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1 Introduction

Dynamic games have had a major impact on both economic tleahapplied work over the
last four decades, and much of it has been inspired by the dMgrkrfect equilibrium (MPE)
solution concept due to Maskin and Tirole (1988). While éleas been considerable progress in
the development of algorithms for computing or approximg&n MPE of these games, includ-
ing the pioneering work by Pakes and McGuire 1994, it stithagns an extremely challenging
computational problem to find evensingle MPE of a dynamic game, much leaB of them.
As Horneret. al. 2011 note, “Dynamic games are difficult to solve. In repegaohes, finding
some equilibrium is easy, as any repetition of a stage-gaash ¢quilibrium will do. This is
not the case in stochastic games. The characterizatioreoftee most elementary equilibria for
such games, namely (stationary) Markov equilibria, in whgontinuation strategies depend on
the current state only, turns out to be often challenging.”1Q77).

Though there has also been recent progredsoomotopy method®r finding multiple equi-
libria of both static and dynamic games (Borkovsiy al. 2010 and Besanket. al. 2010) as
well as algebraic approaches for finding all equilibria isegawhere the equilibrium conditions
can be expressed as certain classes of polynomial equéatta, 2010 and Judet. al. 2012),
the homotopy methods do not generally find all equilibriaj tre algebraic methods are limited
to problems where the equations defining the state-speaist quilibria can be expressed as
systems of polynomial equations that have specific forms.

This paper reports progress on a different approach for atingpall MPE that is applicable
to a class of dynamic Markovian games that we refer tdyammic directional games DDG'’s.

Of courseevery dynamic game is inherently directional in the sense thaptag of the game
unfolds through time. However, we show that many dynamicegexhibit a different type of
directionality that is not directly linked to the passagecafendar time. Our new concept of
directionality pertains to the stochastic evolution of st&teof the game.

A DDG is a game where a subset of the state variables evolveemaer that satisfies certain
conditions including an intuitive notion of “directiongli” When the state space is finite we can
exploit this directionality and partition it into a finite mber of elements we call “stages”. Exam-

ples of DDGs include chess, Rubinstein’s (1982) model of&iaing, but over a stochastically



shrinking pie, and many examples in industrial organizasach as patent races where part of
the state of the game represents “technological progréss’improves over time. We solve a
model of Bertrand pricing with leapfrogging investmentsttis an example of this type.

Similar to the “arrow of time” the evolution of the directiaihcomponent of the state space is
unidirectional: we can index the stagestognd order them from 1 t@. Once the game reaches
stager there is zero probability of returning to any earlier stage T underanyfeasible Markov
strategy of the game. The partition of the state space iagestimplies a corresponding partition
of the overall DDG into a finite number stage gamesOur concept of stage game is different
than the traditional notion of a stage game in a repeated gafeh is a single period or static
game. The stage games will also generally be dynamic gahmasggh on a much reduced state
space that makes them much simpler than the overall gameaneyarg to solve.

We show that a MPE for the overall dynamic game can be realysoonstructed from the
MPE selected for each of the component stage games. We grapstate recursion algorithm
that computes a MPE of the overall game in a finite number gisstBtate recursion is a form of
backward induction, but one that is performed over the stafjthe game rather than over time
t. We start the backward induction by computing an MPE of tkedtage of the DDGT, which
we refer to as thend game.

State recursion can be viewed as a generalization of theash@thbackward induction that
Kuhn (1953) and Selten (1965) proposed as a method tstihdame perfect equilibriaf finite
extensive form games. However, the backward inductionKlnéin and Selten analyzed is per-
formed on thegame treawhich is the extensive form representation of the gamee3&aursion
is not performed on the game tree, but rather can be viewedyas @f backward induction that
is performed on a different objectdarected acyclic grapliDAG) that summarizes the direction-
ality of the game in terms of the state space instead of thpdesthordering implied by the game
tree.

If a dynamic game exhibits directionality in the state spatate recursion can be a much
more effective method for finding an MPE than traditionaldHmased backward induction meth-
ods. For example, in an infinite horizon DDG there is no lastgokefor performing backward

induction in time, as required to do backward induction om game tree. The usual method



for finding a MPE in infinite horizon problems involves iterg on the Bellman equations of
the players starting from some initial guess of the valuetions. Thus, this type of time-based
backward induction is equivalent to using the methosluafcessive approximatiotwsfind a fixed
point of the system of Bellman equations for each of the playdowever, it is well known that
in dynamic games the Bellman equations generally do natfgdhe requisite continuity condi-
tions to constitute contraction mappings that would be geffit to guarantee that the successive
approximations will converge to a fixed point and hence a MP®DDG?! Thus, there is no
guarantee that time-based backward induction methodsfype will even be able to find a
single MPE of the game.

State recursion, however, does not suffer from this probleomditional on the availability
of the solution method for stage gamewill return a MPE of the full dynamic game in a finite
number of stepg which equals the total number of stages in the gaiS&ate recursion will
not cycle or fail to converge, or approach a candidate MPl asymptotically as the number
of iterations or steps tends to infinity, unlike what happefits time-based recursions such as
successive approximations on the players’ Bellman eguositio

State recursion finds single MPE of the overall DDG, but when the game has multiple
equilibria the found MPE depends on which equilibrium iss#min the end game and all other
stages of the game by the state recursion algorithm. Asshatehtere is an algorithm that can
find all MPE of each of the stage games of the DDG and that the numbeP& i each stage
is finite. We introduce th&ecursive Lexicographical Sear¢RLS) algorithm that repeatedly
invokes state recursion in an efficient way to compaiteMPE of the DDG by systematically
cycling through alffeasible equilibrium selection ruldgESRs) for each of the component stage
games of the DDG.

The general idea of how the presence of multiple equilibfia stage game can be used to
construct a much larger set of equilibria in the overall gamas used by Benoit and Krishna

(1985) to show that a version of the “Folk Theorem” can holdinitely repeated games. The

INote that the contraction property does hold in single agemies which we can view as Markovian games against
nature. This implies that traditional time-based backwadiiction reasoning will compute an approximate MPE fosthe
problems, where the MPE is simply an optimal strategy fordingle agent, his “best reply to nature”. Nevertheless, we
show that when there is directionality in single agent dyicgsnogramming problems, state recursion will be far fagtan
time-based backward induction, and will actually convemthe exact solution of the problem in a finite number of steps



prevailing view prior to their work was that the sort of mplicity of equilibria implied by the
Folk Theorem for infinitely repeated games cannot happemitely repeated games because a
backward induction argument from the last period of the garas thought to generally result
in a unique equilibrium of the overall repeated game. How8enoit and Krishna showed that
when there are multiple equilibria in the stage games, thnske used to create a much larger
set of subgame perfect equilibria in the finitely repeateahgaand that Folk Theorem sorts of
multiplicity can emerge even in finitely repeated games wtentime horizon is sufficiently
large. However, Benoit and Krishna did not propose an dlgaror a constructive approach for
enumerating all possible subgame perfect equilibria ofiefinrepeated game, whereas the RLS
algorithm we propose can be used to find and enumerate allesjglibria.

Though we do not claim that all dynamic games will have explde directional structure,
we show there is a sense in which the RLS algorithm can appiteithe set of all MPE to a wide
class of finite and infinite-horizon dynamic games, eveneféhis no exploitable directionality
in the game other than the passage of time. Fudenberg ande&883) showed that infinite
horizon dynamic games that satisfy a continuity conditiamehthe property that the limit of the
set of all MPE of a sequence ®f period games converges to the set of all MPE of the infinite
horizon game a3 — . If we can find all Nash equilibria of each of the (static) €tagames
that are encountered in the process of finding a subgamecpedeilibrium of theT-period
game via standard (time-based) backward induction, thefRtts algorithm will find all MPE
of the T period game. IfT is sufficiently large, this set will be close to the set of alPH of
the infinite horizon game. In effect, we show how the standeckward induction procedure
performed in the right waynot as successive approximations to the players’ Bellngaa&gons)
can approximate all MPE of a fairly broad class of infiniteihon games. We view this as an
analog of Benoit and Krishna'’s Folk Theorem approximatiesuit for finitely repeated games.

We use the RLS algorithm to find all MPE of two variants of a dymaduopoly model of
Bertrand price competition with leapfrogging investmenisiese are not trivial examples, but
rather substantive contributions to the literature inrtlogin right. The RLS algorithm revealed
important new insights into the nature of long run price cetitmn between duopolists when

there is stochastic evolution of a state of the art prodadgchnology — a class of models that



are not well understood since they have not been analyzetbpsty. In our first example, we
use RLS to find all MPE of a simultaneous move version of thestment and pricing game ana-
lyzed by Iskhakov et. al. 2013, (hereafter abbreviated IRB¢ IRS model is a dynamic duopoly
model of Bertrand price competition with cost-reducingastments, where the duopolists can
invest in an exogenously improving state of the art produnctechnology in an attempt to gain
a production cost advantage over their rival, at least tearpp. IRS assume a constant returns
to scale production technology, so the state of the game eaescribed by the triplecs, ¢, ),
wherec; is the marginal cost of firm 1, is the marginal cost of firm 2, anclrepresents the
marginal cost under the state of the art production teclyyoldhe directionality of the game
results from the facts that a) the state of the art only imgsawer time, se decreases stochas-
tically or deterministically but never increases, b) thgaley marginal costs of firms 1 and 2
will never deteriorate but will only improve if one or the ethinvests to acquire the state of
the art production technology. This implies that the stat@ce of the game is a “quarter pyra-
mid”, S= {(c1,Cp,C)|Cc1 > C, C2 > ¢, ¢ > 0}. If we further assume that the state of the art marginal
costsc can only be one of a finite number of possible values and es@s@n exogenous Markov
chain, then we can show that this game satisfies our defirofiarfinite state DDG.

We show that the stage games in this problemarg-coordination gameshat typically
have either one, three, or five MPE, and we provide an alguritrat efficiently computes all
of them. We then show how state recursion can be used to centiise stage game MPE to
find a MPE for the overall Bertrand duopoly game. Then we mte\a detailed explanation of
how RLS can be applied to firmll MPE. We show that even for problems where the state space
has a relatively small number of points, there can be husdoédillions of MPE in the overall
duopoly pricing and investment game. We also show how tcadit approaches such as value
function approximation can fail to find even a single MPE.tkar, we illustrate the danger of
the common practice in modeling of restricting attentiorsyonmetric equilibrieof the game.
RLS reveals that only a small fraction of the full set of MPEE aymmetric equilibria and these
are generally inefficient mixed strategy equilibria. Ttamhal backward induction (successive
approximation of the Bellman equations) fail to fiady of these symmetric mixed strategy MPE.

Our second example is the alternating move version of theB&el. This example presents



the complication that not all state variables are directipgince the right to move alternates forth
and back between the two firms (in deterministic or stochdashion). We show that this game
is still a DDG since we can partition the overall state vaeab= (c1,cy,c, m) (wherem denotes
which of the firms has the current right to invest) intdigectional component € (¢, c,,c) and

a non-directional component mConsequently, we can still solve the alternating moveivars
of the leapfrogging model by state recursion and find all MBEBg the RLS algorithm. We
show that in the alternating move case the structure of MREvary different compared to the
simultaneous move case. Generally there are fewer eqailiod certain “extremal” equilibria
such as a zero profit mixed strategy equilibrium or two asytmmmonopoly equilibria no longer
exist in the alternating move version of the game. The RLS8rélyn reveals that when the state
of the art cost improves in a strictly monotonic fashion (i.e. there is zgrobability that it will
remain in the same state for more than one time period), tre®BDG has ainiqueMPE.

The rest of the paper is organized as follows. In section 2efime a notion of directionality
and the class of DDGs. We introduce the concepts of stage®8G, define our new concept
of “stage games” and introduce the state recursion algoréhd prove that it finds a MPE of
the overall DDG in a finite number of steps. In section 3 weadtrce the RLS algorithm and
provide sufficient conditions under which this algorithmifnd all MPE of the DDG. In section
4 we illustrate the state recursion and RLS algorithms bggigiem to find all MPE of the two
variants of the duopoly Bertrand investment and pricing gafRS described above. Section 5
discusses some extensions of our solution method, indutia possibility of relaxing some of
the assumptions we make, and discussing broader areaslaidipp of the state recursion and

RLS algorithms, and then concludes.

2 Finite state directional dynamic games and state recursio

In this section we define a class of Markovian games that Hawegitoperty ofdirectionality,

and we refer to games that have this propertgwsamic directional gamesr DDGs. We use
directionality to simplify the problem of finding equililariof these games usingstate recursion
algorithmthat is a generalization of the standdatckward induction algorithrthat is typically

used to find equilibria of dynamic games. However, the trawl# approach is to usemeas the
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index for the backward induction, whereas the state resuraigorithm uses an index derived
from the directionality in the law of motion for th&tates. The state recursion algorithm finds
a single MPE of the game in a finite number of steps, but it meguihe user to specify an
equilibrium selection ruldESR) that selects one equilibrium out a set of multiple ko at a

sequence of recursively definsthge gamesf the overall directional game.

2.1 Finite State Markovian Games

Following Kuhn (1953) and Shapley (1953), consider a dyatuchastic gamg with n players
indexed byi € {1,...,n} andT periods indexed by < {1,..., T}, where unless otherwise stated
we assumd = «. We assume the players’ payoffs in any period of the gameiaea ¢y von-
Neumann Morgenstern utility functiong(s, &), where playei’s payoff in any period of the
game depends both on the state of the game atttispeand the vector of actions of all players is
given bya; = (ary,...,ant), wherea; is the action chosen by playeat timet. Assume that the
players maximize expected discounted utility and discaleir stream of payoffs in the game
using player-specific discount factdif$s, . . ., Bn) where; € (0,1),i =1,...,n.

Let p(S'|s,a) denote a Markov transition probability that provides thetability distribution
of the next period statg given the current period stageand vector of actiona taken by the
players. If we views as the move by "Nature”, the Markovian law of motion for N&srmoves
makes it natural to focus on tihdarkov perfect equilibriunfMPE) concept of Maskin and Tirole
(1988) where we limit attention to a subset of all subgaméepeiNash equilibria of the game
G, namely equilibria where the players use strategies tleglarkovian,i.e. they are functions
only of the current statg and not the entire past history of the gafne.

In this paper we follow Haller and Lagunoff (2000) and focusgamesg that have a finite
state space, since they provide general conditions undehwie set of MPE of such games are

generically finite. To this end, letS denote the set of all states the game may visit at any time

2Though we do not take the space to provide a full extensive fdescription of the gamg we do assume that the
players haveperfect recalland are therefore able to condition on the entire historytates in actions at each tinteo
determine their choice of action. However it is not diffictdtshow that if both Nature and all of playies opponents are
using Markovian strategies, playecan find a best reply to these strategies within the subclabtadkovian strategies.
Given this, we can provide a fully rigorous definition of Markperfect equilibrium using Bellman equations for the play
without having to devote the space necessary to provide pletenextensive form description df.



period and assume th&tis a finite subset oR¥ for somek > 1. In every period each playér
chooses an actios from a set of feasible actio(s) for playeri when the state of the game is
s.3 Assume that for eacke Sand for each we haveA (s) € AwhereA is a compact subset of
R™ for somem > 1.

Assume that the current stade Sis known to all the players, and that their past actions are
observable (though current actions are not observed inlsimeous move versions @f). We
can also allow for players to have and condition their deaision private information in the form
of idiosyncratic shocks, perhaps dependent on the“stiateigh to keep notation simple we do
not cover this case here. We assume that all objects in the gathe players’ utility functions,
discount factors, the constraint sé{gs), the law of motionp(s'|s,a), and the probability dis-
tributions for independently distributed private shookghe payoffs of the players is common
knowledge.

Let o denote a feasible set of Markovi@ehaviorstrategies of the players in gangei.e. an
n-tuple of mapping® = (01, ...,0,) Whereo; : S— P(A) andP(A) is the set of all probability
distributions on the seA. Feasibility requires that supi(s)) C Ai(s) for eachs € S, where
suppai(s)) denotes the support of the probability distributmiis). A pure strategy is a special
case wher@j(s) places a unit mass on a single actma Ai(s). Let Z(G) denote the set of all
feasible Markovian strategies of the gagie

If ois a feasible strategg-tuple, leto_; denote an'n— 1)-tuple of feasible strategies for
all players except playeéro_j = (01,...,0i_1,0i+1,...,0n), and let(a,o_i(s)) denote a strategy
where player takes actiom € A;(s) with probability one in stats, whereas the remaining players

j # i chose their actions taking independent draws from theiligionsoj(s).

Definition 1. A Markov perfect equilibriunof the stochastic gam@ is a pair of feasible strategy
n-tuplec™ and am-tuple ofvalue functions Vs) = (Vi(S),...,Va(S)) whereV, : S— R, such that

the following conditions are satisfied:

3This formulation includes both simultaneous and altengpthove games: in the latter cahgs) is a singleton for all
players but the one who has the right to move, where one ofdimponents of the statadenotes which of tha players has
the right to move.

4In this case theonditional independencassumption of Rust (1987) holds, allowing the players tomate the expec-
tations over the actions of their opponents in Bellman eqoat(1).



1. the system of Bellman equations

Vi(s) = max [E{u. cii(s))}JrBiE{zV. p(s|s, (a,0* (s)))}], (1)

aGAI( ) JeS

is satisfied for every=1,...,n, with the expectation in (1) taken over ti® probability

distributions given by the opponents’ strateg@sj 1, and

2. fori=1,..., n, if the maximizer in Bellman equation

a,-*(s):argmax[E{ui( )} +BiE {gw p(ss, (a,0* (s)))}], (2)

acA(s)
is a single pointo; is a probability distribution that places probability 1 af(s), and
if &*(s) has more than one poin;’(s) is a probability distribution with support that is a

subset of(s). The expectation in (2) taken in the same way as in (1).

Let £(G) denote the set of all Markov-perfect equilibria of the gaghe

In definition 1 the notion of “subgame perfectness” is reflddby the restriction implicit in
equation (2) and the “Principle of optimality” of dynamicogramming which require for each
player’s strategy;’, “that whatever the initial state and initial decision étes remaining deci-
sions must constitute an optimal policy with regard to tlaestesulting from the first decision”
(Bellman, 1957). Thus, equation (2) implies that each playsrategy must be a best reply to
their opponents’ strategies@tery point in the state space= S, but since the process is Marko-
vian, it follows that the strategy” constitutes a Nash equilibrium for all possible historiethe

gameg, see Maskin and Tirole 2001, p. 196.

2.2 Directional Dynamic Games

Before we formally define dynamic directional games, it isfukto provide intuitive examples
of what we mean by directionin a Markovian game. Roughly speaking, a gaghis directional

if we can single out some dimensions of the state si@®ch that the transitions between the
points identical in these dimensions can be representediescséed acyclic grapiDAG), where

each vertex represents a pothwhich is a part of state vector, and the arrows (directed €dge



connecting the vertices correspond to positive probadsliof transiting from one value af to
another We will refer to the component of the state veatioas “directional” component of the
state space below.

Figure 1 presents two directed graphs representing transiin space state of two examples
of dynamic Markov games we discuss below. In these gamesstate is one dimensional, and
is given byS= {dj,d>,d3,ds}. The game presented in the left panel progresses (stochlfsti
according to the indicated transition probabilities) frdirto ds, and it is essential that indepen-
dent of what state the game is in, there is alway a zero prbtyadii returning from a point with
higher index to the point with lower index. This intuitivetian of directionality is violated in the
right panel, where the game may indefinitely oscillate betwstatesl, andds. Consequently,
the directed graph representing the transitions amongalessof this game is not acyclical, i.e.
not a DAG.

Directionality in the stochastic evolution of the stateaimameg can be captured by defining
apartial order over the state spac® This partial order of the states will generally &ieategy-
specificsince the stochastic evolution of the states will geneddigend on the strategiesused
by the players, and we use the symbglto denote this strategy-specific partial ordeGoMost
games that we analyze will exhibit directionality only in@sector of the full vector of state
variables. Therefore our definition assumes there is a decsition of S as a cartesian product
of two setsdD andX, so a generic element of the state space is writtexrafd, X) where we refer
to d as thedirectional componendf the state space, andas thenon-directional component.
In the definition below, we lep{d’'|d,x,c} denote theconditional hitting probability,.e. the
conditional probability that a state with directional cammentd’ is eventually reached given

that the process starts in state (d,x) and the players use strategy

Definition 2 (Representation of state transitionkpt o be a feasibl@-tuple of strategies for the

players in the dynamic gamg. SupposeSis a finite subset oRX that can be decomposed as a

5Note that while the extensive form representation of a gahgegame tree, is also an example of a DAG, it is different
from the DAG over state space. In particular, the game traencéhave “loop-backs” (transitions to itself) as in Figlre
and its edges represent actions for each player rather tigsibye transitions between the points in the state space.
5Note thatp(d'|d, x,0) is different from a single step transition probability. Imetterminology of Markov chains,
p{d’|d,x, 0} is the probability that théitting time of the set(d’ x X) = {(d’,X)|X € X} is finite conditional on starting
in state(d,x) under strategy. The hitting time (offirst passage tinas the smallest time it takes for the state to travel from
states = (d,x) to some statéd’,x') wherex’' € X.
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cartesian product = D x X whereD ¢ RY andX ¢ RN whereN < k. A typical element of
Sis a points= (d,x) € D x X, where we allow for the possibility th&@ or X is a single point
(to capture the cases wheBehas no directional component and the case wisdnas no non-
directional component, respectively). Then a binary re@fat-; over the states € Sinduced by

the strategy profile is defined as

d=cd iff IxeXp{d|d,x,0} >0 and VX € X p{d|d,X,0}=0. (3)

Lemma 1 (Partial order over directional component of the state spakhe binary relation-4

is a partial order of the set D.

Proof. The proofs of the lemma above and all subsequent resultsffe)wose that are short and

intuitive and are provided in the text) a provided in Apperéli O

The partial order of the states captures the directionalithe game implied by the strategy
0. The statemend’ -4 d can be interpreted intuitively as saying that the direcl@omponent
d’ comesafter the directional statel in the sense that there is a positive probability of going
from d to d’ but zero probability of returning td from d’. Note that-4 will generally not be
atotal order of the directional componenf@ because there may be paid,d) € D x D that
are non-comparablevith respect to the partial order,;. There are two ways in which a pair
of points(d’,d) can be non-comparable (a situation that we denoté' kyyd): there may be no
communication betweedi andd’, i.e. zero probability of hitting staté’ from d and vice versa,
or there may be a two way transition I@op) connectingd andd’, i.e. d’ can be reached with
positive probability fromd and vice versa.

The asymmetry and transitivity conditions guarantee theitet cannot be any loops between
any of the comparable pai(sl’,d) of a strict partial order-5. However, loops that may exist
betweemon-comparablgairs(d’, d) that are not elements of the binary relatiep, also need

to be ruled out.

Definition 3 (No Loop Condition) Let o be a feasible-tuple of strategies for the players in the

dynamic game&;. We say that hasno loops in the directional component iDthe following
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condition is satisfied for al’ # d € D

d #od=Vxe Xp{d|d,x,0} =0 and vX € X p{d|d’,X,0} =0. (4)

It is not hard to show that when No Loop Condition is satisfiedd feasible strategy, the
transitions among the directional components of the statéovd induced by this strategy can
be visualized with a DAG. LeD(G,0) denote a directed graph with nodes corresponding to
elements oD and edges connecting the poidtandd’ if the hitting probabilityp{d’|d,x,c} is
positive. Then ifd andd’ are comparable with respectig;, there can only be an edge frado
d’ or vise versa, and otherwisedfandd’ are not comparable there is no edge between them due
to no communication by No Loop Condition. Therefore, dieecgraphD(G,o) does not have
loops, thus it is a DAG.

Example 1(Finite horizon) Consider dinite horizonMarkovian game&j which lasts forT < oo
periods. We can recast this in the notation of a stationargkMaan game by writing the state
space a$= D x X whereD = {1,2,...,T} is the directional component of the state space and
X are the other potentially non-directional components efdtate space. The time indeis the
directional component of the state space,d.e:t and we define the partial ordei; by d’ =4 d
if and only ifd’ > d. Note that- in this example is #otal orderof D, and thus there are no pair
of not comparable states (implying that No Loop conditioalso satisfied). Note as well that
the ordering-4 holds for every strategy, and is thus independerm. of

In this simple case, no additional steps are needed to pettloe state recursion algorithm
that we define below, which reduces here to ordinary backwakakction in time. In more com-
plicated examples, a total, strategy independent ordedate® do state recursion has to be

specifically constructed. We explain how to do this below.

Example 2 (Directional bargaining over shrinking pieConsider an extension of the Rubinstein
(1982) infinite horizon alternating offer bargaining gaiavhere two players make alternating
offers and the size of the amount the players are bargainiag(the “size of the pie)”, is given

by d which can take four possible valués {d;,d,,ds,ds} with 0 < dq < d3 < dp < d;. Suppose
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Figure 1: Bargaining over a stochastically shrinking piggiaple 2: left panel, Example 3: right panel)

thatd evolves as a Markov chain with an exogenous (strategy indbp#) transition probability
p(dj|di), i, j € {1,2,3,4} with values such as in the left panel of Figure 1. Thus, if tieesparts
out atits largest sizéy, it has a positive probability that it will remain this sizerfa geometrically
distributed period of time, and there is a positive probghihat it will either decrease to siai
or do but zero probability that it will shrink directly from sizh to its smallest sizd,. Itis evident
from the left panel of Figure 1 that the transition diagramtfe pie is a DAG. The transitions
hold for all feasiblec and thus imply a strategy-independent partial order(vVo) over thed
variable which consists of the ordered pdifgls,ds), (da,d2), (da,d1), (d3,d1), (d2,d1) }. Notice
thatd, % dz andds g dy, i.e. the ordered pairglz,d2) and(dy, d3) are non-comparable under
the partial ordek-4 since there is zero probability of going froma to d3 and vice versa.

Letx € {1,2} denote which of the players has the turn to make an offer,agepk proposes
a division of the pie, which has sizg and the other player then either accepts or rejects the
proposed division. If the proposed division of the pie isegted, the game ends and the players
consume their respective shares of the pie. Otherwise the gantinues to the next stage. The
variable may alternate deterministically or stochastycéh terms of our setup, the game involves
a two dimensional state spase- (d,x) where directional variable is the size of the piand
the non-directional variabbeis the index of the player who has the turn to move first. A warsi
of this game was solved by Berninghaus, Guth and SchosB&R) 2ising a backward induction

calculation in thed variable that is an example of the state recursion algontlendefine below.

Example 3 (Non-directional bargaining over shrinking pig€fonsider a game similar to the one
in example 2, but slightly modify the transition probahdg for the directional state variabde
as shown in the right panel of Figure 1. It is easy to verifyt the shown transition probability

induces the same partial ordeg overD as the transition probabilities in Example 2. However,
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in this case there is a loop connecting the non-comparathguy andds. This cycle implies
that the directed graph in the right panel of Figure 1 is noA&DThis game will also fail to be
a directional dynamic game by the definition we provide belmecause the existence of the loop
betweend, andds makes it impossible to devise a total order to index the itidacsteps in the

state recursion algorithrf.

Different strategies can potentially induce different partial orders of the direnal compo-
nent of the state spad2. To be able to construct a common total order for the statersean
algorithm, it is important to ensure that strategy specifidipl orders areonsistentwith each
other, i.e. that there is no pair of states for whiHollows from stated under strategy butd

follows fromd’ undera’.

Definition 4 (Consistent partial ordersh.et o ando’ be any two feasible-tuple of strategies for
the players in the dynamic ganteand let-s and>-; be the two corresponding induced partial
orders of the directional component of the state sjiac@/e say that-; and >y areconsistent

partial orders if and only if for ang’,d € D we have
if d>sd then dfyd, (5)

or equivalently that-5C % with inclusion operator defined as inclusion of the sets deosd

pairs that constitute the binary relations.

It is worth noting that the definition of consistency is stlabout the non-directional compo-
nent of the state space, allowing for various strategieadadge any transitions between points
that only differ in non-directional dimensions. Given tlecept of consistent partial orders, we

can define the concept ofdirectional dynamic gaméDG).

Definition 5 (Directional Dynamic Games)Ve say that a dynamic Markovian gangewith
state spac8is adirectional dynamic gam@DG) if given the decomposition of the state space

in directional and non-directional componeBts: D x X, the following conditions hold:

"However, because the state space is finite, it is possiblecimanize the game so that the loop betweeandds is
“hidden away” in a separate dimension of the state spacéd $Afith manipulation, it would be possible to run state récars
using the directionality over the three statds, (oint (d,d3) andd,) but as it will be evident below, the points andds
would not be treated independently in any of the solutiomtlgms.
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1. every strategy € 2(G) has no loops in directional compondhtaccording to Definition
3, and

2. the set of induced partial orders bn {4 |0 € 2(G)}, are pairwiseonsistenaccording

to Definition 4,

whereX(G) is the set of all feasible strategies of the dynamic Markogameg.

2.3 Stage games and subgame perfection

Even though the different strategy-specific partial ordegsare consistent with each other, they
may nevertheless be different from each other. In order timel¢hestate recursion algorithm

for computing a MPE of the gamg, we need to introduce a concept of strategy independent
common directionality. In doing so, we invoke the notionlod toarsest common refinement (i.e.
join) of the set of all strategy-specific partial orddrs [0 € Z(G)}. In this section we prove

its existence and use this partial order to definestagesf the overall DDG. We show how the
stages of the game are totally ordered by construction lieigaihe backward induction in state
space. Moreover we prove that this ordering allows for trexalVgameg to be decomposed into

a recursive sequence of subgames, the equilibria to whiclised¢o construct a Markov perfect

equilibrium of the overall game. We start with the definitimira refinemenbf a partial order.

Definition 6 (Refinement of a partial order.et > and-y be two partial orders of the elements

of the seD. We say that- is arefinemenbf -4 if and only if for anyd’,d € D we have
d>sd = d=gd, (6)
or equivalently using the inclusion operation on partiaeys,>-C 4.

It is possible for two strategy specific partial orders to besistent, but neither to be the
refinement of the other. In this case the information on thesjtde transitions in the state space
under both strategies has to be aggregated into a commaitefgtrindependent) notion of di-
rectionality. This is achieved with the help of refinementsick by definition preserve such

information.
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Given a set of partial ordefs-¢ |0 € 2(G)}, let - denote the coarsest common refinement
(join) of the partial orders-; induced by all feasible strategiese Z(G). The following theorem
guarantees the existence of the join and characterizegthh@gransitive closure of) the union of

the strategy-specific partial orders, 0 € Z(G).

Theorem 1. Let G be a directional dynamic game, and fet |0 € 2(G) } be the set of pairwise
consistent partial orders of D induced by all feasible Mariam strategies in the game. Then the
join of this set is given by

>g: TC(erZ(g) >C7)7 (7)

where TQ-) denotes the transitive closure operator, i.e. the smathastsitive binary relation

that includes the binary relation in the argument.

Definition 7 (Induced DAG for a DDG) Let G be a DDG with state spac®= D x X whereD

is the directional component of the state space. @j) denote the DAG whose vertices are
the elements oD and whose edges — d' correspond (one-to-one) thi-; d’ for every pair
d,d’ € D. Then we say thdD(G) is theDAG induced by the DDG;.

Consider a verter € D of the DAG induced byg. We say thatl has no descendanifghere
is nod’ € D such thad’ -4 d. Theterminal nodesf D(G), given byA(D(§)) is a subset of
verticesd € D that have no descendants. We can considdo be anoperatorwhich returns the
terminal nodes of a DAG. Now |é1(G) = D(G) and defineD,(G) by

D2(G) =D(G) - N(D(G)), (8)

where the “” sign denotes the set difference operator, i.e. the set witpthat belong to the

first argument but not to the second. If follows tlai G) is also a DAG, but it is a “sub-DAG”

of the original DAGD(G) created by removing the terminal verticedX(fG). Since a DAG has

no cycles, itis not hard to see thaf(D(G)) # 0 for every DAG, i.e. every finite DAG must have
at least one terminal node. Moreover the nodes of every DA@ded by a finite state DDG

can be exhausted in finite number of applications of the saaeioperator

Dj+1(G) =Dj(g) = A(Dj(G))- (9)
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Figure 2: DAG recursion and stages of the DDG in Examplg 2-(3).

Lemma 2 (DAG recursion) Let G be a finite state DDG with the induced DAG ). Let

D1(G) = D(G) and define the sequené®;(G)} = {D1(G),D2(G),...,D(G)} by the recur-
sion (9). This sequence will terminate in a finite number epsti.e 7 < co.

All the nodes in the DA@+(G) have no descendants, and thus it represents the setialf
nodesof the original DAGD(G). The corollary for Lemma 2 presented in the Appendix shows
that the recursion (9) can also be used to check if an arpitlieected graph is a DAG when it is

not immediately obvious.

Example 4. Figure 2 provides an illustration of the described DAG recur for a game we
considered in Example 2. Applying operator (9) to the DAGuced by this game (shown in left
panel of Figure 1) yields in step 1 the left-most sub-DAG veheoded, is removed. Terminal
noded, is identified by the fact that all edges (except the loop telfifgoint in and none point
out. Applying the same principle in step 2 to the sub-DAG ot#d in step 1, we find two new
terminal nodes, namely, andds. Removing these two nodes produces the new sub-DAG shown
in the middle panel of Figure 2. Because the new sub-DAG aositanly a single point, the
recursion terminates on the third step, inducing the pamtivf the directional component of the

state spacé{di},{dz,ds},{ds}} as shown in the right panel of Figure 2.

Given the whole sequence of DAGBP1(G),D2(G),...,D+(G)} generated by the recursion
(9) in Lemma 2, lef Dy, ...,Ds} denote the partition of the directional componBytwhich is
indexed with thenverted indext, such thaD, contains the points corresponding to the vertices
of DAG D7_j(G). (The right-most panel of Figure 2 presents this partitiompdically for the

game in Example 2.) We are now ready to define the stages oathe @ using this partition.
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Definition 8 (Stages of a DDG)Let G be finite state DDG, and |1€D1,...,D+} be the partition
of the directional component of the state spRdaduced by the DAG recursion (9) as explained
above. Let

S =D¢ x X (10)

denote thestage of the gamég;, and indext denote thandex of the stageNote thatt is the
reverse of the original indek so thatS; denotes the initial stage of the gargeandS; denotes

the terminal stage.

The{S,...,Sr} is a partition of the state spa&énto stages. Recall that the DAG induced by
the DDGG represents all possible transitions between the elemétite directional component
of the state spacP under any feasible strategies. Therefore by virtue of the thva stages are
constructed, once the state of the game reaches somestistager, i.e. s€ S, there is zero
probability that the state will return to any poisitc S at any previous stage < T under any
feasible strategy € Z(G). This ordering will allow us to define a new concept of “stageng”
that provides the basis for the backward induction soluti@thod for the overall DDG; that

we refer to astate recursion.

Definition 9 (Subgames of a DDG)Let G be a finite state DDG, and I€tS,,...,Sy} be the
partition of Sinto stages. Defin@; as a subset & by

Qr = UL, S, (11)

and letG; denote the DDG with state spa@g and other elements of the game (number of play-
ers, time horizon, utility functions, discount factorstian sets and laws of motion) be properly
restricted for this state space versions of the elementeobtiginal gamej. Then we say that

G is thestaget subgameof the DDGG.

The state recursion algorithm, defined below, involves figdi MPE of the overall gamé&
inductively, starting by finding MPEs at all points in taedgamei.e. the stag&” subgamej,
and proceeding by backward induction over the stages ofdheegfrom stage& — 1 to stage
T — 2 until the initial stage 1 is reached and solved. When staigesblved in this backward

induction procedure, effectively the whalgis also solved, as follows from the following lemma.
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Lemma 3. If G is a finite state DDG, and is its stage 1 subgame, théh= G;.

Note that if the partition elemeni3; contain more than one elementdf then there can be
no transitions between the various elemen®y virtue of the way the partitiofiDs,...,Ds}
was constructed from the DAG recursion in Lemma 2. SupposeDth= {dyr,...,dn} CD
wheren; is the number of distinct points iD;. It is useful to define an even finer grained notion
of subgames ofj that we call ad-subgames &d). Since there is zero probability of transitions
betweerd; ; anddi ; for i # |, these finer subgames can be solved independently of eashimth

the state recursion algorithm below.

Definition 10 (d-subgames ofG). Let T be a stage of the finite state DDG. Consider
d € D; C D. Thed-subgame of7, denoted byG:(d), is the subgame off defined in the similar
way as subgamé; on the state spad@,(d) C Sgiven by

Qr(d) = {d x X}U (U aS) (12)

With the definition of stages and substages of the D@t hand, the state dynamics of
the DDG G can be described in the following way. Imagine that the gatagssat a point
s = (d1,X1) € S C Sat the initial stages;. It may remain in the substadel; x X} for some
time, moving freely between the points that only differ fremin non-directional dimensions.
Yet, while the game is in stage= 1, there can be no transitions to the poifids x1) € S C Sif
d1 # dj due to the No Loop condition (4) which rules out any transisibetween the substages
of the same stage. At some time period a transition occursi¢ood the subsequent staggs
T > 1, namely to some poirg; = (di, %) € S C S Again, any transitions are possible within
the substagéd; x X}, but the game will remain in the same substage until the sfatee game
transitions to the next stage.

The DAG-recursion that constructs the stageg atiles out the possibility that a substage of
some stagé&; for T < 7 could be an absorbing class of states, since such statdsewilentified
as terminal nodes of the DAB( G) of the DAG-recursion, (9). Thus, these will all bansient

statesand only the final stag®; of the game will be an absorbing class of states. The finaéstag

19



too will be partitioned into substages that do not commueigath each other, so each substage
of the terminal stag&; will constitute separate absorbing sets of points.

Let £(G) denote the set of all MPE af. In case there are multiple MPEs in some of the
d-subgameg;;(d) in the stager, the equilibria in thed’-subgames at the earlier stagés< 1
from which a transition is possible th(d >~ d’) will be dependent on which of the MPEs of the
d-subgames will eventually be played on the later stage. ifiipdies that in case of multiplicity
of equilibria in G (and thus it's subgames), the solution computed with thé&ward induction
approach is dependent on tbquilibrium selection ruldESR) that selects one of the equilibria
at everyd-subgame ofj, and thus induces (or selects) a particular MPE in the whafeey Let
e(G) € E(G) denote a particular selected MPE from the set of all MPE of

Definition 11 (Equilibrium selection rule)Let ' denote aleterministiaule for selecting one of
the MPE from everyl-subgameg;(d), i.e.

e(Gi(d)) =T (£(Gi(d))) vdeD. (13)

By selecting an equilibrium in everg-subgame, ESR also induces (or selects) an equilib-
rium in every subgaméy, e(Gr) =T (£(Gr)). We can also interpre#(G;) as a MPE formed
from the union the equilibria at eachsubgameg;(d).

Recall from the Definition 1 of MPE, that an equilibrium castsiof two objects: tha-tuple
of the players’ strategies and thetuple of the value functions, s&G) = (0*,V). Define the
projectionse;(G) = 0* andey (G) =V that pick each of these objects from a given equilibrium.

The state recursion algorithm is a method for constructiMpPé for the overall DDGG by
recursively calculating MPEs for a recursively defined sgme of “smaller games” that we refer
to asgeneralized stage gamébough in what follows below, for brevity we refer to thermngily
as “stage games”). Note that our definition of stage gamdfisreint from the definition that is
traditionally used in the theory of repeated games. In aatepegame, the stage game sirgle
period gameand the repeated gandgis a finite or infinite repetition of these stage games. Each

stage game is itself generally a dynamic game. This dynaamegs played for a random length
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of time until the state of the system transits out of the sadpsiid x X) that defines the (restricted)
state space of this stage game.

A MPE of each stage game involves calculating the set of aliliégia on a much smaller
subset of the state space than the full state sBaéhe overall DDGG. The state space for each
of the stage games {d x X) whered € D; for some stage of the games {1,...,7}. Further, we
can restrict our search for MPE of the stage game®tdinuation strategies/hich only require
calculating all MPE (and then selecting a particular oneheft) on the state spac¢d x X) of
the stage game, and then reverting to an already calculatededected MPE for all subsequent
stages of the game after stage The power of the state recursion algorithm comes from its
ability to decompose the problem of finding a MPE of the muedaand more complex overall
DDG g into the much more tractable problem of recursively findifdRE for an appropriately
defined sequence of these stage games. This need only bermmeso that state recursion will
find a MPE of G using only one “pass” of a recursive, backward inductioncpes that loops
through all of thed-stage games (which can be solved independently of eachaitbeery stage
of the backward induction ove) and sequentially over the various stages of the gastarting

att =7 and working backward.

Definition 12 (Continuation strategies) et G be a finite state DDG, and consider a particular
stage of this game e {1,...,7}. If G;(d) is ad-subgame, define the--continuation strategy
or(s/(d x X),es(Gr+1)) to be any feasible Markovian strategy for poists (d x X) andd € D¢
that reverts to a MPE strate@y( Gr+1) in the staga + 1 subgamej;1. That is,

01(5(d % X). ol Grs1)) = { o Teeldo0.dch (1)

€s(Gry1) otherwise,
whereo : (d x X) — Ais any feasible, Markovian strategy @d x X), i.e. oj(s) € A(s) for
se€ (d x X) andd € Dy. Similarly, define astaget continuation strategy:(s|S;, es(Gr+1)) to be
any feasible Markovian strategy for poirgs S; that reverts to a MPE strate@y(Gr+1) in the

staget + 1 subgamejr, 1. That s,
i ,
oT<ssf,ec<gr+1>){ o Ifses (15)

es(Gr+1) otherwise
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Definition 13 (Stage game)Let G be a finite state DDG, and consider a particular stage of the
gamet € {1,...,7} andd € D;. A d-stage game§ G (d), is ad-subgameg; (d) where the set of
feasible strategies is restricted to continuation stiateg.e. ifZ(5G (d)) is the set of feasible,
Markovian strategies of the stage game an0d:(d)) is the set of feasible Markovian strategies

of thed-subgameg;(d), then we have
0€X(SG(d)) iff o()=0r(s/(dxX),e5(Gis1)), SE(AXX)UQei1.  (16)

Similarly, we define$SG, to be thestage game at stage by restricting the set of all fea-
sible Markovian strategies in the stagesubgame to continuation strategies. It follows that
2(5G,) C Z(Gr) where we have

CEE(SG,) it ()= Or(s|S ol Grra)- (17)

Lemma 4. Let G be a finite state DDG, and consider the final stage of the gdmé&or each

d € D+ we have
S$G7(d)=Gr(d), deDg, (18)
and
$Gr=Gr. (19)

It follows thatZ(S5G.(d)) C Z(G:(d)), i.e. the set of feasible Markovian strategies id-a
stage games G (d) is a subset of the set of feasible Markovian strategies indtsebgame
Gi(d). Similarly the set of feasible Markovian strategies in ttege gamej; is a subset of the
feasible Markovian strategies in the staggibgameg;. By restricting strategies in this way, we
reduce the problem of finding MPE strategies of a stage gaghéd) to the much smaller, more
tractable problem of computing a MPE on the reduced stateegpla< X) instead of the much

larger state spad®:(d) given in equation (12) of definition 10.

Theorem 2 (Subgame perfection)Let £(S5G,(d)) be the set of all MPE of the stage game
SG.(d) and letE(Gr(d)) be the set of all MPE of the d-subgargg(d). Then we have

E(SG(d)) = E(Gi(d)) (20)
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i.e. there is no loss in generality from computing all MPEwéy d-subgamé; (d) by restricting
the search for equilibria to finding all MPE of the correspamgistage game G (d) using only

continuation strategies.

Corollary 2.1. Let E(S G,) be the set of all MPE of the stage game at staged letE(G;) be

the set of all MPE equilibria of the stagesubgameg;. Then we have

E(SGy) = E(Gr)- (21)

Theorem 2 and its corollary 2.1 provide the foundation fer vhlidity of the state recursion
algorithm. They justify a backward recursion process fonpating a MPE of the DDG; that is
very similar in spirit to the use of backward induction to qmute a subgame-perfect equilibrium
of an extensive form game. We require one final result befoogiging a formal statement of
the state recursion algorithm and proving the key resuhisfdection, namely that this algorithm
will compute a MPE of the DDG;.

Theorem 3 (Decomposition of the stage gamd)et G be a finite state DDG witly” stages. At
eachstage € {1,...,7}, let Dy = {dqr,...,dn, 1} be the set of possible values of the directional
state variable d that can occur at stageWe have the following decomposition of the MPE of the

stage game at stage E(S G, ), as a partition of the equilibria of its d-stage gamgg&s G (d)):

E(5G,) = U E(5G(dix)) (22)

where
E(SG(dir)) NE(SG(djr)) =0, €] (23)

where the union of the possible equilibria in the various poment d-stage games can be
interpreted as defining an equilibriurfo,V) whose domain is the union of the disjoint do-
mains(d; r x X), fori=1,...,n;. The stage games comprising stagare payoff-independent
of each other, i.e. the players’ payoffs §G (dir) is unaffected by the choice of strategy
0 € 2(5G.(dj 1)) in any other stage gameG,(d; 1), dj r # di, in the same stageof G.
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2.4 State Recursion

Definition 14 (State Recursion Algorithm). Consider a finite state DDG with 7 stages. The

state recursion algorithm consists of the following nestedoop of operations:
fort=7,7-1,...,1do

fori=1,...,n;do
e computeE(SG,(dix)).
e using an equilibrium selection rulg select a particular MPE from (S G (di 1)),

&(S5G(dir)) =T(E(SG(din)))-
e By Theorem 2g(5G(di 1)) is a MPE of thed-subgameg: (di 1),

o End ofi do-loop. Using the decomposition property (22) of Theorerthd union of the
MPEs for eachd-stage gamge(SG . (dir)|i = 1,...,n} is a MPE for the overall stage
game at stage, e(SG,).

o By Theorem 2 a MPE of the-stage game G, is also a MPE of the stagesubgame;.
Thatis,e(SG,) = e(Gr).

Theorem 4 (Convergence of State Recursiolpt G be a finite state DDG. The state recursion

algorithm given in Definition 14 computes a MPE®f

The state recursion algorithm given in definition 14 leada tecursively defined MPE for
each stage stage gameg G, 1= (1,...,7). By Theorem 2, these MPE also constitute MPE of
the staga subgames;;, 1= (1,...,7). However by Lemma 3 we hawg; = G, so it follows
thate(G1) = €(G), i.e. the state recursion algorithm has computed a MPE oDIb& G by

computing MPE for a total of
T

N = T; Nt (24)

d-stage games of the gangg By Lemma 3 we haveéj, = G, so it follows thate(G1) = e(G).
Thus, it follows that the state recursion algorithm has cotag a MPE of the DDGj.
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Figure 3: Graphical illustration of state recursion on th&@D(G) in Example 2.

Example 5. Continuing with the DDG shrinking pie example (Example 2guUfe 3 illustrates
state recursion on the induced DA® G) that we introduced in the left panel of Figure 1, and
partitioned into stages in the right panel of Figure 2. Bsedihe game has three stagés 3),
state recursion algorithm requires three steps of the dadrovert. In the first step, we solve
the end game which in this example is given by a single p@jntNote that because there are
no non-directional dimensions of the state spageshould be interpreted as a point of the state
spaceS. Thus, the terminal-stage game constitutes the- 7 stage game, which is by Lemma 4
is also a terminal subgame of the whole DDG. This subgamesisngislly a repeated game in
which the same stat# reappears in every period with probability 1 (as shown inléfiepanel
of Figure 3). By assumption, solution method exists for gwkstage game, and at the first step
of the state recursion algorithm it is applieddgstage game.

Given the solution of thés-stage game, the algorithm moves on to stage game shown
in middle panel of Figure 3. This stage consists of two pothtandds, son, = 2, which can
be solved in any order during two iterations of the inner lobthe state recursion algorithm. In
both cases, the continuation strategies are based on tii#®eagon chosen in thals-stage game
solved in step 1. After all MPE in the stage games are founel pamticular equilibrium is chosen
using the exogenously fixed ESR.

Once stage = 2 is solved, the algorithm moves on to stage 1 shown in the right panel of
Figure 3, where the lasl-stage game, nametlj-stage game is solved using the already known

solutions in the rest of the points. By Lemma 3 the whole DD@é&n solved.
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3 Recursive Lexicographical Search

The state recursion algorithm described in section 2 finsisgle MPE of the DDGG via a re-
cursion that involves (a) findingll equilibria among continuation strategies at ededtage game

of the DDG @G, and then (b) selecting a single equilibrium from this sehgisome equilibrium
selection ruld”. TheRecursive Lexicographical Searefgorithm (RLS) presented in this sec-
tion findsall MPE of G by systematically examining all feasible ESRs while at thee time
recognizing thenterdependency of choices of MPE for stage games in diffetages of;. That

is, a choice of a particular MPE for any stage game at any stafe; can potentially alter the
set of possible MPE at all earlier stageés< 1. For example, it is possible that the one choice
of MPE for a stage game of the end game 7 of G might result in a unique MPE at a stage
game at some earlier stage< 7, whereas a different choice of MPE of the same stage game of
the end game of; could result inmultiple MPE existing at the same earlier stage game at level
1< T of G.

3.1 Prerequisites

Note that our theoretical presentation of the RLS algorigtesumes the existence of a solution
method to findall MPE in everyd-stage game (i.e. equilibria within the class of continorati
strategies). We show below that when this condition is Bati®RLS findsall MPE of the DDG
G. However, RLS also works if this algorithm can only fisdmeof the equilibria ofd-stage
games. In the latter case RLS is not guaranteed todlhdMPE of G, but it can still find,
potentially,very manyMPE of G. It is more likely that we can find all MPE of each of the stage
games ofG than for G itself because the stage games have a state ggacX} that is generally
a small subset of of the overall state sp&der G itself, and also because we restrict our search
for MPE in the stage games to continuation strategies.

We can interpret RLS as a systematic way of directing the séatursion algorithm to “build”
all possible MPE ofG by enumerating all possible equilibrium selection ruled aanstructing
all possible MPE of every stage game®f Theorem 2 implies that this results in the set of all

possible MPE forg itself. RLS is a remarkably efficient procedure for enumagaand building
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all possible MPE ofG. It achieves this efficiency by a) re-using solutions frorevoously com-
puted stage games of wherever possible, and b) by efficiently and rapidly disrdgey large
numbers of potential bubhfeasiblecombinations of stage game MPE @f

RLS is applicable to DDGs that havdiaite number of possible MPE. If we assume that the
algorithm that computes all of the:stage game equilibria can also detect if a particular stage
game has an infinite number of equilibria then even though RilShot be able to compute all
MPE of G, it will be able to establish that the game has infinite nundiéPE. Otherwise, the
RLS will provide a complete enumeration of all of them.

Finally, we also assume that eadfstage game has at least one equilibrium, implying that the
whole DDG G also has at least one MPE.

3.2 Equilibrium Selection Strings (ESS)

Let K denote the least upper bound on the number of possible legailn any stage game @f.
We introduceK to simplify the explanation of the RLS algorithm, but we valiow that is it not
necessary for the user to know the vakia priori. Instead, the RLS algorithm will reveal the
valueK to the user when the algorithm terminates. Recall khgiven equation (44) of section 2
represents the total number of substages of the @D Ghe state recursion algorithm must loop
over allN of these substages to find a MPE in the stage games that comcegpeach of thesd

substages to construct a MPE@f

Definition 15 (Equilibrium Selection Strings)An equilibrium selection stringeESS), denoted
byy, is a vector inZL\'r (the subset of all vectors RN that have non-negative integer coordinates)
where each coordinate gfis an integer expressed in basarithmetic, i.e. each coordinate (or
“digit”) of ytakes valuesinthe s¢0,1,...,K —1}. Furthery can be decomposed into subvectors
corresponding to the stages @fthat is ordered from right to left in the same order of the esag
of G, i.e.

Y= (Yr:Yr-1,---, Y1), (25)

where y; denotes a sub-vector (sub-string) pfwith n, components where each digif,-+,
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i=1,...,ngis also restricted to the s, 1,..., K -1}

yT = (yl,Ta R 7ynr,T) (26)
wheren; equals the number of substages of stagéthe DDGG.

We use the subscripts notatigr andy; to denote a subvector (substring) of the B§&nd
superscript to denote elements of a sequence of ESSs. Hénad,represent thejth ESSina
sequence rather than thﬁ@ component of the ES$ In particular, we let® = (0,...,0) denote
the initial ESS that consists of zeros.

We assume that the user fixes some ordering of the set of alietuat eachd-stage ofG,
so that they can be indexed from 0O to at midst 1. The individual components or “digits” of
the ESSy; ; index (in baseK) which of theK possible MPE are selected in each of thstage
games$S G, (d; ;) of every staga of G. Thus, there is a one-to-one correspondence between an
ESSy and an ESR™ at least when the number of MPE of the gaggas finite (K < ). The
initial ESSYP is the selection rule that picks the first equilibrium in gvefstage game (which is
always possible due to our assumption of existence of at ¢eeesMPE in every stage game).

It is very important to note that the grouping of equilibriwgtnings into substrings or “sec-
tions” y; corresponding to a right to left ordering of the stages;0és given in equation (25)
is essentiafor the RLS algorithm to work correctly. However, due to theypff-independence
property for thex, component stage gamég; (di 1), i =1,...,n; at each stageof G (Theorem
3 of section 2), the ordering of the digits in each of the subvectoys (or “sections”) is irrele-
vant and the RLS will generate the same results regardldssvwothe digits in eacly substring

are ordered.

Example 6. Consider an arbitrary DDG with the induced DAG presentedchm left panel of
Figure 1 and the stages of the game presented in Figure 2 andiSgame hag = 3 stages
given byS; = {di1 }, S = {d»,d3} andSs = d4. Allow this game to deviate from the Rubinstein’s
bargaining model presented in Example 2 by the existenceuttipie MPE and suppose that
the maximum number of MPE for any of the four d-subgames is 3. Then an example of
an equilibrium string would bg = (0,2,2,1), indicating that thdirst MPE is selected in stage

T = 3 (the index for equilibria starts from 0), thieird MPE is selected in both substages of the at
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staget = 2, and thesecond MPE is selected at stage= 1. Due to the decomposition property
(Theorem 3), the choice of an MPE for the first substage ofestag 2 has no effect on the set
of possible MPE in the second substage, but different cs@t®PE in these stages may affect
the number of MPE and the values of the MPE at stagel.

Note that there ar&N possible equilibrium strings for the DD@, so this represents an
upper bound on the number of possible MPEGf However, there will generally be far fewer
MPE than this. We can enumerate all possible equilibriunmgs$rby doing mo¢K) addition,
starting from the base equilibrium strig If we form the bas& representations of the integers
{0,1,...,KN = 1}, we obtainkN corresponding equilibrium stringg®,y%, ...,y< ~1} which
form the set of alpossible equilibrium selection strings that akedigits long.

Now consider the addition operation in bdsand its representation as an equilibrium string.
Starting from the always feasible equilibrium strifiy= (0, ...,0), which is the basé repre-
sentation of the integer 0, we add 1 to this to get the nextiplessquilibrium string,y* which
is the basék representation of the integer 1, ye= (0,0,...,0,1). The stringy' may or may
not be a feasible ESS because there may be oslggle MPE at thed; ,,,-stage game of;. If
there is only a single MPE in this substage, then the eqiuhistringy; is infeasiblebecause
it corresponds to choosing the first MPE (which is guaranteexkist) at every stage game gGf
except for§ G, (dypn, ), where the 1 in the right-most componentydfindicates that theecond
MPE is to be selected for this stage game. However, thereseocand MPE for this stage game,
and hence we say thgt is an infeasible equilibrium string. We show that the RLSo&iltpm can
quickly determine feasibility and will immediately skip@vinfeasible ESSs and “jump” directly
to the next feasible one, or terminate if it reaches the IS@\E(N*? In the latter case, the RLS
algorithm will have established thgt has aunique MPE namely the MPE corresponding to the
equilibrium stringyP.

Definition 16 (Feasible Equilibrium Selection StringAn equilibrium stringy is feasibleif all

of its digits index a MPE that exists at each of the correspund-stage games af, Vd € D.

Define anN x 1 vectorneg(y) to be the maximum number of MPE at each stage gamg of

under the ESR implied by the equilibrium stripgWe definene(y) using the same format as the
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equilibrium string, so that the digits of the equilibriunnisg y are in one to one correspondence

with the elements of the vectog(y) as follows:

ne(y) = <nez‘, neﬂ‘—l(y>'f—l> .-, NEL (V>1)> ) (27)

wherey-; = (yr+1, . ,yT) is a7 —1 x 1 vector listing the equilibrium selection sub-string for
stages ofj higher thart. In turn,ne (y-) denotes the; x 1 vector listing the maximum number

of MPE in each of the stage gameg(di ), i = 1,...,n, of staget of G,

ne(y-1) = (nel,T (Y>1)),- -, Nt (v>T)). (28)

The vectomne(y) € Zﬂ summarizes how the number of possible MPE at any stagfeG
depends on the choices of the MPE at the endgame and all sfitgygshat are represented by the
equilibrium selection substring.; = (yr+1, . ,yT). We use the notatione; (y-1) to emphasize
that the number of MPE at stagelepends only on the equilibria selected at higher stagés of
Notice that in the endgame there are no further stages of the game, so the maximum number
of MPE in this stagen; does not depend on any substring of the equilibrium styingurther,
by the decomposition property for stage games in any stafe; (Theorem 3 of section 2), the
number of possible MPE at every sub-stage g&ige(di 1), i = 1,...,n of stager depends only
on the equilibrium stringg- and not on the choice of MPE in other substage gas@gd; 1),

j # 1 of staget.

Lemma 5. The ESY is feasible if and only if it holds

Vir<naz:(ysr), 1=1....7, i=1...,m (29)

By assumption, we hau¢ = max_, s MaX=1_ n{N@1(Y>1)}. However, in the operation
of the RLS algorithm it is clear that we do not have to loop thylo allK digits {0, ..., K — 1}
for every component of a candidate equilibrium stnnp check feasibility. We will generally
have to check far fewer thakN possible equilibrium strings for feasibility. But it shoube
evident that due to the one-to-one correspondence betwe&$8& and an integer (the ESS is

the baseK representation of an integer), a simple do-loop over tregents{0,1,...,KN — 1} is
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a way to systematically enumerate all possible equilibratnmgs, and thus all possible choices
of MPE at each substage gf. However this “brute force” enumeration is not efficient bese
typically there are huge gaps between the feasible ESSssifuthenumeration loop. We devise
a vastly more efficient approach thamps directly to the nexteasibleESSy. Consequently, the
RLS algorithm has a run time thatlisear in |’£G|, the total number of MPE of;. However,

to describe this more efficient search procedure, we neegltitoduce some basic facts about

variable base arithmetic.

3.3 Variable Base Arithmetic

We say an ES§ has avariable basgalso known in computer science asxed radix numeral
systempif the integers in the different components or digity/@ire expressed in different bases.
Let the bases for the individual components of the 88 given by the vector of integens(y),
the number of MPE for each of the component stage gamep after state recursion was run
with ESRy. Continuing the example above yif= (0,2,2,1) indexes a particular choice of MPE
in the 3 stages ofy, suppose the corresponding number of equilibria in thessethtages is
ne(y) = (1,3,3,3). Then the first componeni 3 = 0 is expressed in base=1 and can only have a
value of 0, while the other components are expressed in daselcan take values from 0 to 2.

An ESSy is in one to one correspondence with an integer (i.e. it isrelke base represen-
tation of an integer) in very much the same wayyas a representation of an integer when all
digits of y have the same base Let! : Zﬂ — Z, be the function that maps ESS of leng{to
integers. Then we have

N j—1
LY) = > Vi) ﬂ N& (i) x(j (Yor(jr) (30)
=1 j'=1

where Yi(j) «(j) is the jth component of the ES§ and ngj) (j)(Y>(j)) is the j compo-
nent of the corresponding bases for the digits of the ES&ontinuing the example above,
1(0,2,2,1)=1+2x342x3x3+0x3x3x3=25,and(0,2,2,2) =26, s0(0,2,2,2) is the
largest number in this system.

Since an ESY can be viewed as a variable representation of an integerawelc all of

the ordinary arithmetic, including addition and subtrawetiAddition can be done as we were all
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taught in elementary school for numbers in base-10, namoedyart on the right and add to the
first digit, “carrying” the remainder mod(10) to the nextidigf the number if adding a number

causes the first digit to exceed 10. In variable base addit®do the same thing, except we use
a different base for determining how much to carry in eacltsssive digit of the number.

We can define theuccessor functios : Zﬂ — ZN by they that results from adding 1 to the
ESSyand carrying out the addition process as described aboaiable base arithmetic. Thus,
1(S(y)) = 1(y) + 1 except if the successor will not exist because it represamtinteger that is
larger than the largest integer than can be represented\atid the variable basey). Since
all of the components of a feasible E§&re nonnegative, we will define the result of successor
operator when there is “overflow” to be a vectoZili all of whose components equall.

Now we show how variable base arithmetic can be used to defieeyaeffective procedure

for jumpingfrom one feasible ES$to another one.

Definition 17 (Jump function) Let 7 : ZY — Z" be defined by

(31)
(—1,...,—1) ifthereis no feasiblg’ satisfyingi(y) > 1(y).

. { argmin, {1(Y)[1(y) > 1(y) andy is feasiblg
Thus,J(y) is the “smallest” ES&ftery that is also a feasible ESS.
Lemma 6. If yis a feasible ESS, theh(y) = S(y).

What Lemma 6 tells us is that we can easily jump to the nextl§ésaESS in the lexicograph-
ical order by simply using variable base arithmetic withdsas(y) and adding 1 to the ESp

using successor functiafiy) defined above.

3.4 Recursive Lexicographical Search (RLS) Algorithm

Having set up the machinery and showing how it is possibleapgj directly from one feasible
ESS to another using the jump (successor) funcfioy) we are now ready to provide a simple

description of how the RLS algorithm works.
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RLS initialization

Main

3.5

Seti = 0 and lety® = (0,0,...,0,0) be the always feasibl-digit ESS that corresponds to
the ESR for the DDG5 where the first MPE is selected at each d-subgame. Run tlge stat
recursion algorithm to calculate an MPE Gfcorresponding to this ESR and label all of
the MPE in each stage game and record the number of possilfavdach stage game of

G in theN x 1 vectomne(y?).

Let A\ be the set of feasible ESS found by RLS. 8et {\°}.

RLS do-loop

Computeyt1 = 7(y), the next candidate feasible ESS. ligtdenote the highest digit of
the ESS that changed.

Stopping rule:lf y*1 = (—1,...,—1) then RLS stops and has computed all MPE.

Otherwisey't1 is a feasible ESS by Lemma 6. Rpartial state recursion for the stages
which are dependent on stagavhere jg belongs, i.e.t’ < 1, and using the ESR implied
by the ESS/ ™2, index the MPE of every stage game@®f and record the total number of
MPE found at each stage in thex 1 vectorne(y'*1).

Update the set of feasible ESS found by RLS by setting AU {y1}.

Update the loop counter by setting: i + 1 and continue the main RLS do-loop.

RLS findsall MPE in a finite number of steps

The RLS algorithm must terminate in a finite number of stepsesithere at moskN ESSs
of length N. Upon termination the seh will contain a finite number) of feasible ESSs,
A={Y¥,....y’"1}. We now prove thall = |E(G)|, i.e. the RLS algorithm has fourall MPE
of the DDG G. We first prove a stepping stone result, namely that RLS filddRE that are
“generated” by a given selection of MPE for the stage gamesaiges? to 1 of G.

We introduce some final notation so we can state and prove anzethat is a key stepping

stone to the proof of the main result of this section, Theosdmelow. Ify € A is a feasible ESS
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returned by the RLS algorithm, le} be the MPE ofG that is implied by the ES§ That is, each
ESSy corresponds to an ESRand so ifl (y) is the ESR implied by the ESE then we have

&y =T (V(E(G))- (32)

Now if e, is the MPE ofG implied by the ESS, Theorem 2 implies that via the use of contin-
uation strategiesg, implies or induces a MPE for all of the stage gamesjofsoe,(SG,(d))
denotes the MPE on thistage games G, (d) induced by the ES$, ande(5:(d)) is the MPE

on thed-subgame induced by

Lemma 7. Lety € A be a feasible ESS returned by the RLS algorithm, and, lee¢he MPE of
G induced byy. LetZ;(G|ey) denote the set of all MPE @f that revert to the MPE gafter stage
T, i.e. the players usg,¢o define a continuation strategy for stages1,...,7. If ec E(Gley),
then there exists ¥ € A such that e= g

With Lemma 7 in hand, it is now possible to prove the main teeoof this section, i.e. that
the RLS algorithm findsll MPE of the DDGG.

Theorem 5. Assume there exists an algorithm that can find all MPE of estage game of the
DDG g, and that the number of these equilibria is finite in everygstgame. Then the RLS
algorithm above will find all MPE of DDGj in at most|E(G)| steps, which is the total number
of MPE of the DDGgG.

It is important to emphasize that tHeLS algorithm requires no prior knowledge of the
maximum number of MPE K of any stage gamejof This information is updated over the
course of running the RLS algorithm, starting with the aldiiation at the always feasible ESS
Yy = (0,...,0). Each time the RLS algorithm encounters a new feasible {$Qupdates the
maximum number of MPE in state points where the solution neaelthanged. In this way the
RLS algorithm can systematically search for all MPE®feven though the user has no prior
knowledge of how many MPI or any of its stage games might have.

We conclude this section by stating the approximation teakak we discussed in the intro-
duction, that shows that the RLS algorithm is a very generthind for approximating the set of
all MPE ofarbitrary infinite horizon dynamic games, including gang¢hat have no exploitable

directionality other than the directionality of time itEel
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Theorem 6. Consider a finite state, infinite horizon dynamic gage¢hat has no exploitable
directional structure, indicated by the situation where ttiirectional component of the state
space D contains only a single element. Consider approxnmgdale infinite horizon gameg by

a finite horizon gamest for some large but finite value of ¥ «. Let the directional component
of Gr be the time index, i.e. B {1,...,T} and assume that there exists and algorithm that can
find all MPE of the T stage games gf. Then the RLS will find all MPE afr and under the

conditions of Fudenberg and Levine (1983), we have

lim £(Gr) = £(G), (33)

T—00
so RLS is able to approximate the set of all MPE of finite stati@jte-horizon but non-directional

gamesg that satisfy the continuity conditions in Fudenberg andihe\(1983).

4 Applications of State Recursion and the RLS Algorithm

In this section we present an example of dynamic stochasgctibnal games and show how
we solve this game using the state recursion and the reeuesiicographical search algorithms
developed in the previous sections. We consider two vessidra dynamic model of Bertrand
price competition with cost-reducing investments analylag Iskhakov et. al (2013). The first
example is the simultaneous move version of this investi@athpricing game, all dimensions of
which are directional and thus the stage games are relagasly to solve. Our second example
is the alternating move version of the same model. Becawséedht of move alternates back
and forth between the two duopolists, the state variableatichg whose turn it is to move in
a given time period becomes non-directional. We show howyéhat it is still possible to find
all stage game equilibria, despite the additional compboa induced by the non-directional
dimension. Consequently, the alternating move versiohefdapfrogging model is also suitable

to be handled by by the RLS algorithm and we can thus find allibga of this game as well.

4.1 Bertrand price and investment game with simultaneous mees

We begin with the simultaneous move formulate of the legggfnog model of Iskhakov et al.
(2013). The description of the model is abridged. Pleaser rief Iskhakov et al. (2013) for
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economic motivation and greater detail on the model.

The model

We consider a discrete-time, infinite horizon stochastimgavhere two firmg, j € {1,2}, are
producing an identical good at a constant marginal cost @ndcy, respectively. We assume
that the two firms are price setters, have no fixed costs amrfacapacity constraints when
producing the good. We also assume that demand is perfdastice Under these assump-
tions, the Bertrand equilibrium for the two firms is for thevier cost firm to serve the entire
market at a pricep(ci,cz) equal to the marginal cost of production of the higher coslyi
p(c1,c2) = maxcy,cy]. We letry(cy, c2) denote the expected profits that firm 1 earns in a sin-
gle period equilibrium play of the Bertrand-Nash pricingrgawhen the two firms have costs of

productionc; andcy, respectively.

0 ifcp>co
I’1(C1,C2) = ] (34)
maxci,Cz| — 1 otherwise.

and the profits for firm 2;»(cy, ¢2) are defined symmetrically, so we haygci, c2) =ri(cp,C1).

The two firms have the ability to make an investment to repthe& existing plant with a
new state of the art production facility. If either one of fivens purchases the current state of
the art technology, then after a one period lag, the firm cadye at the new marginal cost
of production,c;. Stochastic technological progress drives down the stiatkeoart marginal
cost of production over time, such thatevolves according to a exogenous Markov process with
transition probabilityri(c;1/c;). With probability 1(c;|c;) we haveci 1 = ¢ (i.e. there is no
improvement in the state of the art technologyt at1), and with probability X 1i(ci|c;) the
technology improves, so that, 1 < ¢ andc1 is a draw from some discrete distribution over
the intervallO, ¢;]. Both firms have equal access to the new technology condit@mmpaying an
investment cosK (¢ ).

Each firmj incurs idiosyncratic “disruption costs” (or subsidigg} j = (nN€oyt,j,NE1t,j) as-
sociated with each of the choicesrait to invesinegt j) andto invest(ne; j) respectively. It is
common knowledge among the two firms thgt; 1} and{ng; »} are independentD Type | bi-

variate extreme value processes with common scale paramet@. Firm j observes its current
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and past idiosyncratic investment shogks: ; }, but does does not observe its future shocks or
it's opponent’s past, present, or future idiosyncratiestment cost shocks.

The timing of events in the model is as follows. Each periaathidirms observe the state
of the the industry, set their prices asonultaneouslyecides whether or not to invest in the
state of the art production technology. In setting the gitkee two firms also act independently
and simultaneously. Production in periog performed with their existing plants independent of
their investment decisions.

Assuming that the two firms are expected discounted profiimmagrs and have a common
discount facto3 € (0,1), we define the stationafarkov Perfect Equilibriunof the duopoly
investment and pricing game as a pair of strategigécy, Co, c), pj(c1,C2)), j € {1,2} where
Pj(c1,Co,c) € [0,1] is firm j's probability of investing andj(cy,c2) = maxcy, co] is firm j's
pricing decision. The investment functi®(cy, c2,c) must maximize the expected discounted
value of firmj’s future profit stream taking into account then investmeiat pricing strategies of

its opponent. The value functioks, j = 1,2 take the form
Vj(C1,C2,C,€0,j,€1,j) = Max|[v j(C1,C2,C) +NEaj, VN,j(C1,C2,C) +NEL (35)

where,w j(C1,C2,C) denotes the expected value to fijrif it does not acquire the state of the art
technology, and j(c1,C2,c,m) is the expected value to firif it does. These expected values

are given by

WN,j(C1,C2,€) = rj(c1,C2) +BEVj(cy,C2,C), (36)
Vi j(c1,C2,¢) = rj(cy,c2) —K(c)+BEV(c1,C2,0), (37)

whereEV;(c1,c2, c) denotes the conditional expectation of fijfa next period value functions
Vj(c1,C2,C, €0 j,£1,j) depending on whether the firm invest this period or not. Thpeeted value
function summarize firms’ expectations about future tetbgioal development governed by
T(Ce+1/Ct), Opponent’s investment and pricing decisions and the éutliosyncratic cost compo-
nentsng j. Since the two firms move simultaneously, firm j's investnatision is probabilistic
from the standpoint of firmn £ | because firmy’s decision depends on the cost benefits/shocks
(€0,j,€1,j) that only firm j observes. But since firinknows the probability distribution of these

shocks, it can calculate it's belief about the probabilitsttfirm j will invest given the mutually
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observed stat¢cy, ¢, €). Let Pj denote such beliefs of firm Given the assumption of extreme
value distribution of€g j, €1 j), P;j is given by the binary logit formula

. _ exp{vi,j(C1,C2,¢)/n}
Pi(er,e2.0) = exp{Vn,j(C1,C2,C)/n} +exp{v j(c1,c2,¢)/n} (38)

Firmi’s belief of firm j's probability of not investing is then2 Pj(cy, Co, ).

Further, the distributional assumption for cost sho@gs, €1 j) also allow us to express the
conditional expectatiofiVj(cy,c,c) for each firmj by the well known closed form log-sum

formula

/8,- /8,- Vj(C1,€2,C, €0,j,€1,j)0(€0,j)A(€1,j )dex, jdeg j =

0 1
nlog [exp{vn,j(C1,C2,¢)/n} +exp{v j(c1,c2.c)/n}] =
(p(VNJ(C17C27C)7V|,j(C17027C))7 (39)

where we use() to denote the log-sum formula. Using this notation, we axe ready to present

the system of Bellman equations for the simultaneous morsoreof the model, namely

Wn1(C1,C2,C) = r1(01,02)+[3/oc [Po(c1,C2,0)p(n 1 (C1,C,C), v 1(c1,c,C)) +
(1—Pa(c1,62,¢))@(Vn,1(C1, C2,¢ ), Vi 1(c1, C2,C)) | T(dC ).

Vi 1(€1,C2,€) = rl(cl,cz)—K(c)+B/()C [Po(c1,C2,0)@(vna(c,c,c), v 1(c,c,C)) +
(1—Pa(c1,¢2,€))@(Vn,1(C, C2,C), vy 1(C, C2, ¢)) ] TH(dC[c),

Wn2(C1,C2,C) = rz(c1,02)+[3/oc [P1(c1,C2, €)@V 2(C, C2, C'), i 2(C, C2, 1)) +
(1—Py(c1,C2,0))@(vn,2(C1, C,C), Vi 2(C1, o, )) | TH(dC|C).

Vi 2(€1,C2,¢) = ra(C1,C2) —K(c)+B/OC [P1(c1,co,0)p(Wn2(c,c,C), vi o(c,c,C)) +
(1—Py(c1,2,0))@(vn2(C1, ¢, ¢), v o(c1,c,c)) | m(dC[c). (40)

Directionality of the simultaneous move game

The state of the art marginal cost of productian|s trivially a directionalstate variable since it
can only improve. It also has a natural absorbing state 08 making finite discrete approxima-

tions of the state space possible. Moreover, it is easy tdlsathe remaining two state variables

8We assume without loss of generality that state of the attroay asymptotically approach but never cross zero.
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Apex

End game

Figure 4: Possible transitions between points in the spaeesin dynamic Bertrand investment and pricing
game withN = 4. Each dot represents a vectoi,c,,c). Dashed boxes enclose different layers of the
state space pyramid: from the apex to the end game. Whiteecbtiots in each layer represent interior
points €1 > ¢, ¢, > C), grey dots represent edgeg & c or ¢; = ¢), and solid black dots represent the
corners €1 = ¢, = €). Only transitions from transitive reduction are shownwesn layers, full set of

transitions can be reconstructed by considering the tremsilosure of the presented graph.

in this model,(c; andcy) are directional as well although they are strategy deperafehthus
evolve endogenously. Since there is no depreciation in thaéehthat would ever cause costs to
rise, it follows that once firms’ costs attain the state of dnielevel at some period they will
remain at this level or below in all future periods. Hencéstdte variables of the simultaneous
move Bertrand pricing and investment game belong to thettional” component of the state
space. Under every feasible strategy, every componenteo€dit vector(cy,cp,c) will only
move towards the absorbing state- 0.

The directional structure of Bertrand investment and pgayame is illustrated in Figure 4

for the case whereis defined on the grid with = 4 values. Each dot represents the state vector
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(c1,C2,C) and arrows represent possible transitions between pairttsei state space. Dashed
boxes enclose differefayersof the state space pyramid corresponding to different watiie:
from the apex where = c; = ¢, = ¢y to the base of the pyramid whece= 0 (the rightmost
box). White colored dots in each layer represent “interioings” in each layer, i.e(cs,Cp,C)
wherec; > ¢, c; > ¢. The grey dots represent “edgest, cp,¢) and(cy,c,c). The solid black
dots represent thi, ¢, c) “corners” wherec; = ¢ = C.

Consider first possible transitions from an interior pofut, ¢z, ). In absence of technolog-
ical improvement, the state variables will only move toveatite “edges’(c, c,,c) and(c,c,C)
if either firm 1 or firm 2 invest, or to théc,c,c) “corner” if both firms invests simultaneously.
These transitions are indicated with arrows from white dotgrey and black dots respectively.
From the edges it is only possible to move to the corner (srttes technology improves) as in-
dicated by the arrows from grey to black dots. If technolagpiioves, so thak 1 < ¢, the state
of the industry can move to the interior points at lower leva the state space pyramid. These
transitions are indicated with the arrows that cross thedrsrof the dashed boxes in Figure 4.

| terms the notation in section 2, the directional variaklequal to the entire state vector,
d = (cy,Cp,C) since there are no non-directional variables in this ganee Si= D and X is
singleton. The endgame stage, denoted by 7, is the (0,0,0) corner in the present model,
corresponding to the right most black dot in Figure 4. In thégameG(7') consists of a single
point (0,0,0), where the state recursion starts.

The next stage correspondingte= 7 — 1 consists of the @ — 1) edge states of the form
(c1,0,0) and (0,cp,0). Thus, there are multiple values of the directional statgate in this
stage, but because they do not communicate among each ioghehére is zero probability of
going from one value ofl = (c1,0,0) to anothed’ = (c},0,0)) each separate point induces an
infinite horizond-subgame in which the cost vector may remain the same or ehar{@, 0,0)
at some future time period. So, the only possible “directiohmovement is be to the stage
T. Because of no communication, each of thdssubgames is solved independently in the
inner loop of the stage recursion algorithm. In accordanitle Wheorem 2 by solution here we
mean finding an equilibrium id-stage game among continuation strategies which revelneto t

optimal actions in statg, 0,0) (stage7’) that were already found in the previous step of the stage
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recursion algorithm.

State recursion algorithm proceeds to the next stageZ — 2 which is composed of the
interior points in the bottom layer wheog > ¢, ¢, > ¢, andc = 0. These points also don’t com-
municate with each other, and thus fof— 1)? d-subgames that are also solved independently
taking into account the solutions on the edges and in theecariithe bottom layer. The stage
after thatt = 7 — 3, equals théc, c, c) corner stage in the second to last layer of the game where
¢ > 0. We then continue the backward induction in state spad@sntay through stages of the
gamet =7 —2,7 —3,....,2,1. At each stage all the differentd-subgames of the gamg(t)
are solved independently given a particular equilibriuteci®n at lower stages of the game.
Once we have solved thg(1) subgame at the ap€xko, Co,Co), We have solved the entire game
sinceG(1)=¢G
Theorem 7 (Solution method for thel-stage games in simultaneous move leapfrogging game)
Given a fixed equilibrium selection rule solution method for every d-subgame in the Bertrand
pricing and investment game with simultaneous moves existsvhenn = 0 is guaranteed to

find all d-subgame MPE for every-d (cl,cz,c).g

Finding all MPE using RLS

Theorem 7 establishes that state recursion is guarantetadtall d-subgame MPE given a
fixed equilibrium selection rule. We will now show how thdRecursive Lexicographical Search
algorithm (RLS) presented in section 3 finals MPE of the simultaneous move leapfrogging
game, by systematically examining all feasible B&®rresponding to all possible ESRsWe
have illustrated this process in Figure 5 for the case whefe.

The first five rows in Figure 5 describe an example of how a andesf the states may be
constructed, so that the ordering of the stages of the gasaisdied. Each column corresponds
to a state point and thus do a digit in a ESS. The top row in Eigupresents the stages of the
game, the second row presents the digit number in the\H86the case when = 3, and the
next three rows show valuéss, cy,c) that correspond to each digit (points of the grid for costs

are indexed from 0 to 2).

90ur numerical solution method for this game is prone to niraéerrors for a range af close to zero.
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Stage index | 7
ESS digit index |14

o www|y|le

ESS2 0 0 0 0 0 0 0000 O0 0[2 0]
ne
ESS3 0 0 0 0 0 0 0 0/1 00000
ne
ESS4 0 0 0 0000 01000[10
he
ESS5 0 0 0 000 001000[20
he
ESS6 0 0 0 0 0000100 0[30
ne
ESS7 0 0 00 0000100 0[4 0]
ne
ESS8 0 0 0 0 0 0 0 0/2 00000
he
ESS9 0 0 0 0 0 0 0[1 00000 O
nhe

000O0O0442200010
ne
LastESS 0 0 0 0 0 4 4 2 2 0 0 0f(2 O
ne

Stop -1 -1-1-1-1-1-1-1-1-1-1-1-1-1

Figure 5: Graphic representation of RLS algorithm.

Note that while there arbl = 14 state points, there are only = 7 stages in this game as
indicated by the second row so there are multiple ways we od@r ahe state points and still
obey the ordering of the stages of the game. Starting fronniging, the lowest digit represents
the top layer the game with a single potat= c; = c = 2. The solution in this initial state depend
on all subsequent points of the state space, whereas theitpisdhe case for the endgame where
c1 = ¢ = ¢ = 0. In fact, the digits of the ESS are ordered to preserve tleetibnality such that
the solution at any given point depends on points to thebeftnot on points to the right.

Moving from right to left, the ESY then contains four points corresponding to second the
highest level of the game& & 1 in Figure 5), and the rest of the blocks representing otherk.
The left-most block contains® = 9 points and corresponds to lowest layer of the gaene Q

in Figure 5) and includes the end game corner, whgre c; = ¢ = 0. Thus, lower layers of
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the game which affect the values of the higher layers, argiposd to the left in the ESR string.
Points within each layer are also organized in accordantteetdependency preserving property.
The corner point (where; = ¢, = ¢) is left-most in each layer, the two edges (wheye-= c and

c2 = ¢) that depend on the corner, are positioned next, and theanfints of the layer (where
c1 < candc; < c) dependent on the edges are positioned on the right of eack.bFigure 5
marks these blocks within each layer of the game with symb@sndi above the ERS string.

We begin with the initial ESS° that consist of zeros at all 14 digits and solve for all MPE
given this equilibrium selection rule. This correspondsdtving the game and selecting the first
equilibrium at each point in the state space. Accordinglycae solve for all MPE given the
ESS\? to obtain the number of MPE at each state point, which we cbitethe vector vector
ne(YY). The feasibility of each particular ESR striggan be naturally defined through a set of
inequalities on the digits given in Lemmas; < ng ¢(Y-1) to ensure that each of them is not
greater than the number of d-subgame equilibria found fercthrresponding point in the state
space. But as mentioned above, the number of stage ecuitibach layer of the game depends
on the equilibria chosen on the lower layers of the game, lamglit is important to acknowledge
the recursive nature of feasibility of equilibrium selectirules.

Note that only part of the solution has changed when we orgetaéxt equilibrium selection
string. In particular, the solution has only changed in ssalpat follow the stage where highest
digit has changed. We have shaded these states in pink ireFsgu

As is clear from Figure 5 that if we compare to case with fixesEbarithmetic wher& =5,
the RLS algorithm jumps over huge blocks of infeasible ESS.dxample the ninth ESS?,
in the example Figure 5 would correspond the 1362E6SS in base 5-number system, but RLS

jumped here in only 9 steps without even checking for feasilmf the remaining ESS.

4.2 Bertrand price and investment game with alternating moes

We now turn to our second example, which is an alternatingenwvevsion model outlined above.
As before, we assume that firms simultaneously set theiepafter having made their investment
choices. However their investment choices are no longeersedultaneously. Instead, the right

to move alternates between the two firms. e {1,2} be a state variable that governs which
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of the two firms are allowed to undertake an investment at time. the valuan = 1 indicates
a state where only firm 1 is allowed to invest, amgd= 2 is the state where only firm 2 can
invest. We will assume thdim } evolves as an exogenous two state Markov chain with tramsiti
probability f (my1|m) independent of the other state variables;, c2t, G ).

In the alternating move case, the Bellman equations fomibditms lead to a system of eight
functional equations fofvn j(c1,Co, ¢, m), v j(C1,C2,c,m)) for j,me {1,2}. Below we write out
the four Bellman equations for firm 1, but we omit the valuedtions for firm 2 to save space

since they are defined similarly.

Waer2.6) = rifes,ca)+BAID) [ @V (C1, 2. ¢ 1), v 2 (01, G2, 1))T(dC ) +
Bf(2|1) /Ocevl(cl,cz,c’)n(dd|c)

vii(ci,c2,¢,1) = ri(cr,c2) —K(c)+Bf(11) /()C¢(VN71(C,c2,d,1),v|71(c, c2,c,1))m(dd|c) +
Bf(2|1) /Ocevl(c, c2,¢)m(dd|c)

WN,1(C1,C2,C,2) = r1(C1,C2) +BF(1]2) /OC(P(VN,1(017C2,C',1)7V|,1(01702,C/,1))ﬂ(dd|c) +
Bf(2|2) /Ocevl(cl,cz,c’)n(dd|c)

vi1(€1,¢2,¢,2) = ri(c1,¢2) +BF(1]2) /Oc(p(VNJ_(C]_,C, c,1),vi1(c1,c,c,1))m(dc]|c) +
Bf(22) /O “ewi(cy,c,¢)m(dd]c). (41)

where

ewvi(Cy,C2,C) = P»(Cy,C2,C,2)V; 1(C1,C2,C, 2) + [1— Px(C1,C2,C, 2)|vn.1(C1, C2,C, 2). (42)

Note that™(c1, ¢, ¢, 1) = 0, since firm 2 is not allowed to invest when it is firm 1's turrineest,

m= 1. A similar restriction holds foP;(cs, 2, c,cC, 2).

Directional and Non-directional states

This example presents the complication that not all statelie are directional, since the right
to move alternates forth and back between their two dudpidies and thus the two values

that m; can take are non-comparable in the sense there mayld@paonnectingm= 1 and
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m= 2, i.e. m= 2 can be reached with positive probability fram= 1 and vice versa. Despite
this additional simultaneity, that seemingly complicaties partial ordering of the states, it is
still quite simple to find the solution of to the stage gameildayia in this example, despite the
additional complication induced by the non-directionatstvariables. First, the directionality of
the remaining state variablggy, ¢y, €) is unaffected by the alternation of moves, since changing
the timing the movies does change the property that notimrigis model could ever cause the
cost to increase to suddenly increase. Second, for a giaa vhd = (c1,Cp,C), we can easily
solve the game for all values of the non-directional statéatée m < {1,2} . In particular, it
can be shown that the eight functional equations (given bydhr equations for firm 1 given in
(41) above and the four equations that are defined similarlyifm 2) at the each stage game
G(1—1), can be solved almost analytically given the solution atptexiously calculated stage
gamesG (1) and a deterministic equilibrium selection rulg, that selects the equilibrium to be

played at lower level stage games.

Theorem 8 (Solution method for thel-stage games in alternating move leapfrogging game)
Given a fixed equilibrium selection rule solution method for every d-subgame in the Bertrand
pricing and investment game with alternating moves exist$ ia guaranteed to find all d-

subgame MPE for every 4 (c1,Cp,C).

4.3 Performance of the solution algorithms

Theorems 7 and 8 ensure that the key assumption under theerstagsion and RLS algorithms
is satisfied, and thus these methods can be applied for thaBepricing and investments game.
When we apply RLS to the simultaneous and alternating mawvettation of this game, we find
that these infinite horizon games turns out to have a sungtisrich set of equilibrium outcomes.
Figure 6 displays the computed equilibrium expected profithe two firms in the Bertrand
investment and pricing game with simultaneous moves ungteruhinistic (panel a) and stochas-
tic (panel b) technological improvement. With only 5 poimghe grid of the costs, there are
around 200 million equilibria in each of the two versions loé game, although the number of
distinct payoffs is much larger under stochastic techrnioldgmprovement (as indicated by the

size and color of the dots in Figure 6).
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Panel (a)

Panel (b) 5

Figure 6: Equilibrium outcomes in Bertrand pricing and siveent game with simultaneous moves under

deterministic and stochastic technological progress.

Table 1 reports the times spent to compute the MPE equilibvsaveral specifications of the
Bertrand pricing and investment game of different sizesm@aring the running times for the
three simultaneous moves games, it is obvious that due tarplghincreasing number of times
the state recursion (or partial state recursion) is invakethe RLS loop the runtimes are in-
creasing highly non-linearly. Yet, comparing the runtirf@she largest game with simultaneous
moves to that of the alternating moves, it becomes obvioatstiie RLS algorithm itself take a
negligible amount of time to loop through all feasible ESRngfs compared to the time needed
for state recursions.

A comprehensive analysis of the Bertrand investment araingrigame, and a complete set
of theoretical results from this model can be found in the ganmon paper Iskhakov,Rust and
Schjerning (2013).

5 Discussion and conclusions

In this paper we introduce a concept of directionality inténstate Markov dynamic games,
define the class of directional dynamic games (DDGs) andsdéwio solution algorithms for the

games of this class. The first is state recursion algorittatifihds a single MPE in a DDG given
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Table 1: Run times for full solution of the leapfrogging game

Simultaneous moves Alternating moves
Number of points in cost grid 3 4 5 5
Total number ESRs 4,782,969 3,948,865,611 1.74#5 1.744510°%
Number of feasible ESRs 127 46,707 192,736,405 1
Time used 0.008 sec. 0.334 sec. 45 min. 0.006 sec.

an equilibrium selection rule; the second is the recur@xebgraphical search (RLS) algorithm
that efficiently finds all feasible equilibrium selectiores, effectively computing all MPE of the
game. The RLS algorithm is linear in the number of points i directional part of the state
space, ensuring that negligible time is spent on enumerafiall feasible equilibrium selection
rules compared to the time spent on computing the correspgeduilibria.

The class of directional dynamic games we define in this pappears to be quite large and
haves many examples in the existing literature. This is mparconsequence of the fact that it
is sufficient for a Markov game to have just one directionaielsion in the state space (so that
D c R) to become a DDG. The definition of directional games is $#gout the non-directional
component of the state spag although it is implied that this component is in some sense
secondary.

The other side of the generality of the class of directioyalainic games is the assumption
that a solution method must exist for the smallest indilesgubgames, i.ed-subgames, having
the state spacéd x X} U <Ut7:T+1S>, whereX enters under the cartesian product, see (12).
Therefore, itis likely that state recursion and RLS methzatsnot be applied for a large fraction
of directional dynamic games which have numerous or coragdit non-directional components
— simply due to intractability of theid-subgames. Yet, there are several extensions of the DDG
class where the RLS method of finding all MPE can be usefuljigeal that the atomic subgames
are solvable.

First, the already mentioned case of finite horizon Markangs. For these games, the direc-

tional componend always contains time that can be thought of as a state vatiab0, .., T < co.
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Then whether RLS is applicable is determined by whethepibssible to find all equilibria within
the set of continuation strategies in each time petisdbgame given the value functions from
a selected equilibrium in the subgame starting fiom1. This will most probably be decided
by the complexity of the non-directional componeKtshat are the states of the original game.
Nevertheless, all finite horizon dynamic games belong tekhss of directional games.

Second, it is possible that a non-directional Markov ganté funite state space can be trans-
formed to the DDG by rearranging the dimensions of the sfzdees For instance, Example 3 in
Section 2 presented in the left panel of Figure 1 has a loopdrdirectional component of the
state space, and yet after adding a second dimension abélretathe points so that the points of
the loop have the same value on the directional dimensia@hdéfer only in the non-directional
dimension, the game can be assign to the DDG class. Whetl&iRdpplicable is again decided
by whether it is possible to find equilibria in the points ie fbop simultaneously, as they form a
d-subgame in the transformed example.

Third, it is not only the definition of DDGs that is silent atidine non-directional component
of the state space — none of the arguments in the paper impsgetions onX apart from the
assumption that the solution method ébsubgames must exist. This implies among other things
that, for exampleX does not necessarily have to be finite, and provided thatdtenaption is
satisfied, state recursion can be applied to the games with @irectional componerd and
continuous state variables K If it can be shown that the number dfsubgame equilibria is
finite, then RLS is applicable and all MPE of such game can bepted.

Forth, even if the key assumption on the existence of thdisolmethod ford-subgame is not
satisfied, but instead a method for finds@meequilibria ind-subgames is available, stage recur-
sion and RLS algorithms can be quite helpful. Here a prontiln@ato path-following homotopy
methods can be established. Even though in general homafgpypach is not well suited for
the finite state DDGs with multiple equilibria like the leapjging game due to numerous bi-
furcations along the equilibrium correspondence (seerBigdor equilibrium correspondence in
the Bertrand pricing and investments game with alternatmoges), it may be quite helpful in
finding equilibria ind-subgames, and thus be used together with stage recursidRlsgh From

our Bertrand pricing and investment game example we camed¢hat multiplicity of MPES in
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Equilibrium correspondance (alternating move game), vN1 at (5,5,5) apex

VN1

0 0.5 1 1.5
Investment shock scaling parameter, n

Figure 7: Equilibrium correspondence, alternating movegaexpected profit of the firm 1 by different

values of cost shocg.

general dynamic games to a large extent may be due to disesst®f equilibria chosen at dif-
ferent stages. RLS naturally accounts for all such comtmnaf equilibria selected in different
subgames, and if the conjecture is true, to large extentusdsdor the bifurcations along the
equilibrium correspondence. In this case, homotopy carebg efficient in findingd-subgame
equilibria that would have much less bifurcations alongrtequilibrium correspondences.

When the available solution method for tthlesubgames is fast and reliably computes all the
equilibria in the generalized-subgames, stage recursion algorithm nested by the RL&thlgo
are very efficient to produce all MPE in the directional dymagames. Yet, this solution method
is subject to the curse of dimensionality that may origirieden both the number of points in the
directional component of the state spag@nd the upper bound of the number of equilibria in
d-subgames. The total number of equilibrium selection ridgegjual to the quantity of numbers
with ki digits in K-base arithmetics, and thus equaki. Even though RLS algorithm spends
negligible amount of time on the search of feasible ESR@$rim the case when there are in fact
many MPE, the solver for eaahsubgame has to be run every time, making the total solution

runtime increase exponentially.
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A Proofs

Lemma 1 (Partial order over directional component of the state gpac

Proof. Recall that a (strict) partial order of the elements of a s& is a binary relation (i.e. a
subset oD x D) that is 1) irreflexive § i d for all d € D), 2) asymmetric (id - d thend % d’
for all d’,d € D) and 3) transitive (ifdz = d> andd, = d1, thends = d; for all di,d»,d3 € D). It
is clear from (3) that-; is irreflexive, sinced >4 d would require thap{d|d,x,a} be simulta-
neously equal to 0 and greater than 0. For similar reasgns asymmetric, since (3) can not
hold simultaneously for the paifsl,d’) and(d’,d). Then suppose thag -, d, andd, =4 d.
This means that there is a positive probability of going frdirto dy (but zero probability of
going fromd, back tod;) and similarly there is positive probability of going froda to ds (but
zero probability of going fronds back tody). Via a probability chain formula (th€hapman-
Kolmogorov equationit follows that there is a positive probability of going frod; to ds. It
remains to be shown that there must be a zero probability e¥@rse transition frords to ds.
Supposing the contrary. Then the chain formula implies ti@aprobability of a transition from

dz back tod; via ds is positive, contradicting the hypothesis tllat- d;. O

Theorem 1 (Join of pairwise consistent partial ordersyf.

Proof. We first demonstrate that is irreflexive, asymmetric and transitive, and thus a partia
order of D. For anyd € D it cannot be the case thdt-; d because by the definition of 5

it would have to be the case thdt-5 d for someo € 2(G). However each strategy-specific
partial order>— is irreflexive by Lemma 1, so this is a contradiction. To eksabasymmetry
of the partial order-; suppose to the contrary that there is a pair of paihts € D such that

d’ -5 dandd >~ d'. Then since each partial ordet; is asymmetric by Lemma 1, it must be
the case that there exist two feasible strategiesdo’ in Z(G) such thad’ >4 d andd’ >~ d.
However this violates the consistency condition (5) in te&rdtion of a DDG, Definition 4. The
transitivity of - follows from the fact that this binary relation is the traia closure of the

union of the transitive binary relationsg.
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It follows that - is a partial order that contains each strategy-specificgbantder -4 for
o € 2(G), and hence itis a common refinement of the set of a partiatemduced by all feasible
strategies oiG, {~¢ |0 € 2(G)}. To show that it is the coarsest common refinement, suppose
to the contrary that there is another partial orgdethat is a strict subset of ;. Let (d’,d) be a
ordered pair that is in the orderg but not in>-. Then there are two possibilities. Eithar-¢ d
for someo € 2(G), or (d',d) is a point added tQJsc5(g) =0 t0 ensure it is transitive. In the
latter case, deleting this point implies that the relatioms no longer transitive, so it cannot be
a common refinement of the transitiye; |0 € Z(G)}. The other possibility is that’ > d for
someo € Z(G). However removing this point implies thatis no longer a refinement of; and

thus it cannot be a common refinementef; |0 € Z(G)}. O

Lemma 2 (DAG recursion).

Proof. The sequence starts at the DA% G) which is non-empty and has a finite number of
vertices, as gamg is a finite state DDG. Vertices are not added by the recursionsp it
follows at each step < 7 Dj(G) is a DAG with finite number of vertices. Thus, thé operator
never returns the empty set, reducing the number of vent@esaining inD;(G) asj increases.

It follows that the recursion must eventually terminateahs valueZ for which we have

D7(G) = N(Dr(G)).

Corollary 2.1 (D is a DAG if DAG recursion terminates with no descendants dift@l step).

In an arbitrary directed grapf» with a finite number of vertices, let recursion (9) termingitber

in the case when the vertices fare exhausted, or whel{ operator returns the empty set. Let
Dy 1 denote the final element of the sequek@, D1, ..., Dy, 1}. ThenD is a DAG if and
only if Dy, 1 =0.

Proof. Necessity follow from the proof of Lemma 2. To show sufficignmagine the contrary

that D # 0 and yetD is DAG. If 7 + 1 is a terminal step, it must hold that every vertexin  ;
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has a descendant. Because the number of verticBgin is finite, repeatedly following the link

to a descendant would result in a loop#%-_ ;, leading to a contradiction. O

Lemma 3 (Stage 1 subgame).

Proof. From equation (11) we see th@y = S. ThereforeGg; has the same state spacetaand

is identical in all other respects . O

Lemma 4

Proof. This result follows easily since at the terminal stage ofs 7 the continuation game
for each stage gameg.-(d) is empty ford € Dz, so the set of feasible Markovian continu-
ation strategies for each stage game at stAg&(S5G.-(d)), coincide with the set of feasible
Markovian strategies for the end gan,G(d)). This implies thatSG-(d) = G, d € D,
establishing equation (18). The second equation (19)Mvalliwom the fact tha is the terminal
stage, so the set of all continuation strategiessgr-(d) is the same as the set of all feasible

strategies foiGr(d). O

Theorem 2 (Subgame perfection).

Proof. Supposgo,V) = e(5G.(d)) € £(5SG,(d)). We want to show that it is also an element
of E(Gr(d)). We prove the result by mathematical induction. The resultitrivially at the last
stage7 by virture of Lemma 4. This implies thatG - (d) = G (d) for d € Dy which implies
that £(SG,(d)) = E(Gz(d)) for d € D. Now suppose the result holds for alsubgames
for all stagest/ =1+ 1,...,7. We now show that it holds for ali-subgames at stageas
well. By definition, &(5G.(d)) is a MPE of the stage gameg, (d) in the restricted class of
continuation strategies. However, by definition, a cordtran strategy is a MPE strategy in the
stager; subgameg. 1. It follows thate(S G, (d)) is a MPE strategy on the st x X)) for d € Dy
and also on the stage+ 1 subgamej+1, So it must be a MPE for the full-subgameg:(d),
since if it wasn’t it would have to fail to be a MPE at some pairgither fors € (d x X) or

se Q.11, WwhereQq,1 is the state space for the stage 1 subgame, given in equation (11) of
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Definition 9. In either case there would be a contradictiances the property thag(S G, (d))
is a continuation strategy implies that it must be a MPE aheae Q. 1, and the fact that it is
also a MPE for the stage garse; (d) implies that it is also must be a MPE strategy for each
se (dx X). Thus,e(5G,(d)) is a MPE strategy at each posi Q(d). Sincce this is the state
space for thel-subgameg: (d), it follows thate(S G (d)) must be a MPE otj;(d).

Conversely, suppose thaltG: (d)) is a MPE strategy of thé-subgameg;(d). We can express

e(Gr(d)) as a continuation strategy as follows

)6 { e(G:(d))(s) if se (dx X)andd € Dy )

e(Gr11)(s) otherwise.

This follows from the general definition of MPE in equatior) ¢f Definition 1, since the Bell-
man equation must hold at very point in the state space, andt#te space fog;(d) includes
Qr+1, s0€(Gr(d)) must be a MPE fos € Q.1 which implies thag(Gr(d)) = e(Gr+1) for a par-
ticular equilibrium selection from the stage- 1 subgamej;1. Thus, it follows thae( G:(d))

is a MPE in the restricted class of continuation strategiedte stage gamég . (d), and thus

e(Gr(d)) € E(SG:(d)). L

Theorem 4(Convergence of State Recursion).

Proof. The state recursion algorithm given in definition 14 leada tecursively defined MPE
for each stage stage gameg G, 1= (1,...,7). By Theorem 2, these MPE also constitute MPE
of the staga subgamesj;, T = (1,...,7). However by Lemma 3 we hawg; = G, so it follows
thate(G1) = €(G), i.e. the state recursion algorithm has computed a MPE oDb& G by
computing MPE for a total of

T
N=3Y n (44)
Tzl
d-stage games of the gangg By Lemma 3 we haveéj, = G, so it follows thate(G1) = e(G).
Thus, it follows that the state recursion algorithm has cotag a MPE of the DDGj. O

Lemma 6 (Feasibility of 5(y))
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Proof. If S(y) = (—1,...,—1), then there can be no feasibyfec ZY satisfyingt(y) > 1(y) be-
cause the successor is the result of incremenyify the smallest possible non-zero value,
1. It follows that 7(y) = (—1,...,—1) and soJ(y) = S(y) in this case. Otherwise, if
S(y) # (—=1,...,—-1) then we have(S(y)) =1(y) + 1, so if S (y) is feasible, it must be the smallest
ESS after, and hencg (y) = S(y). Butif S(y) # (—1,...,—1) it must be feasible by the proper-
ties of the successor operator in variable base arithmeétie.long addition process insures that
we have foreach=1,...,nrandt=1,...,7, yit < nQ(y>), but by Lemma 5 it follows that
S(y) must be a feasible ESS. O

Theorem 7 (Solution method for the-stage games in simultaneous move leapfrogging game).

Proof. The proof is by mathematical induction. The base of the itidnas the bottom layer of
the leapfrogging game wheee= 0. In this case the system of Bellman equations (40) is great!
simplified because no further technological improvemeposssible. It is simplified even further
in the corner and the edges of the game where investmentseograooth firms don’t change
their future production cost. This makes it possible to s®ellman equations analytically or
with simple numerical procedures, as described in AppeBdikhe numerical method described
there is guaranteed to find all equilibria among continumsivategies ird-stage games where
d = (c1,¢2,0). By Theorem 2 these equilibria constitute MPE equilibrighie corresponding
d-subgames. The induction step is the following. Assumeagieis below the layer given by
the value ofc are solved. Then we show thadisubgames in the layergiven byd = (cy,Cp,C)
can also be solved. This follows from the solution methoddbed in Appendix B which is are
again applied in a sequence prescribed by the orderingtesstathin the layer. When = 0, the
solution algorithm is guaranteed to find all equilibria ireewd-stage as fixed points in the second
order best response function in a particular sfatec,,c) and taking into account the solutions
on the lower layers. Again, applying Theorem 2 we concludé fibund equilibria constitute the

MPE equilibria in everyd-subgame on the layer O

Theorem 8(Solution method for the-stage games in the alternating move leapfrogging game).
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Proof. The proof is analogous to the proof of Theorem 8, with sotutieethod for thed-stage

games are presented in Appendix C. O

B Solving the Simultaneous Move Pricing and Investment Game

B.1 (7)-End Game,(cy,cp,c) = (0,0,0) Corner

The simplest “end game” end corresponds to the $@a@0), i.e. when the zero cost absorbing
state has been reached and both firms have adopted thi®ttatart production technology.
In the absence of randoliD shocks(a{), sil) corresponding to investing or not investing, respec-
tively, neither of the firms would have any further incentigenvest since we assume there is no
depreciation in their capital stock, and they have bothaglyeachieved the lowest possible state-
of-the-art production technology. When there are idiosgtic shocks affecting investment deci-
sions, there may be some short term reason (e.g. a tempavastment tax credit) that would
induce one or both of the firms to invest, but such investmeoisld be purely idiosyncratic
unpredictable events with no real strategic consequentetoopponent, since the opponent has
already achieved the minimum cost of production and thesetrs no further possibility of leap
frogging its opponent. In this zero-cost, zero-price, Zamafit, absorbing state the equations for

the value functiongvy j, Vi j) can be solved “almost” analytically.
w.j(0,0,0) = r;(0,0)+PBP-;(0,0,0)9(wn,j(0,0,0),v,;(0,0,0))

+ B[1- Pej (0,0, O)](p(VNJ(Ov 0, 0)7\/'7](07 0,0))
r'(0,0) +B(vi,j(0,0,0),w,j(0,0,0)) (45)

whereP. (0,0, 0) is a shorthand for firni's opponent’s probability of investing,

eXp{VI ~] (07 0, 0)/0} (46)
exp{vn,~j(0,0,0)/n} +exp{wi,~j(0,0,0)/n}

Due to the fact that0, 0, 0) is an absorbing state, it can be easily shown that the valimeesting,

P.;(0,0,0) =

vi.j(0,0,0), is given by
v.j(0,0,0) = w,j(0,0,0) — K(0), (47)
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which implies via equation (46) that

_ __exp{-K(0)/n}
P.;(0,0,0) = T+ exp =K (0] (48)

Thus, as) — 0, we haveP.;(0,0,0) — 0 andwy,j(0,0,0) =r;(0,0)/(1— ), and in the limiting
case where the two firms are producing perfect substitutesr(0,0) = 0 andvy,j(0,0,0) = 0.

For positive values off we have
VN,j (07 07 O) = ri(O, 0) + B(p(VN,j (07 07 0)7VN,j (07 07 0) - K(O)) (49)

This is a single linear equation with one unknown, and we eailyeexpress the solution as

Fi (07 0) + B(p(()? _K(O))
1-B
Note that symmetry property fot(0,0) implies that symmetry also holds in tk@,0,0) end
game:vN71(O, 0, 0) = V|72(O, 0, O) andv|71(0, 0, O) = V|72(0, 0, 0).

W,j(0,0,0) =

B.2 (7 —1)-Stage Game{c;,0,0) and (0O, cp,0) Edges

The next simplest end game statéds, 0,0). This is where firm 1 has not yet invested to attain
the state-of-the-art zero cost plant, and instead has &n plant with a positive marginal cost of
productionc. However firm 2 has invested and has attained the lowestlgessiarginal cost of
production 0. In the absence of stochastic shocks, in thi¢éidignBertrand case, it is clear that
firm 1 would not have any incentive to invest since the investtmvould not allow it to leap frog
its opponent, but only to match its opponent’s marginal cbgtroduction. But doing this would
unleash Bertrand price competition and zero profits for ioths. Therefore for any positive
cost of investmenkK (0) firm 1 would choose not to invest, leaving firm 2 to have a peenan
low cost leader position in the market and charge a prige-efc;.

In the case with stochastic shocks, just as in(h@,0) endgame analyzed above, there may
be transitory shocks that would induce firm 1 to invest andetne match the O marginal cost of
production of its opponent. However this investment isehmionly by stochastitD shocks and
not by any strategic considerations, given that once theifiumsts, it will generally not be in
much better situation than if it had not invested (that igrethoughr1(0,0) > r1(c,0), both of
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these will be close to zero and will approach zermg0). In the general case whene> 0 we

have

WN,1(€1,0,0) = r1(cy,0) +B@(vn,1(C1,0,0),v; 1(c1,0,0)) (50)
V|,1(Cl,0, 0) = rl(cl,O) — K(O) + B(p(VN’1(0, 0, 0),V|71(0, 0, 0)) (51)

Note that the solution fov; 1(cq,0,0) in equation (51) is determined from the solutions/Qf
andv 1 to the (0,0,0) endgame in equations (45) and (47) above. Substitutingetsalting
solution forv 1(cq,0,0) into the first equation in (51) results in a nonlinear equatigth a
single unique solutiomy 1(c1,0,0) that can be computed by Newton’s method.

The probability that firm 1 will invest?; (c1,0,0) is given by

exp{vi 1(c1,0,0)]/n}
exp{Vvi 1(c1,0,0)]/n} +exp{vn 1(c1,0,0)]/n}
We now turn firm 2. In thécy,0,0) end game, firm 2 has no further incentive to invest since

P1(c1,0,0) = (52)

it has achieved the lowest possible cost of production. Hewn the presence of random cost
shocks (i.e. in the case whene> 0), firm 2 will invest if there are idiosyncratic shocks that
constitute unpredictable short term benefits from investitat outweigh the cost of investment
K(0). But since this investment confers no long term strategiaathge in this case, the equa-
tions for firm 2’s values of not investing and investing, resjively, differ only by the cost of

investmenK (0). That is,
Vi 2(€1,0,0) = vy 2(c1,0,0) — K(0). (53)

The probability that firm 2 invests in this ca$®(c;,0,0) is given by
Po(c1,0,0) — - S KIO/n} (54)

~ 1+exp{—K(0)/n}
since firm 2 has achieved the lowest possible cost of proaluatid its decisions about investment

are governed by the same idiosyncratic temporary shocks;emult in the same formula for the
probability of investment as we derived above in equati@) {dr the(0,0,0) endgame.
The equation fowy 2(c1,0,0) is more complicated however, due to the chance that firm 1
might investP;(c1,0,0). We have
WN,2(€C1,0,0) =r2(c1,0) + BPi(c1,0,0)@(vn 2(0,0,0),v 2(0,0,0))
+ B[1—-Pi(c1,0,0)]@(vn.2(c1,0,0),vn 2(c1,0,0) —K(0)). (55)
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Using the solution forvy 2(cq,0,0) andv; »(c1,0,0)) in equation (51) above, these solutions
can be substituted into equation (52) to obtain the proltpliiat firm 1 invests, and then this
probability can be substituted into equation (55) to obtaimique solution fowy 2(c1,0,0)

_ 12(€1,0) +BPi(c1,0,0)9(Wn.2(0,0,0),v1.2(0,0,0)) + B[1 — P1(c1,0,0)]9(0, —K(0))

VN,Z(C1707 O) 1—[3[1_ Pl(CLO? O)]

Finally the value of investing »(c1,0,0) is given by equation (53).

The value functions in thé0, c2,0) end game can be derived in a complete analogous way.
In this part of the game, firm 1 is now the low cost leader and firia the high cost follower.
We first derive the value functions for the cost followgp(0,cz,0) andvy 2(0,c2,0). Using
the implied investment probabilities, (0, cz,0), we can derive the value functions for firm 1,
vi 1(0,¢2,0) andvy. 1(0, 2, 0).

It is not hard to see that the symmetry condition holds in(t)8,0) and (0, c,0) end game:
wn,j(c,0,0) =w.j(0,c,0), andvj(c,0,0) =v.j(0,c,0), j =1,2.

B.3 (7 —2)-Stage Game{cy, C2,0) Interior Points

The final case to consider is the end game where both firms hasigve marginal costs of
production,c; andcp, respectively. We begin by showing how to solve the equation the

values to firm 1 of not investing and investing, respectivetyich reduce to

WN,1(C1,C2,0) = ry(c1,C2) 4+ BP2(c1,C2,0)@(VN,1(C1,0,0),Vv; 1(c1,0,0))
+B[1— P>(c1,¢2,0)]@(vn,1(C1,C2,0), v 1(C1,C2,0))

Vi 1(C1,€2,0) = ry(cg,c2) —K(0) 4+ BP2(cq,C2,0)@(vn,1(0,0,0),v;,1(0,0,0))
+B[1—P>(c1,C2,0)]¢(vn,1(0,C2,0),Vv; 1(0,C2,0)). (56)

Given the equation fon 1(c1, C2, 0) in equation (56) depends on known quantities on the right
hand side (the values fog 1 andy; 1 inside thep functions can be computed in ti@, 0,0) and
(0,c2,0) end games already covered above), we can %gdty, c,0) as a linear function o,

which is not yet “known” because it depends @R 2(C1,C2,0), Vi 2(C1,C2,0)) via the identity:

B exp{vn,2(C1,C2,0)/n}
Pa(C1,€2,0) = exp{Vn,2(C1,C2,0)/n} +exp{Vi 2(c1,C2,0)/n}t o)
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We write vi 1(C1,C2,0,P,) to remind the reader that it can be viewed as an implicit func-
tion of P>: this is the value ofv; ; that satisfies equation (56) for an arbitrary value of
P, € [0,1]. Substituting this into the equation fog 1, the top equation in (56), there will be
a unique solutiorvy 1(cy1,C2,0,P,) for any P, € [0,1] since we have already solved for the val-
ues(vn,1(c1,0,0),vi 1(c1,0,0)) in the(c,0,0) end game (see equation (51) above). Using these
values, we can write firm 1's probability of investifg(cy, c2,0) as

exp{vi 1(c1,C2,0,P2)/n}
exp{vn.1(c1,C2,0,P2)/n} +exp{vi 1(c1,C2,0,P2)/n}’

Now, the values for firm 2vy 2(c1,C2,0),Vv; 2(C1,C2,0)) that determine firm 2's probability of

P1(c1,C2,0,P2) = (58)

investing in equation (57) can also be written as functidng dor anyP; € [0,1]. This implies
that we can write firm 2’s probability of investing as a fuoctiof its perceptions of firm 1’s
probability of investing, or aB»(cy, Cp,0, Py). Substituting this formula folP, into equation (58)

we obtain the following fixed point equation for firm 1's prdiiliy of investing

oy exp{Vi 1(C1,C2,0,Px(c1,¢2,0,P1)) /n}
exp{v,1(C1, G2, 0,P2(C1,€2,0,P1)) /n} + expfvi 1 (€1, €2,0,Po(c1, C2,0,P1)) /n}

By Brouwer’s fixed point theorem, at least one solution toftked point equation (59) exists.

(59)

Further, whem > 0, the objects entering this equation (i.e. the value famstiy 1(c1,C2,0,P>),
Vi 1(C1,C2,0,P,), vy 2(C1,C2,0,P1), andy 2(c1,C2,0,P;) and the logit choice probability function
P,) are allC* functions ofP, and P, standard topological index theorems be applied to show
that for almost all values of the underlying parametersehéll be an odd number of separated
equilibria.

Figure 1 plots the equilibria computed by plotting the setorder best response function
in equation (59) against the 45 degree line. We see that firmthe low-cost leader with a
substantially lower marginal cost of production than firml2.the mixed strategy equilibrium,
firm 1 invests with probability @84, whereas the firm 2, the high cost follower, invests with
probability 082. Thus, the high cost follower has a significantly highearate of leap frogging
its rival to attain the position of low cost leadership. Tleadership is permanent (unless the firms

happen to simultaneously invest) since by assumption,ribeiugtion technology has reached the
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End Game Equilibria
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Figure 8: End game equilibria

zero marginal cost absorbing state and there can be no fiutiaee improvements in production
cost.

To safe space we will not elaborate further on how fixed paoamésfound in the(cy, cp, 0)
endgame. The solution strategy is complete analogous towmwolve for the equilibria at
higher levels of the game, and we will therefore return te telow. As we will show below, the
best response functions can be characterized by soluti@séocond order polynomial, allowing

us to express the equilibrium solution almost analytically

B.4 Solving the(T —3),(7 —4),...,1-Stage Games

With the end game solutions in hand, we are now ready to pdoiediscuss the solution of the
full game. To solve the full game, i.e. the functional eqoiasi in (40), it is helpful to rewrite

them in the following way,

WN,1(C1,C2,€) = ri(c1,C2) + B[P2(C1,C2, C)H1(C1, €, C) + (1 — P2(C1, C2,€) )H1(C1,C2,C)]  (60)

Via(c1,C2,¢) = ri(c,¢2) — K(c) + B[P2(C1,C2,C)H1(c, ¢, C) + (1 — P2(Cy, C2,€) )H1(c, C2,B1)
where the functiof; is given by
Cc
Hi(cy,co,C) = (1—11((:\(:))/0 ®(N1(c1,C2,C), v 1(C1,C2,C ) f(C|c)dd

+T1(clc)@(vn,1(C1,C2,C), Vi 1(C1,C2,C)), (62)
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whereTt(c|c) is the probability that a cost-reducing innovation will ratcur, andf (c/|c) is the
conditional density of the new (lower) state-of-the-artrgnaal cost of production conditional on
an innovation having occurred. We assume that the suppditojt) is in the intervall0,c), as
indicated also by the the interval of integration in equa(ie2).

For completeness, we present the corresponding equatiéimic2 below.

WN,2(C1,C2,€) = ra(Cp,C1)+ B[Pi(C1,C2, C)H2(C, C2,C) + (1 — Py(C1, C2,€) )H2(C1,C2,C)]  (63)

Vi 72(017 C2, C) = |'2(C2, Cl) - K(C) + B[Pl(C].? C2, C) HZ(C7 C, C) + (1 - P1(017 C2, C)>H2(Cla C?@'F')

where the functiond, is given by

Cc
Ha(cy,C2,€) = (1—T(c|c) = /o @(wa(c1,C2, '),V 2(C1,C2,¢)) f(c'|c)dd
+ 11(c[C) @(VN,2(C1, C2, C), Vi,2(C1, C2,C)),  (65)

We will assume initiallydeterministicequilibrium selection rules, i.e. a function that picks
out one of the set of equilibria in each possible state of #rmeej(cy, c,, ). Given an equilibrium
selection rule, we can assume that the integral term in egquéd?2) is “known” at this stage of
the game. This is because we can structure a recursivethlgdor solving the game by starting
with the end game solution and recursively solving the @oyugl and value functions for positive
valuesc’ that are less than the current valughat we are computing. Then for each< c, the
value functionssy j(cy,C2,¢') andv; j(c1, o, ¢’) will be “known” for all (cq,¢p) in the rectangle
R(c') = {(c1,¢2)|c <1 <tT,d <cp <T}. Since however, there may be multiple equilibria at
lover levels of the game, the integral obviously depend orclvbf the equilirbia that are played
whenc’ < c¢. This is how the equilibrium selection rule at “lower costes” of the game tree
(i.e. at stategcy, co, ') with ¢’ < c) affect the set of possible equilibria at each nédecy,c).

Since integral term in equation (62) is “known” at this stage can use a similar to the
strategy to the one we used to solve the value functjgns,vi j) j = 1,2 in the end game. As
before, we first solve for the equilibrium at the c, c) corners, then at thee;, ¢, c) and(c, ¢y, €)
edges, and finally at the interior nodes of the game.
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B.5 Corners and Edges

In the (c,c,c) corner, where all firms have invested and have the stateesétt production tech-
nology in place, there is no further incentive for either fitoninvest. If we set the arguments

(c1,C2,C) to (c,c,C) in equation (60) fowq, and similarly in equation (61) for, we deduce that

V|’]_(C,C,C) = VN71(C,C,C>—K(C) (66)

Vi ,2(C7 C, C) = VN,Z(C7 C, C) - K(C) (67)

We can then substitute equation (66) into equation (60) ahcesa simple linear equation in
WN.1(C, €,C). With vy 1(c,c,c) at hand we can easily computg;(c,c,c). By analogous opera-
tions we obtain the value functions for firm »(c, c,c) andy; »(c,c,c).

We now move to thécy, c,c) edge in the state space lattice. If we set the argunients,, c)
to (c1,c,C) in equation (61) it is easy to see that(cy,c,c) is uniquely determined from the
solutions at cornek 1(C, ¢,c) andv; 1(c, ¢, c). Substituting the resulting solution far(cy, c,c)
into equation in (60) results in a single nonlinear equatidth a unique solutiorvy 1(c1,C,C)
that can be computed by Newton’s method. Ownge(cy,c,c) is known we can easily compute
Pi(c1,c,C).

With these solutions at hand, it is straight forward to cotegghe(cy,c,c) value functions
of firm 2. Since firm 2 that has already invested in the statthefart production technology,
investing again will not change it's marginal cost of protioic. Again, it is easy to see that the
equations for firm 2’s values of not investing and investiggpectively, differ only by the cost
of investmentK (c)

vi2(C1,¢,¢) = W 2(c1,¢,¢) — K(c) (68)

The solution forPy(cy, ¢, c) andv »(c1,C,c) given by equation (68), can be substituted into
equation (63) to obtain a unique solution fgy2(c1, ¢, c). Using the solution fowy 2c1,C, c) we
can then compute(cy, c,c) from by equation (68) and derive the implied investment ploly
ties,P>(cy, ¢, C).

As in the end game, the value functions in tfec,,c)game can be derived in a com-
pletely analogous to théc;,c,c)game by switching firm indices. Since, firm 1 is now the

low cost leader and firm 2 is the high cost follower, we firstidewvalue functions for firm 2.
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The value of investingy »(c, ¢y, ), is again uniquely determined from the solutions at corner.
The value of not investingyn 2 (C,C2,C), is solved using newtons method. Using the implied
investment probabilities,(c, ¢y, ¢), we then derive the value functions for firm 1 using that

Vi.1(C,C2,€) = W 1(C, C2,C) — K(C).

B.6 Equilibrium Solutions at Interior (cy,cp,c) Nodes

In the (c1,c2,0) end game mentioned above, either of the two firms will haveritige to invest
in equilibrium if K(c) is below a critical threshold, and thus may thus leapfrogr thygponent
to become the low cost leader forever. But at this higher lef/the game(cs, ¢z, c), where the
state of the art has not yet reached it's absorbing stateatlination between the two firms is
dynamic and much richer: If one firm leapfrogs its oppondmg,dame does not end, but rather
the firms must anticipate additional leapfrogging and cegticing investments in the future.

In the (cy,Cp, C) interior nodes, both firms have not yet invested in the curséate of the
art production technology, and there is therefore stilihndor strategic investment for each of
the two firms. The best responses for each firm, thereforendisperucially on the investment
probability of the opponent. Thus, the main complicatiorsolving the game at the interior
nodes of the game, is that the value functions,.that ardgignito the functional equations in
(40), must be solved simultaneously with determining thaldaxium decision rules.

Following the procedure we used to solve for equilibria ia(tty, ¢, 0) end game, the the set
of all equilibria for the investment “stage game” at statg cy, c) can be computed by finding all
fixed points to the following “second order best responsetion” for firm 1:

P, — exp{Vvi 1(c1,C2, ¢, P2(c1,C2,¢,P1)) /n}
eXp{Vle(C]_,CZ,C, PZ(C]-?CZaC? Pl))/r]} +eXp{V|71(C1,C2,C, PZ(C17C27C7 Pl))/r]}
Depending on the rule we choose to select among the posgibiébeia in each state

(69)

(c1,C2,¢) (and similarly the selection rule for equilibria at all féae points in the state space
(c1,c2,c) with ¢ < ) we can construct a wide variety of equilibria for the ovegame. The

restriction is that any equilibrium selection rule must betsthat the functional equations for
equilibrium (see equations (60) and (61) above) are satisfldne following steps are used to
solve for the set of all equilibria at each state pdiat,cy,c) in the full Bertrand/investment

game.
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1. For eactP; € [0,1] we compute the value functiofgy »(c2, €1,¢, P1), Vi 2(C2,C1,C, P1) rep-
resentingfirm 2’s values of not investing and investing in stétg, ¢y, c), respectively, by
solving the system (63) and (64) for edéhe [0, 1].

2. Compute firm 2’s “best response”, i.e. its probability miesting,P>(c1, ¢z, ¢, Py), in re-

sponse to its perception of firm 1’s probability of investiRg, via the equation

exp{vi 2(c1,C2,¢,P1)/n}

P>(c1,C2,C,Pp) = '
»(C1,C2,C,P1) exp{Vn2(C1,C2,C,P1)/n} +exp{vi 2(c1,C2,C,P1)/n}

(70)

using the value functions for firm 2 computed in step 1 above.

3. Using firm 2’s best response probabili®y, calculate the value functiorng 1(cy, Co,C, P2)
andv; 1(c1,C2,c,P>) representingirm 1's values of not investing and investing in state

(c1,C2,C), respectively, by solving the system (60) and (61).

4. Using the values for firm 1, compute firm 1's probability wfésting the second order best

response functiofor firm 1, and search for all fixed points in equation (69).

B.7 Polynomial representation of the best response functis

Once the game is solved at lover cost states, the solutiategir is almost analogous to the
(c1,C2,0) end game. Holding fixed the opponents investment probgbitit= P»(c1,cp,C), it
is clear from equation (61) that none of the terms on the rigirtd side of (61) depend on
vi 1(C1,C2, C). Moreover, sincéd(c, c,c) andHj(c, ¢z, ) are both previously computed from the
edges of the game, the value of investing can be expressdohaargfunction of?, with “known”
coefficients.

The value of not investingyy 1(c1, C,C, P2), is non-linear inP», sinceHl(cl,cz,c) that ap-
pears on the right hand side of (60) is also a functiovafci,cz,c). It is useful is rewrite

equation (60) to explicitly emphasize the dependencearicy, ¢, C)

WN,1(C1,C2,€) = A1 (P2) + B(P2)@(WN.1(C1, C2, C), Vi 1(C1,C2,C))
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where

C
A1(P) = ri(c1,c2) +B(1—Tcc)) / ®(VN2(C1,C2,C), Vi 2(C1,C2,¢)) f(C'|c)dc

—|—B(H1(Cl,C, C) / (p(VN 2(C1,02,C/) Vi 2(C1,Cz, )) (C/|C)dC)
B(R) = B(1-p(c)(1—- P2>
It is clearwy, 1(c1,C2,€) is nonlinear equation iR, but bothA; andB; are linear functions o,

with coefficients that are known at this stage of the game cel@re can summarize the functional

equations (60) and (61) as

WN.1(C1,C2,€) = A1(P2) +B(P2)@(vn, 1(C1,C2,C),Vi 1(C1,C2,C))
A(P2) = aotanP
B(R;) = b(1-P)
Vi1(C1,C2,C,P2) = Cio+CuiP2

The linearity ofA, B andv; 1(c1, C2,€) turns out to be very useful when deriving the analytical
solution forvy 1(c1,C2,C), the best response functions and equilibrium investmentighilities.
If we express the value functions in probability space, anub8tute in the expressions fayj,
A andB it is easy to see that (the inverse best) response functerisrh 1 and firm 2 is easily

found as the solution to a second order polynomial

P
Dio— r]bln P1+n Iog <ﬁ) + (D11—|- r]bln Pl)Pz + D12P22 = 0 (71)
- 1 ~ Vo
~ ~ - D11(P1)
D1o(P1)
Dzo—r]blnP2+r]Iog<1_2P2 +£D21+r]blnP2)P1+D22P12 =0 (72)
h ~~ Dzifpz)

D1o(P1)
where
Dio = ajo+(b—1)cio
Di1 = a1+ (b—1)c1—ciob
Di2 = —bas
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That is, for a given value of the best response of firfR1we can compute the implied value of

P> by solving (71) with respect tB,. The roots corresponds to the abscissa values of firm 1's best
response function and we have thus expressethtfeese best response functipR, = f;- Ypy)

as the solution to a second order polynomial. A similar eiguagxists for firm 2 and in a similar
way we can solve foP; = fz’l(Pz) as the roots to (72). For each of these polynomials there is
maximum two roots and the inverse best response functiodessribed by real roots of these
equations which are inside the unit interval.

Whenn > 0, standard topological index theorems can be applied tw shat for almost
all values of the underlying parameters, there will be anmgichber of separated equilibria. In
this case our algorithm searches for fixed points on the ssvef the second order best response
function using a combination of bisections and succesgypeaximations. Whem — 0, the
results of Harsanyi (1973) as extended to dynamic Markog&anes by Doraszelski and Escobar
(2009) show thaf serves as a “homotopy parameter” and for sufficiently smathe set of
equilibria to the “perturbed” game of incomplete infornaaticonverge to the limiting game of
complete information. Rather than using the homotopy aggrpowe found we were able to
directly solve for equilibria of the problem in the limitinmure Bertrand case wherne= 0.

When there are no idiosyncratic shocks to investment, i.eenm = 0O, the best response
functions have bang-bang solutions, where the best resgonstions jumps discontinuously
from zero to one at the indifference points. Finding the aigmuity points using a gradient
based method or successive approximations is out of thedigneand the use of a bracketing
algorithm is a daunting task, as it requires repeatedly mwalesolution of value functions and
best response functions to locate multiple discontinsiitiestead we can solve directly for the
threshold values of the opponents investment probabhiay tnake firmj indifferent between
investing and not investing, which can be found as the swiut the second order polynomials

in (71) in (72). This is robust, fast and is always guarantedihd all equilibria.

C Solving the Alternating Move Pricing and Investment Game

Changing the order of moves from an alternating to simuttasdashion, introduces a new state

non-directionalstate variablen € {1,2} that covers which one of the firms that has the right to
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move. As mentioned in section 4, the partial ordering of iheational component] = (c1, ¢, €)

is unaffected by changing the order of moves, and thus wépeet to the state variables, ¢,
andc, the state recursion precedes in exactly the same mannst.wé solve(‘7)-end game,
which is the(cy,cp,c) = (0,0,0) corner, we then move to solving the;,0,0) and (0O, c;,0)
edges in the bottom layer of the state space pyramid, i.e(Zhe 1)-stage game. Given the
solution at corners and edges we can solve the fo(¢he,, 0) interior points in theg(7 — 2)-
stage game. This recursion completes the lower layer wherstate of the art has reached its
absorbing state = 0.

For the simultaneous move game we detailed out how the stage gimplifies, when = 0.
We will not do that here, but instead derive the solution aheos, edges and interior points for
a generic value of. Note that value functions for > 0 depend on values at lower levels of
the game and due to the multiplicity of equilibria there ebbé many solutions to these value
functions at earlier stages. Given a equilibrium selectigle ' () that picks out a particular
equilibrium to be played at each point in the state space, amerecursively solve for smaller
values ofc before larger values af and assume that value functions at lower levels of the game
are “known”. 1t is therefore useful to rewrite the Bellmanuatjons to emphasize that there
are parts of the Bellman equation that we consider as “knaatrd given pointg in the state
recursion. Specifically, at stagéthe conditional expectation of the future value functiovegi
that technology improves and can be considered “know”, iieedhe it depends only on the
value functions calculated at previous stagest’. Specifically, letH;(c1,cz,¢, m) denote the
conditional expectation of the future value function fonfid given that technology improves

and given that it is firnm = n' has the turn to invest

Hi(c1,co,C,m) = /[f(m|m)(P(VI,1(Cl7CZaC/7m)7VN,1(ClaCZ7C/am))

+f(nﬂm)[P2(c1,cz, C/)V|71(C1,Cz, C, IT{) + (1— Pz(Cl, Cz,C/))VN71(Cl,C2,C/, IT{)”T[(dC(‘C,dd < O),
(73)
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such that the Bellman equations for firm 1 in (41) can be résnias

Vi 1(C1,C2,C, 1) =r1(c1,C2) —K(c) +PBr(c|c) f(1|1)@(vi 1(c, C2,C, 1), VN 1(C,C2,C, 1))
Bri(clc) f(2|1)ew(c,cp,C) + B(1—T(c|c))Hi(c,co,C 1)

+

WN,1(C1,€2,C,1) = rq(cy,C2) + Pr(c|c) f(1]1)p(v 1(c1,C2,C, 1), VN 1(C1,C2,C, 1))
+Pr(clc) f(2[1)ew(cs, c2,€) + B(1—Ti(c[c))Ha(c, C2,C, 1)

vi,1(C1,C2,¢,2) = ra(cy, ¢2) + Bri(clc) f (12)@(vi 1(c1, ¢, ¢, 1) v 1(C1,C,C, 1))
+Bri(cle) f(2|2)ew(cy, ¢, c) + B(1—T11(c|c))Hi(ca,C,C,2)

WN,1(C1, €2, C, 2) = r1(ca, C2) + Bri(c[c) F (1[2)@(vi a(C1, C2,C, 1) VN 1(C1, C2, C, 1))

+ BT[(C|C) f (2‘2)9\/]_(01, Co, C) + (1 - T[(C|C))H1(C17 C2,C, 2) (74)
where
ewvi(C1,C2,C) = Pa(C1,C2, C, 2)V; 1(C1,C2,C, 2) + [1— Pa(Cy1, C2, C, 2)|WN,1(C1,C2,C, 2).

A similar set of equations exist for firm 2, which we have oedtto save space, since they are

defined similarly.

C.1 Solving the(c,c,c) corner stage games

If we set c; = c2 =c in (74) above, it is easy to se that we must have

vi1(c,c,c,l) = wai(c.cc1)—K(c)

vii(c,c.c,2) = wni(c,c,c,2)

Hence, whenc; = ¢, = cand both firms have already invested in the current stateedcditythere

is no further strategic room for investment for other thangore idiosyncratic reasons. Further,

it is easy to verify thaP,(c, c,c) completely drop out of the Bellman equations, and that theeva

functions becomes a simple equations that we can solvetarzdly.

An.1(c,c,c,1)(1—-B22) +Ana(c,c,c,2) xBo g
1-B11+B22—B11%Boo+B12%By1

An1(C,C,C,2)(1—-B11) +An(c,c,c 1) By
1-B11+Byo—B11%Boo+B12%Bo1

wn.1(C,c,c, 1) =

WN,1(C,C,C,2) =
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whereB; j = Bx*Ti(c|c) f(i]j) , An.1(c,c,c,1) =r1(c,c)+B(1—T(c|c))H1(c,c,c, 1)+ By 1x@(0, —K(C))
andAn1(c,c,c,2) =ry(c,c) +B(1—rm(c|c))Hi(c,c,c,2) + By o+ @0, —K(c)) are coefficients of
the linear system. The value functions for firm 2 can be ddriwefollowing similar steps.

C.2 Solving the(cy,c,c) and (c,cp,c) edge stage games

This is the case where firm 1 has not yet invested, but firm 2 Ineady acquired in the state of
the art technology. Thus the value function of firm 1, doesdemend on whether firm 2 invest
or not. It is easy to see this if we sef = c in the the value functions for firm 1, when it is
not it's turn to invest. Specifically, we obtains(c,c,c,2) = v; 1(c,c,c,2). Further, the value of
investing,vi 1(c1,C,c, 1), depends only on variables that we have already solved fbcan be

expressed in closed form

vi 1(C1,¢,C,1) =ry(c1,c) —K(c) +B(1—m(c|c))Hi(c,c,c,1)
+Bx*m(clc)[f(1]1)@p(vn 1(c,c,c,1),v 1(c,c,c,1)) + F(2]1) * v 1(C, C, C, 2)]

Substituting the resulting solution fer 1(c1, ¢, ¢, 1) into the equation fowy 1(cy, ¢, c, 1) results

in the nonlinear equation

WN,1(C1,C,C, 1) =r1(cy,C) * (1+ f1) +Hi(cy,c,c, 1) + f1+B(1—11(c|c))Hi(cy,c,c,2)
+B * T[(C‘C) [f (1| 1) + f (1|2) fl](p(VN,l(Cl7 C,C, 1) ) Vl,l(cla C,C, 1))

wheref; = Bx«T11(c|c)f(2|1)/(1—B=T1(c|c) f(2]2)). This equation has a unique solution that can
be computed by Newtons method. Given the solutiomgf(ci,c,c,1) andv 1(cq,c,c,1) we
can easily compute the remaining two value functiafg,(c1,¢,c,2) = vi 1(c1,¢,C, 2), in closed

form

VN,l(Cla C,C, 2) -

ri(cg,c) +B(1—rmclc))Hi(cy,c, ¢, 2) +Prc|c) f (1|2)@(vn,1(C1,C,¢, 1),V 1(C1,C,C, 1))
(1—Bm(clo)f(2[2))

Given the values of for firm 1, we obtain it's investment priitity by the standard logit formula

exp(vi 1(C1,¢,c,1)/n)
exp(vi 1(c1,¢,¢,1)/n) +exp(vn,1(c1,¢,¢,1)/n)

Pi(c1,c,c) =

71



We now turn to the value functions for firm 2. Note that oRg¢écs, ¢, €) is known, the value func-
tions for firm 2 in the(cy,c,c,m) depends only o »(c1,¢,C, 1), VN 2(C1,C,C, 1), Vi 2(C1,C,C, 2)
andwy 2(cy, ¢, ¢, 2) and functions at previously computed stage games. Giveilitggum selec-
tion rule, we can treat the latter as single valued “knowrtitezs. Note that from the perspective
of firm 2, there is no strategic incentive to invest, since fiwmo has already acquired the state
of the art technology, therefokg »(c1, ¢, ¢, 2) = v 2(C1,C, ¢, 2) — K(c). This simplifies the com-
putation of the value for the low cost leader in tfeg,c,c) edge games. If we substitute out
Wn,2(C1,C,C, 2), it has easy to see that the remaining value functions forZican be found as a

solution to a set of linear equations. The solution is

Vi 2(C1,C,C,1) =ro(cy,¢) +Ha(c,c,c,1) + (B2 1¢(Wn 2(C, C,C, 2), Vi 2(C,C,C,2)) + By 1vi 2(C,C,C, 1)])

ra(c1,c)(1+ fi(cy,c,c)) +Ha(cy,c c,2) + f1(cy,c,c)Ha(cy,C,C 1)
(1-Bg2—B21fi(c1,c,C))
(B22+B21f1)9(0, —K(c)) +Vi 2(c1, ¢, ¢, 1)Pi(c1, C,€) (Br2 + Bra)
+
(1-B2—Bg1fi(c1,c,0))

VN,Z(C].? GG, 2) =

ra(ci1,c) +Haz(cy,c,c 1)
(1-B22(1—Py(c1,c,0)))
B2 19(vn 2(C1,C, C, 2), VN 2(C1,C,C, 2) —K(C)) + By 1P1(c1,¢,C)vi 2(C1,C,C, 1)
(1— 32’2(1— Pl(Cl, C, C)))

where fi(cy,c,¢) = By 2(1—Py(c1,¢,¢))/(1—By1(1—Pi(cy,c,c))) andB; j are defined above.

VN72(C17 C,C, 1) =

+

Given the values of for firm 2, we obtain it's investment priitity by the standard logit formula
similar to what we did for firm 1.
In a complete analogous way we can compute the value fursciothe (c, cp,c) game by

switching firm indices of value functions, transition prbbaies and investment probabilities.

C.3 Equilibrium solutions at (c,cp, €) interior stage games

In the alternating move game the value of investing caneasicomputed, since investment
by either of the two firms will imply transition to fronicy, c,,c) points of the state space that

are already computed at this point. Hence, given the solwioalue functions and investment
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probabilities at lower levels of the game, and given the temuat the(c,c,c) corners and the
(c1,¢,¢) and(c, cp, ¢) edges of the game, we can compytg(cy, C2, ¢, m) in closed form for both
m=1andm=2
Vi 1(C1,C2,¢,1) = ri(cy,C2) —K(c)+By1¢(vi 1(C,C2,C, 1), VN 1(C,C2,C, 1)
+B21[P>(c,C2,C)v 1(C, C2, €, 2) + (1 — Po(C, C2, C)WN,1(C, C2, C, 2)]
+(1—T1(c|c))H1(c,co,c,1)
Vi 1(C1,C2,¢,2) = r1(cy,C2) +B120(vi 1(C1,C,C,1),vn 1(C1,C,C, 1)
+B22[P>(c1,¢,C)vi 1(C1,C,C,2) + (1 — P»(Cy1,C,C)VN,1(C1,C, C, 2)]
+(1—1(c|c))H1(cy,c,c,2)
The values ofotinvesting,vy 1(C1,C2,C, 1) andvy 1(C1, C2,C, 2), depends on the value functions
in the interior of the state space as well as the opponen¢siment probabilityf»(c1, ¢, C). But
if we rearranges 1(c1,C2, €, 2) and substitute back into the equation ¥ri1(c1, 2, c, 1), we ob-
tain a single non-linear equationvy 1(c1, 2, ¢, 1) andP»(cy, C2, €). We writevy 1(c1,C2,C, 1, P2)
to emphasize that the value function can be viewed as anditfpinction of P, i.e. the value of

VN1 that satisfies the non-linear equation (75) below for artiatyi value ofP, < [0, 1].

WN,1(C1,C2,C, 1, P2) = A1 (P2) + B1(P2)@(Wn,1(C1,C2, €, 1, P2), v 1(C1, €2, C, 1)) (75)

where

Ai(P2) = (1+ fi(P2))ra(cy, c2) + (1—my(c|c))Ha(ca, C2,¢,1) + fap(c)Hi(ca, 2, ¢, 2)
+(B2,1+B22f1(P2))vi 1(c1,C2,C,2)P,

Bi(P2) = B11+Bi12f1(P2)

_ Bu(1-Py)
fa(P2) = 1-Bya(1—Py)

Hence, for a given value &%, we can easily expresg 1(C1,C,C,1) as the solution to a simple

nonlinear equation ivy 1(c1,C2,¢,1,P2). This equation can easily be solved using Newtons
method sincéBp, < 1 for anyP, € [0,1]. Given the firm 1 value functiong 1(cz,c2,c,1) and
VN,1(C1,C2,C, P2), we can compute best response function of firm 1 by the steridait formula

exp(vi 1(C1,¢C2,¢,1)/n)

Pi(C1,C2,C,P2) =
1(C1,C2,C, P2) exp(Vi 1(c1,Co,C,1)/n) + exp(vn.1(C1, ¢, 1, P2)/n)
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Following similar steps we can obtain a similar equationfiion 2 to obtainP,(cy,cy, ¢, Py), i.€.
firm 2’s best response to firm 1's investment probabikty,

Wheneven > 0, (¢, ¢z, €) Stage game equilibria can be found as the fixed point to trensec
order best response function, i.e. the mapping fnto P; that we obtain by substituting the
best response function for firm P,(cy,Cp,C,P1) into the best response function for from 1,
Pi(c1,C2,C,P0)

exp(vi 1(C1,C2,¢,1)/n)
exp(vi,1(C1,C2,¢,1)/n) +exp(vn,a(c1, ¢, 1, Pa(cy, €2, ¢, P1)) /n)

Pl(cla C2,C, Pl) -

Whenn > 0 our algorithm searches for fixed points the second orddrrbsgonse function
using a combination of bisections and successive appraxing It can be shown that this
algorithm is guaranteed to firall fixed points on the second order best response function when
n > 0. Whenn = 0 we found we were able to directly solve for all mixed strgteguilibria as

solution to second order polynomials. We will show this belo

C.4 Polynomial representation of the best response functis

To solve for the equilibrium investment probabilities ituseful to express value functions in
choice probability space. Using tHaf(cy, Co, €) is uniquely determined by 1(cy, €2, ¢, 1) —vn 1(C1,C2,C, 1)
via the standard logit formula, we can rewrite the probleb) {i@ choice probability space

Au(P2) —nlog( =) i+ Ba(Pa) (a(erezc. ) —nloglP) = O (76

wherey; 1(c1,C2, C, 1) is known at this point. This equation fully describes firm li¢st response
as an implicit function of.

If we substitute in the values éf (P,) andB; (P,) it can be shown that the resulting expression
is arational functionof P, i.e. an algebraic fractiomR(P,; P1) /Q(P2), where both the numerator
and the denominator are polynomialsi®f(for a given value of;). The denominator of this
fraction of polynomials i€Q(P,) = 1— B 2(1— P») which is never zero sincg limited to unit
interval and sincé, » < 0. Hence, if we want to find the roots of (76) it is sufficient tadithe

roots of the numeratoR(P»; P1) which linear function o,
R(P2,P1) =D10(P1) +D11P>(P1) =0 (77)

74



where

D1o(P1) = (B21+(1—Bg2))ri(cy,co)
(B22+B11+4B21b11—B22B11—1)v; 1(C1,C2,C, 1)
B(1—m(c[c)((1—Bg2)Hi(c1,C2,¢,1) — Bp1Hi(c1,C2,C, 2))

1-P
- n [(51,1+ B21B12—B22B11)InP1+(1—-B22)In < P, 1)}

—- -

D11(P1) (B2,2—B21)ri(c1,¢2) + B2 1vi 1(C1,C2,C, 2)
(B22B11—B22—B21B12)vi 1(C1,C2,C, 1)
B(1—r(c|c))(Bz2H1(Ca,C2, ¢, 1) — Bz 1H1(C, 2, €, 2))

1-P
n |:(sz18172— 827281,1> InPy — Bzazln ( P, 1)}

+ o+ +

Whenn > 0 the coefficients of polynomidR(P,;P;) are not fixed, but depends on the in-
vestment probability of firm 1P;. Thus, for given value of the best response of firmPi,
we can compute the implied value Bf by solving R(P>;P1) = 0 with respect td®. Roots
that are located on the unit interval corresponds to theisdmsao/alues of firm 1's best re-
sponse function and we can there by computeitkierse best response function for firmag
P, = Pl‘l(cl,cz,c, P1) = —D10(P1)/D1,1(P1). A similar equation exists for firm 2 and in a sim-
ilar way can comput®; = Pgl(cl,cz,c, P,) = —D20(P2)/D21(P2). Whenn > 0 we can solve
for the d-subgame equilibria &t1,cy,c) interior points, either by finding the fixed point of the
second order best response function as outlined in thequewubsection, or we could find the
fixed point of the inverse second best response function. aifebtain the latter by substituting
the inverse best response function for firm 2 in to the invbest response function of firm 1.

Whenn = 0, the best response correspondence is either zero or oeptdac values of,
that makes firm 1 indifferent between investing or not. Gleamy mixed strategy equilibrium
must therefore be located located at these indifferencetqoiWe can solve directly for the
values of firm 2’s investment probability that make firm 1 fifelient between investing and not
investing. It is easy to show that the roots of (77) corresisaio exactly this value. This can
easily be verified by setting 1(cy,C2,¢,1) = v 1(C1,C2, €, 1) in (75) above and finding the root.
In fact, the best response function equRl&:, 2, ¢, Po) = 1[D1 o+ D1 1P> > 0], where 1] is the
indicator function. Note that the coefficients RfP,; P1) do not depend o, whenn =0, i.e.
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D10(P1) = D1o andDy1(P1) = D11. Hence the rooP> = —D1 /D11, and thus any candidate

for a mixed strategy equilibria can be found in closed form.
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