the game is solved at lover cost states, the solution strategy is almost analogous to the

(c1,c2,0) end game. Holding fixed the opponents investment probability, P2 = P2(c1,c2,c), it

is clear from equation (61) that none of the terms on the righthand side of (61) depend on

vI ,1(c1,c2,c). Moreover, sinceH1(c,c,c) andH1(c,c2,c) are both previously computed from the

edges of the game, the value of investing can be expressed as alinear function ofP2 with “known”

coefficients.

The value of not investing,vN,1(c1,c2,c,P2), is non-linear inP2, sinceH1(c1,c2,c) that ap-

pears on the right hand side of (60) is also a function ofvI ,1(c1,c2,c). It is useful is rewrite

equation (60) to explicitly emphasize the dependence onvN,1(c1,c2,c)

vN,1(c1,c2,c) = A1(P2)+B(P2)φ(vN,1(c1,c2,c),vI ,1(c1,c2,c))

66



where

A1(P2) = r1(c1,c2)+β(1−π(c|c))
∫ c

0
φ(vN,2(c1,c2,c

′),vI ,2(c1,c2,c
′)) f (c′|c)dc

+β(H1(c1,c,c)− p(c)
∫ c

0
φ(vN,2(c1,c2,c

′),vI ,2(c1,c2,c
′)) f (c′|c)dc)P2

B(P2) = β(1− p(c))(1−P2)

It is clearvN,1(c1,c2,c) is nonlinear equation inP2, but bothA1 andB1 are linear functions ofP2

with coefficients that are known at this stage of the game. Hence we can summarize the functional

equations (60) and (61) as

vN,1(c1,c2,c) = A1(P2)+B(P2)φ(vN,1(c1,c2,c),vI ,1(c1,c2,c))

A1(P2) = a10+a11P2

B(P2) = b(1−P2)

vI ,1(c1,c2,c,P2) = c10+c11P2

The linearity ofA, B andvI ,1(c1,c2,c) turns out to be very useful when deriving the analytical

solution forvN,1(c1,c2,c), the best response functions and equilibrium investment probabilities.

If we express the value functions in probability space, and substitute in the expressions forvI , j ,

Ai andB it is easy to see that (the inverse best) response functions for firm 1 and firm 2 is easily

found as the solution to a second order polynomial

D10−ηblnP1+η log

(
P1

1−P1

)

︸ ︷︷ ︸

D10(P1)

+(D11+ηblnP1)
︸ ︷︷ ︸

D11(P1)

P2+D12P
2
2 = 0 (71)

D20−ηblnP2+η log

(
P2

1−P2

)

︸ ︷︷ ︸

D10(P1)

+(D21+ηblnP2)
︸ ︷︷ ︸

D21(P2)

P1+D22P
2
1 = 0 (72)

where

Di0 = αi0+(b−1)ci0

Di1 = ai1+(b−1)ci1−ci0b

Di2 = −bci1
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That is, for a given value of the best response of firm 1,P1, we can compute the implied value of

P2 by solving (71) with respect toP2. The roots corresponds to the abscissa values of firm 1’s best

response function and we have thus expressed theinverse best response function, P2 = f−1
1 (P1)

as the solution to a second order polynomial. A similar equation exists for firm 2 and in a similar

way we can solve forP1 = f−1
2 (P2) as the roots to (72). For each of these polynomials there is

maximum two roots and the inverse best response functions isdescribed by real roots of these

equations which are inside the unit interval.

When η > 0, standard topological index theorems can be applied to show that for almost

all values of the underlying parameters, there will be an oddnumber of separated equilibria. In

this case our algorithm searches for fixed points on the inverse of the second order best response

function using a combination of bisections and successive approximations. Whenη → 0, the

results of Harsanyi (1973) as extended to dynamic Markoviangames by Doraszelski and Escobar

(2009) show thatη serves as a “homotopy parameter” and for sufficiently smallη the set of

equilibria to the “perturbed” game of incomplete information converge to the limiting game of

complete information. Rather than using the homotopy approach, we found we were able to

directly solve for equilibria of the problem in the limitingpure Bertrand case whereη = 0.

When there are no idiosyncratic shocks to investment, i.e. whenη = 0, the best response

functions have bang-bang solutions, where the best response functions jumps discontinuously

from zero to one at the indifference points. Finding the discontinuity points using a gradient

based method or successive approximations is out of the question, and the use of a bracketing

algorithm is a daunting task, as it requires repeatedly numerical solution of value functions and

best response functions to locate multiple discontinuities. Instead we can solve directly for the

threshold values of the opponents investment probability that make firmj indifferent between

investing and not investing, which can be found as the solution to the second order polynomials

in (71) in (72). This is robust, fast and is always guaranteedto find all equilibria.

C Solving the Alternating Move Pricing and Investment Game

Changing the order of moves from an alternating to simultaneous fashion, introduces a new state

non-directionalstate variablem∈ {1,2} that covers which one of the firms that has the right to
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move. As mentioned in section 4, the partial ordering of the directional component,d= (c1,c2,c)

is unaffected by changing the order of moves, and thus with respect to the state variablesc1, c2

andc, the state recursion precedes in exactly the same manner. First we solve(T )-end game,

which is the(c1,c2,c) = (0,0,0) corner, we then move to solving the(c1,0,0) and (0,c2,0)

edges in the bottom layer of the state space pyramid, i.e. the(T −1)-stage game. Given the

solution at corners and edges we can solve the for the(c1,c2,0) interior points in the(T −2)-

stage game. This recursion completes the lower layer where the state of the art has reached its

absorbing statec= 0.

For the simultaneous move game we detailed out how the stage game simplifies, whenc= 0.

We will not do that here, but instead derive the solution at corners, edges and interior points for

a generic value ofc. Note that value functions forc > 0 depend on values at lower levels of

the game and due to the multiplicity of equilibria there could be many solutions to these value

functions at earlier stages. Given a equilibrium selectionrule Γ() that picks out a particular

equilibrium to be played at each point in the state space, we can recursively solve for smaller

values ofc before larger values ofc and assume that value functions at lower levels of the game

are “known”. It is therefore useful to rewrite the Bellman equations to emphasize that there

are parts of the Bellman equation that we consider as “known”at a given point,τ in the state

recursion. Specifically, at stageτ′ the conditional expectation of the future value function given

that technology improves and can be considered “know”, because the it depends only on the

value functions calculated at previous stagesτ < τ′. Specifically, letH1(c1,c2,c,m) denote the

conditional expectation of the future value function for firm 1 given that technology improves

and given that it is firmm 6= m′ has the turn to invest

H1(c1,c2,c,m) =
∫
[ f (m|m)φ(vI ,1(c1,c2,c

′,m),vN,1(c1,c2,c
′,m))

+ f (m′|m)[P2(c1,c2,c
′)vI ,1(c1,c2,c,m

′)+(1−P2(c1,c2,c
′))vN,1(c1,c2,c

′,m′)]]π(dc′|c,dc′ < 0),

(73)
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such that the Bellman equations for firm 1 in (41) can be rewritten as

vI ,1(c1,c2,c,1) = r1(c1,c2)−K(c)+βπ(c|c) f (1|1)φ(vI ,1(c,c2,c,1),vN,1(c,c2,c,1))

+βπ(c|c) f (2|1)ev1(c,c2,c)+β(1−π(c|c))H1(c,c2,c,1)

vN,1(c1,c2,c,1) = r1(c1,c2)+βπ(c|c) f (1|1)φ(vI ,1(c1,c2,c,1),vN,1(c1,c2,c,1))

+βπ(c|c) f (2|1)ev1(c1,c2,c)+β(1−π(c|c))H1(c1,c2,c,1)

vI ,1(c1,c2,c,2) = r1(c1,c2)+βπ(c|c) f (1|2)φ(vI ,1(c1,c,c,1),vN,1(c1,c,c,1))

+βπ(c|c) f (2|2)ev1(c1,c,c)+β(1−π(c|c))H1(c1,c,c,2)

vN,1(c1,c2,c,2) = r1(c1,c2)+βπ(c|c) f (1|2)φ(vI ,1(c1,c2,c,1),vN,1(c1,c2,c,1))

+βπ(c|c) f (2|2)ev1(c1,c2,c)+(1−π(c|c))H1(c1,c2,c,2) (74)

where

ev1(c1,c2,c) = P2(c1,c2,c,2)vI ,1(c1,c2,c,2)+ [1−P2(c1,c2,c,2)]vN,1(c1,c2,c,2).

A similar set of equations exist for firm 2, which we have omitted to save space, since they are

defined similarly.

C.1 Solving the(c,c,c) corner stage games

If we set c1 = c2 =c in (74) above, it is easy to se that we must have

vI ,1(c,c,c,1) = vN,1(c,c,c,1)−K(c)

vI ,1(c,c,c,2) = vN,1(c,c,c,2)

Hence, whenc1 = c2 = c and both firms have already invested in the current state of the art, there

is no further strategic room for investment for other than for pure idiosyncratic reasons. Further,

it is easy to verify thatP2(c,c,c) completely drop out of the Bellman equations, and that the value

functions becomes a simple equations that we can solve analytically.

vN,1(c,c,c,1) =
AN,1(c,c,c,1)(1−B2,2)+AN,1(c,c,c,2)∗B2,1

1−B1,1+B2,2−B1,1∗B2,2+B1,2∗B2,1

vN,1(c,c,c,2) =
AN,1(c,c,c,2)(1−B1,1)+AN,1(c,c,c,1)∗B1,2

1−B1,1+B2,2−B1,1∗B2,2+B1,2∗B2,1
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whereBi, j = β∗π(c|c) f (i| j) , AN,1(c,c,c,1)= r1(c,c)+β(1−π(c|c))H1(c,c,c,1)+B1,1∗φ(0,−K(c))

andAN,1(c,c,c,2) = r1(c,c)+β(1−π(c|c))H1(c,c,c,2)+B1,2∗φ(0,−K(c)) are coefficients of

the linear system. The value functions for firm 2 can be derived by following similar steps.

C.2 Solving the(c1,c,c) and (c,c2,c) edge stage games

This is the case where firm 1 has not yet invested, but firm 2 has already acquired in the state of

the art technology. Thus the value function of firm 1, does notdepend on whether firm 2 invest

or not. It is easy to see this if we setc2 = c in the the value functions for firm 1, when it is

not it’s turn to invest. Specifically, we obtainvI ,1(c,c,c,2) = vI ,1(c,c,c,2). Further, the value of

investing,vI ,1(c1,c,c,1), depends only on variables that we have already solved for and can be

expressed in closed form

vI ,1(c1,c,c,1) =r1(c1,c)−K(c)+β(1−π(c|c))H1(c,c,c,1)

+β∗π(c|c)[ f (1|1)φ(vN,1(c,c,c,1),vI ,1(c,c,c,1))+ f (2|1)∗vN,1(c,c,c,2)]

Substituting the resulting solution forvI ,1(c1,c,c,1) into the equation forvN,1(c1,c,c,1) results

in the nonlinear equation

vN,1(c1,c,c,1) = r1(c1,c)∗ (1+ f1)+H1(c1,c,c,1)+ f1∗β(1−π(c|c))H1(c1,c,c,2)

+β∗π(c|c)[ f (1|1)+ f (1|2) f1]φ(vN,1(c1,c,c,1),v1,1(c1,c,c,1))

where f1 = β∗π(c|c) f (2|1)/(1−β∗π(c|c) f (2|2)). This equation has a unique solution that can

be computed by Newtons method. Given the solution ofvN,1(c1,c,c,1) andvI ,1(c1,c,c,1) we

can easily compute the remaining two value functions,vN,1(c1,c,c,2) = vI ,1(c1,c,c,2), in closed

form

vN,1(c1,c,c,2) =

r1(c1,c)+β(1−π(c|c))H1(c1,c,c,2)+βπ(c|c) f (1|2)φ(vN,1(c1,c,c,1),vI ,1(c1,c,c,1))
(1−βπ(c|c) f (2|2))

Given the values of for firm 1, we obtain it’s investment probability by the standard logit formula

P1(c1,c,c) =
exp(vI ,1(c1,c,c,1)/η)

exp(vI ,1(c1,c,c,1)/η)+exp(vN,1(c1,c,c,1)/η)

71



We now turn to the value functions for firm 2. Note that onceP1(c1,c,c) is known, the value func-

tions for firm 2 in the(c1,c,c,m) depends only onvI ,2(c1,c,c,1), vN,2(c1,c,c,1), vI ,2(c1,c,c,2)

andvN,2(c1,c,c,2) and functions at previously computed stage games. Given equilibrium selec-

tion rule, we can treat the latter as single valued “known” entities. Note that from the perspective

of firm 2, there is no strategic incentive to invest, since firmtwo has already acquired the state

of the art technology, thereforevI ,2(c1,c,c,2) = vN,2(c1,c,c,2)−K(c). This simplifies the com-

putation of the value for the low cost leader in the(c1,c,c) edge games. If we substitute out

vN,2(c1,c,c,2), it has easy to see that the remaining value functions for firm2 can be found as a

solution to a set of linear equations. The solution is

vI ,2(c1,c,c,1) = r2(c1,c)+H2(c,c,c,1)+(B2,1φ(vN,2(c,c,c,2),vI ,2(c,c,c,2))+B1,1vI ,2(c,c,c,1)])

vN,2(c1,c,c,2) =
r2(c1,c)(1+ f1(c1,c,c))+H2(c1,c,c,2)+ f1(c1,c,c)H2(c1,c,c,1)

(1−B2,2−B2,1 f1(c1,c,c))

+
(B2,2+B2,1 f 1)φ(0,−K(c))+vI ,2(c1,c,c,1)P1(c1,c,c)(B1,2+B1,1)

(1−B2,2−B2,1 f1(c1,c,c))

vN,2(c1,c,c,1) =
r2(c1,c)+H2(c1,c,c,1)
(1−B2,2(1−P1(c1,c,c)))

+
B2,1φ(vN,2(c1,c,c,2),vN,2(c1,c,c,2)−K(c))+B1,1P1(c1,c,c)vI ,2(c1,c,c,1)

(1−B2,2(1−P1(c1,c,c)))

where f1(c1,c,c) = B1,2(1−P1(c1,c,c))/(1−B1,1(1−P1(c1,c,c))) andBi, j are defined above.

Given the values of for firm 2, we obtain it’s investment probability by the standard logit formula

similar to what we did for firm 1.

In a complete analogous way we can compute the value functions in the(c,c2,c) game by

switching firm indices of value functions, transition probabilities and investment probabilities.

C.3 Equilibrium solutions at (c,c2,c) interior stage games

In the alternating move game the value of investing can easily be computed, since investment

by either of the two firms will imply transition to from(c1,c2,c) points of the state space that

are already computed at this point. Hence, given the solution of value functions and investment
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probabilities at lower levels of the game, and given the solution at the(c,c,c) corners and the

(c1,c,c) and(c,c2,c) edges of the game, we can computevI ,1(c1,c2,c,m) in closed form for both

m= 1 andm= 2

vI ,1(c1,c2,c,1) = r1(c1,c2)−K(c)+B1,1φ(vI ,1(c,c2,c,1),vN,1(c,c2,c,1)

+B2,1[P2(c,c2,c)vI ,1(c,c2,c,2)+(1−P2(c,c2,c)vN,1(c,c2,c,2)]

+(1−π(c|c))H1(c,c2,c,1)

vI ,1(c1,c2,c,2) = r1(c1,c2)+B1,2φ(vI ,1(c1,c,c,1),vN,1(c1,c,c,1)

+B2,2[P2(c1,c,c)vI ,1(c1,c,c,2)+(1−P2(c1,c,c)vN,1(c1,c,c,2)]

+(1−π(c|c))H1(c1,c,c,2)

The values ofnot investing,vN,1(c1,c2,c,1) andvN,1(c1,c2,c,2), depends on the value functions

in the interior of the state space as well as the opponents investment probability,P2(c1,c2,c). But

if we rearrangevN,1(c1,c2,c,2) and substitute back into the equation forvN,1(c1,c2,c,1), we ob-

tain a single non-linear equation invN,1(c1,c2,c,1) andP2(c1,c2,c). We writevN,1(c1,c2,c,1,P2)

to emphasize that the value function can be viewed as an implicit function ofP2, i.e. the value of

vN,1 that satisfies the non-linear equation (75) below for an arbitrary value ofP2 ∈ [0,1].

vN,1(c1,c2,c,1,P2) = A1(P2)+B1(P2)φ(vN,1(c1,c2,c,1,P2),vI ,1(c1,c2,c,1)) (75)

where

A1(P2) = (1+ f1(P2))r1(c1,c2)+(1−π(c|c))H1(c1,c2,c,1)+ f1p(c)H1(c1,c2,c,2)

+(B2,1+B2,2 f1(P2))vI ,1(c1,c2,c,2)P2

B1(P2) = B1,1+B1,2 f1(P2)

f1(P2) =
B2,1(1−P2)

1−B2,2(1−P2)

Hence, for a given value ofP2, we can easily expressvN,1(c1,c2,c,1) as the solution to a simple

nonlinear equation invN,1(c1,c2,c,1,P2). This equation can easily be solved using Newtons

method sinceBP2 ≤ 1 for anyP2 ∈ [0,1]. Given the firm 1 value functionsvI ,1(c1,c2,c,1) and

vN,1(c1,c2,c,P2), we can compute best response function of firm 1 by the standard logit formula

P1(c1,c2,c,P2) =
exp(vI ,1(c1,c2,c,1)/η)

exp(vI ,1(c1,c2,c,1)/η)+exp(vN,1(c1,c,1,P2)/η)
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Following similar steps we can obtain a similar equation forfirm 2 to obtainP2(c1,c2,c,P1), i.e.

firm 2’s best response to firm 1’s investment probability,P1.

Wheneverη > 0, (c1,c2,c) stage game equilibria can be found as the fixed point to the second

order best response function, i.e. the mapping fromP1 to P1 that we obtain by substituting the

best response function for firm 2,P2(c1,c2,c,P1) into the best response function for from 1,

P1(c1,c2,c,P2)

P1(c1,c2,c,P1) =
exp(vI ,1(c1,c2,c,1)/η)

exp(vI ,1(c1,c2,c,1)/η)+exp(vN,1(c1,c,1,P2(c1,c2,c,P1))/η)

Whenη > 0 our algorithm searches for fixed points the second order best response function

using a combination of bisections and successive approximations. It can be shown that this

algorithm is guaranteed to findall fixed points on the second order best response function when

η > 0. Whenη = 0 we found we were able to directly solve for all mixed strategy equilibria as

solution to second order polynomials. We will show this below.

C.4 Polynomial representation of the best response functions

To solve for the equilibrium investment probabilities it isuseful to express value functions in

choice probability space. Using thatP1(c1,c2,c) is uniquely determined byvI ,1(c1,c2,c,1)−vN,1(c1,c2,c,1)

via the standard logit formula, we can rewrite the problem (75) in choice probability space

A1(P2)−η log(
1−P1

P1
)−vI ,1+B1(P2)(vI ,1(c1,c2,c,1)−η log(P1)) = 0 (76)

wherevI ,1(c1,c2,c,1) is known at this point. This equation fully describes firm 1’sbest response

as an implicit function ofP2.

If we substitute in the values ofA1(P2) andB1(P2) it can be shown that the resulting expression

is arational functionof P2, i.e. an algebraic fraction,R(P2;P1)/Q(P2), where both the numerator

and the denominator are polynomials ofP2 (for a given value ofP1). The denominator of this

fraction of polynomials isQ(P2) = 1−B2,2(1−P2) which is never zero sinceP2 limited to unit

interval and sinceB2,2 < 0. Hence, if we want to find the roots of (76) it is sufficient to find the

roots of the numerator,R(P2;P1) which linear function ofP2

R(P2,P1) = D1,0(P1)+D1,1P2(P1) = 0 (77)
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where

D1,0(P1) = (B2,1+(1−B2,2))r1(c1,c2)

+ (B2,2+B1,1+B2,1b11−B2,2B1,1−1)vI ,1(c1,c2,c,1)

+ β(1−π(c|c)((1−B2,2)H1(c1,c2,c,1)−B2,1H1(c1,c2,c,2))

− η
[

(B1,1+B2,1B1,2−B2,2B1,1) lnP1+(1−B2,2) ln

(
1−P1

P1

)]

D1,1(P1) = (B2,2−B2,1)r1(c1,c2)+B2,1vI ,1(c1,c2,c,2)

+ (B2,2B1,1−B2,2−B2,1B1,2)vI ,1(c1,c2,c,1)

+ β(1−π(c|c))(B2,2H1(c1,c2,c,1)−B2,1H1(c1,c2,c,2))

+ η
[

(B2,1B1,2−B2,2B1,1) lnP1−B2,2 ln

(
1−P1

P1

)]

Whenη > 0 the coefficients of polynomialR(P2;P1) are not fixed, but depends on the in-

vestment probability of firm 1,P1. Thus, for given value of the best response of firm 1,P1,

we can compute the implied value ofP2 by solving R(P2;P1) = 0 with respect toP2. Roots

that are located on the unit interval corresponds to the abscissa values of firm 1’s best re-

sponse function and we can there by compute theinverse best response function for firm 1as

P2 = P−1
1 (c1,c2,c,P1) = −D1,0(P1)/D1,1(P1). A similar equation exists for firm 2 and in a sim-

ilar way can computeP1 = P−1
2 (c1,c2,c,P2) = −D2,0(P2)/D2,1(P2). Whenη > 0 we can solve

for the d-subgame equilibria at(c1,c2,c) interior points, either by finding the fixed point of the

second order best response function as outlined in the previous subsection, or we could find the

fixed point of the inverse second best response function. We can obtain the latter by substituting

the inverse best response function for firm 2 in to the inversebest response function of firm 1.

Whenη = 0, the best response correspondence is either zero or one except for values ofP2

that makes firm 1 indifferent between investing or not. Clearly, any mixed strategy equilibrium

must therefore be located located at these indifference points. We can solve directly for the

values of firm 2’s investment probability that make firm 1 indifferent between investing and not

investing. It is easy to show that the roots of (77) corresponds to exactly this value. This can

easily be verified by settingvI ,1(c1,c2,c,1) = vN,1(c1,c2,c,1) in (75) above and finding the root.

In fact, the best response function equalsP1(c1,c2,c,P2) = 1[D1,0+D1,1P2 > 0], where 1[] is the

indicator function. Note that the coefficients ofR(P2;P1) do not depend onP1 whenη = 0, i.e.
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D1,0(P1) = D1,0 andD1,1(P1) = D1,1. Hence the rootP2 = −D1,0/D1,1, and thus any candidate

for a mixed strategy equilibria can be found in closed form.
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