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Threshold Models in Economics

I A threshold model offers applied researchers a simple yet
useful framework to model nonlinear relationships by splitting
the data into subsamples with a change-point due to a
covariate threshold.

I There are a large number of applications in economics.
I For example, Durlauf and Johnson (1995) argued that
cross-country growth models with multiple equilibria could
exhibit threshold effects, and

I Khan and Senhadji (2001) examined the existence of threshold
effects in the relationship between inflation and growth.

I In addition, racial segregation (Card, Mas, and Rothstein,
2009) as well as financial contagion (Pesaran and Pick, 2007)
can be modeled as a threshold effect.



Covariate Selection in Threshold Models

I Typically, the choice of the threshold variable is well
motivated in applied work (e.g. initial per capita output
and/or the initial adult literacy rate in Durlauf and Johnson
(1995), and the minority share in a neighborhood in Card,
Mas, and Rothstein (2009)), but selection of other covariates
is subject to applied researchers’discretion.

I However, covariate selection is important in identifying
threshold effects since a piece of evidence favoring threshold
effects with a particular set of covariates could be overturned
by a linear model with a broader set of regressors.



Goal of This Paper

I In this paper, we develop a method for estimating a linear
regression model with a possible change-point due to a
covariate threshold, while selecting relevant regressors from a
set of many potential covariates.

I In particular, we consider the `1 penalized least squares
(Lasso) estimator of parameters, including the unknown
threshold parameter, in a sparse high-dimensional threshold
model when the number of possible covariates can be much
larger than the sample size.

I This project is in progress.



Literature

I The Lasso (Least Absolute Shrinkage and Selection Operator)
and related methods in sparse high-dimensional settings have
received much attention in statistics and has gained some
interests in economics as well. For example, see Belloni and
Chenozhukov (2011) and Fan, Lv, and Qi (2011) for latest
reviews aimed at economics audience.

I Although there is a large literature on Lasso type methods and
also equally a large literature on change points, sample
splitting, and threshold models, there does not seem to be any
paper yet that considers a model in the next slide.

I Our theory builds on Bickel, Ritov, and Tsybakov (2009),
which cleverly exploits the sparsity of the model.



Lasso Estimation



Estimation Problem

I Let {(Yi ,Xi ,Qi ) : i = 1, . . . , n} be a sample of independent
observations such that

Yi = X ′i β0 + X ′i δ01{Qi < τ 0}+ Ui , i = 1, . . . , n, (1)

where for each i , Xi is an M × 1 deterministic vector, Qi is a
deterministic scalar, Ui follows N(0, σ2), and 1{·} denotes the
indicator function.

I We are particularly interested in the case of large M, i.e.
high-dimensional model.

I The inference problem here is to estimate unknown
parameters (β0, δ0, τ 0) ∈ R2M+1.



Notation

I For an L-dimensional vector a, let |a|p denote the `p norm of
a, and |J| denote the cardinality of J, where
J(a) = {j ∈ {1, . . . , L} : aj 6= 0}.

I In addition, letM(a) denote the number of nonzero elements
of a. Then,

M(a) =
L∑
j=1

1{aj 6= 0} = |J(a)|.

The valueM(α0) characterizes the sparsity of the model (1).
I For any n-dimensional vector W = (W1, . . . ,Wn)′, define the
empirical norm as

‖W ‖n :=

(
n−1

n∑
i=1

W 2
i

)1/2
.



Notation (cont.)

I Let Xi (τ) denote the (2M × 1) vector such that
Xi (τ) = (X ′i ,X

′
i 1{Qi < τ})′ and let X(τ) denote the

(n × 2M) matrix whose i-th row is Xi (τ)′.
I Let α0 = (β′0, δ

′
0)
′.

I Then (1) can be written as

Yi = Xi (τ 0)′α0 + Ui , i = 1, . . . , n.



Notation (cont.)
I Let y ≡ (Y1, . . . ,Yn)′. For any fixed τ , consider the residual
sum of squares

Sn(α, τ) = n−1
n∑
i=1

(
Yi − X ′i β − X ′i δ1{Qi < τ}

)2
= ‖y − X(τ)α‖2n ,

where α = (β′, δ′)′.
I Indicating by the superscript (j) the j-th element of a vector or
the j-th column of a matrix, define the following (2M × 2M)
diagonal matrix:

D(τ) := diag
{∥∥∥X(τ)(j)

∥∥∥
n
, j = 1, ..., 2M

}
.

I We make the following notational convention, that is,
D̂ = D(τ̂) and D = D (τ 0) , and similarly, Ŝn = Sn(α̂, τ̂) and
Sn = Sn (α0, γ0) , etc.



LASSO Estimation

I For each fixed τ , define the LASSO solution α̂(τ) by

α̂(τ) := argminα∈R2M {Sn(α, τ) + λ |D(τ)α|1} ,

where λ is a tuning parameter that depends on n.
I We now estimate τ 0 by

τ̂ := argminτ∈T⊂R {Sn(α̂(τ), τ) + λ |D(τ)α̂(τ)|1} ,

where T := [t0, t1] is a parameter space for τ 0.
I In fact, for any finite n, τ̂ is given by an interval and we
simply define the maximum of the interval as our estimator.

I Then the estimator of α0 is defined as α̂ := α̂(τ̂).



Empirical Illustrations



Empirical Growth Models

I We consider the following model specification:

gri = β0+β1 lgdp60i+X
′
i β2+1{Qi < τ} (δ0 + δ1 lgdp60i + X ′i δ2)+Ui

I The variable Xi is a vector of additional covariates related to
education, market effi ciency, political stability, market
openness, demographic characteristics etc..

I The threshold variable Qi is either real GDP per capita or the
adult literacy rate in the initial year, 1960.

I We include as many covariates (X ) as possible, which would
mitigate the omitted variable bias.

I The main interest would be to find that both β1 and δ1 are
negative and where the appropriate threshold τ lies.



Empirical Growth Models (cont.)

I For comparison, we also estimate the model without the
threshold effect.

I Since we use two different samples depending on the threshold
variables, we estimate four different models in total. (Will be
explained in the next slide.)

I Recall that our method is also robust to the case where there
is no threshold effect.



Data

I We use the Barro and Lee (1994)’s dataset from 1960 to
1985. The literacy rate of each country in 1960 comes from
Durlauf and Johnsen (1995).

I Depending on the selection of the threshold variable, we have
80 observations (Q = GDP) or 70 observations (Q = literacy)
available in the sample.

I Also, the number of regressors are M = 45 (the GDP sample)
and M = 46 (the literacy sample), respectively.

I Since we have 2M regressors in the threshold model, this is a
high-dimensional model and we cannot estimate the model
using the standard least squares method.



Selection of λ

I Theory, which will be shown later, suggests that the

regularization parameter λ is λ := Aσ
√

log(3M )
nrn

.

I The parameters M, n, and rn are determined from data.
I We set A = 2.8.
I Regarding σ, we first calculate its upper bound by the
unconditional sample standard deviation of gr . Next, we
decrease it dividing the upper bound with some constants like
25, 50, . . . , 200.



Estimation Results
Selected Variables by Threshold LASSO with Q = gdp60

Regularization Common Effect (β) Lower Regime Effect (δ)
Parameter

λmax None None

λmax/25 lsk , lbmp None
λmax/50 lsk , lbmp None
λmax/75 lsk , gcon/gdp, lbmp syrm60
λmax/100 lsk , gcon/gdp, wartime, lbmp, syrm60, seccm60, wartime
λmax/125 lsk , lfert, gcon/gdp, wartime, seccm60, wartime

lbmp
λmax/150 lgdp60, lsk , lfert, gcon/gdp, hyrm60, seccm60, tot

wartime, lbmp
λmax/175 lgdp60, lsk , prim60, llife, hyrm60, nom60, seccm60, wartime,

lfert, gcon/gdp, wartime, lbmp tot
λmax/200 lgdp60, lsk , hyrm60, prim60 hyrm60, nom60, seccm60, wartime,

llife, lfert, gcon/gdp, wartime tot, lgdp60×hyrf60
lbmp

lsk : capital savings, lbmp: black market premium, gcon: gov. con.,
lfert: fertility, hyrm: average higher schooling years, secm: percentage
of secondary schooling attained.



Estimation Results (cont.)
Estimates of lgdp60

Regularization LASSO Post LASSO Threshold
Parameter (Least Squares)

λmax/150 -0.0003 −0.0129∗∗∗ 2798
(0.0032)

λmax/175 -0.0026 −0.0163∗∗∗ 2898
(0.0034)

λmax/200 -0.0042 −0.0158∗∗∗ 2898
(0.0034)

∗∗∗ significance at 1% level.



Estimation Results (cont.)
Selected Variables by Threshold LASSO with Q = lr

Regularization Common Effect (β) Lower Regime Effect (δ)
Parameter

λmax None None

λmax/25 lsk , gcon/gdp, lbmp None
λmax/50 lsk , gcon/gdp, wartime, lbmp prim60, tot
λmax/75 lsk , gcon/gdp, wartime, lbmp syrm60, wartime
λmax/100 lgdp60, lsk , lfert, gcon/gdp, pricm60, seccm60

wartime, lbmp
λmax/125 lgdp60, lsk , hyrm60, prim60, pricm60, seccm60, lgdp60×hyrf60

llife, lfert, gcon/gdp, wartime
lbmp, tot

λmax/150 lgdp60, lsk , hyrm60, prim60, pricm60, seccm60, lgdp60×hyrf60
pricm60, llife, lfert, gcon/gdp,
wartime, lbmp, tot

λmax/175 lgdp60, lsk , hyrm60, prim60, pricm60, seccm60, lgdp60×hyrf60
pricm60, llife, lfert, gcon/gdp,
wartime, lbmp, tot

λmax/200 lgdp60, lsk , hyrm60, prim60, pricm60, seccm60, lgdp60×hyrf60
pricm60, llife, lfert, gcon/gdp,
wartime, lbmp, tot



Estimation Results (cont.)
Estimates of lr

Regularization LASSO Post LASSO Threshold
Parameter (Least Squares)

λmax/100 -0.0007 −0.0106∗∗∗ 82
(0.0028)

λmax/125 -0.0041 −0.0174∗∗∗ 82
(0.0031)

λmax/150 -0.0063 −0.0172∗∗∗ 82
(0.0030)

λmax/175 -0.0078 −0.0172∗∗∗ 82
(0.0030)

λmax/200 -0.0090 −0.0172∗∗∗ 82
(0.0030)

∗∗∗ significance at 1% level.



Estimation Results (cont.)

I The initial GDP (lgdp60) has no threshold effect.
I The threshold estimates are slightly above the mean value of
gdp60 and much above the mean value of lr.

I The estimates for lgdp60 are all negative and very significant.
I Education related variables are more important to the lower
regime countries and have threshold effects.

I In the linear LASSO models, we get the similar results for the
estimate of lgdp60. However, it does not show the different
effects of the education variables. Furthermore, when we use
the same magnitude of decreasing steps, the number of
included variables jumps from 3 to 25 at the first step,
λmax/25.



Analysis of the LASSO Estimator



Additional Notation

I Define
I f(α,τ)(x , q) := x ′β + x ′δ1{q < τ},
I f0(x , q) := x ′β0 + x ′δ01{q < τ 0}, and
I f̂ (x , q) := x ′β̂ + x ′δ̂1{q < τ̂}.

I Define

V1j :=
(
nσ
∥∥∥X (j)∥∥∥

n

)−1 n∑
i=1

UiX
(j)
i ,

V2j (τ) :=
(
nσ
∥∥∥X (j)(τ)

∥∥∥
n

)−1 n∑
i=1

UiX
(j)
i 1{Qi < τ},



Additional Notation (cont.)

I Define the events

A :=
M⋂
j=1

{2|V1j | ≤ µλ/σ} ,

B :=
M⋂
j=1

{
2 sup
τ∈T
|V2j (τ)| ≤ µλ/σ

}
,

for a positive constant µ < 1.
I Also define J0 := J(α0) and Rn := Rn(α0, τ 0), where

Rn(α, τ) := 2n−1
n∑
i=1

UiX ′i δ {1(Qi < τ̂)− 1(Qi < τ)} .



A Consistency of the Lasso
I Define Xmax := max (D) and Xmin := min (D (t0)).
I Also, let αmax denote the maximum value that all the
elements of α can take in absolute value.

Lemma (Consistency of the Lasso)
Conditional on the event A

⋂
B, we have∥∥∥f̂ − f0∥∥∥2

n
+ (1− µ)λ

∣∣∣D̂(α̂− α0)
∣∣∣
1

≤ 6λXmaxαmaxM(α0) + 2µλXmax |δ0|1 .

This lemma implies that∥∥∥f̂ − f0∥∥∥
n
.
√
λM(α0),

thereby establishing a consistency of the Lasso, provided that
λM(α0)→ 0 and the probability of A

⋂
B tends to one

asymptotically.



Oracle Inequalities of the Lasso

I We now give oracle inequalities of the Lasso.

Lemma (Oracle Inequalities of the Lasso)
Assume that Assumption 3 holds with κ = κ(s, 1+µ+L11−µ ) for µ < 1
andM(α0) ≤ s ≤ M. Also let Assumption 4 or 5 hold. Then
conditional on the event A

⋂
B, we have∥∥∥f̂ − f0∥∥∥2

n
≤ (2+ L1)

2 X 2maxL2
κ2

λ2M(α0).

and

|α̂− α0|1 ≤
(2+ L1)

2 X 2maxL2
(1− µ)Xminκ2

λM(α0).



Oracle Inequalities of the Lasso (cont.)

I The first oracle inequality implies that∥∥∥f̂ − f0∥∥∥
n
. λ

√
M(α0),

which gives a faster rate of convergence than the previous
lemma such that ∥∥∥f̂ − f0∥∥∥

n
.
√
λ
√
M(α0).

I Also, it gives that

|α̂− α0|1 . λM(α0).



Restricted Eigenvalue (RE) Assumption

I Assumption (Restricted Eigenvalue (RE) (s, c0))
For some integer s such that 1 ≤ s ≤ 2M and a positive number
c0, the following condition holds:

κ(s, c0) := min
J0⊆{1,...,2M},
|J0|≤s

min
γ 6=0,∣∣∣γJc0 ∣∣∣1≤c0|γJ0 |1

|X(τ 0)γ|2√
n|γJ0 |2

> 0.

I This is just a restatement of restricted eigenvalue assumption
of Bickel, Ritov, and Tsybakov (2009) when τ 0 were known.

I It is clearly weaker than the p.d. of n−1X (τ 0)
′X (τ 0) but it

can be shown that the square matrix of any 2s-dimensional
submatrix of X (τ 0) is p.d.

I This ensures the uniqueness of the sparse representation and
is useful to obtain Oracle inequalities.



Oracle Conditions

I Assumption (Oracle Condition I)

Oracle Condition I For some positive constants L1, either of the following conditions
holds: ∥∥f(α0,τ̂) − f0∥∥2n ≤ L1λ ∣∣∣D̂ (α̂− α0)J0

∣∣∣
1
, (2)

λ
∣∣∣∣∣∣D̂1/2α0∣∣∣

1
−
∣∣∣D1/2α0∣∣∣

1

∣∣∣+ Rn ≤ L1λ
∣∣∣D̂1/2 (α̂− α0)J0

∣∣∣
1
, (3)

I This assumption is a high-level assumption that is useful to
obtain an oracle inequality.

I If δ0 = 0, the LHS is zero and thus they are trivially satisfied
with L1 = 0.

I the RHS depends on α̂− α0 while the LHS relies on τ̂ − τ 0.
Thus, these conditions impose restrictions on the relative
convergence of α̂ and τ̂ to their true values, respectively.



Oracle Conditions

Assumption (Oracle Condition II)
For some positive constant L2 <∞, the following condition holds:∥∥f(α̂,τ 0) − f0∥∥2n ≤ L2 ∥∥∥f̂ − f0∥∥∥2n . (4)

I If |τ̂ − τ 0| is of the same order as |α̂− α0| , then this should
hold with large probabilities.

I If δ0 = 0, it would hold as well provided that β̂ and δ̂
converge at the same rate.



Sparsity of the Lasso

I We now provide an oracle inequality regarding the sparsity of
the Lasso estimator α̂.

Lemma (Sparsity of the Lasso)
Assume that the RE assumption with κ = κ(M(α0),

1+µ
1−µ) for

µ < 1 and the oracle condition assumption hold. Assume further
that the largest eigenvalue of X(τ)′X(τ)/n is bounded uniformly in
τ ∈ T by φmax. Then conditional on the event A

⋂
B, we have

M(α̂) ≤ 16φmaxL2
(1− µ)2 (1− L1)2κ2

X 2max
X 2min

M(α0).



Probability of A ∩ B

I We now establish conditions under which A ∩ B has
probability close to one with a suitable choice of λ.

I Define

rn = min
1≤j≤M

∥∥X (j)(t0)∥∥2n∥∥X (j)∥∥2n ,

where X (j)(τ) ≡ (X (j)1 1{Q1 < τ}, . . . ,X (j)n 1{Qn < τ})′ as
before.

Lemma (Probability of A ∩ B)
Let Φ denote the cdf function of the standard normal. Then,

P{A ∩ B} ≥ 1− 6MΦ

(
−µ
√
nrn
2σ

λ

)
.



Theorem (Oracle Inequalities)
Assume that the same conditions as above hold. Let α̂ be obtained
with

λ = Aσ
( log 3M
nrn

)1/2
and A > 2

√
2/µ and µ < 1. Then, with probability at least

1− (3M)1−A
2µ2/8 , we have

∥∥∥f̂ − f0∥∥∥
n
≤ 2Aσ

√
L2

(1− L1)κ

√
M(α0) log 3M

nrn
Xmax,

|α̂− α0|1 ≤
4AσL2

(1− L1) (1− µ)κ2

√
log 3M
nrn

M(α0)
X 2max
Xmin

,

and

M(α̂) ≤ 16φmaxL2
(1− µ)2 (1− L1)2κ2

X 2max
X 2min

M(α0).

The probability in the main theorem is computed by bounding
2Φ (x) by exp

(
−x2/2

)
as in BRT.



Selection of λ

I It is necessary to choose σ.
I Since σ is unknown, we may employ iteration.

I First, we set σ =
(
n−1

∑n
i=1

(
Yi − n−1

∑n
i=1 Yi

)2)1/2
and

compute Ŝn (α̂, τ̂) .

I Second, let σ =

√
Ŝn and estimate (α, τ) . This is reasonable

since the sample variance of Y is an upper bound for σ2.
I Third, let σ =

√
RSS and estimate (α, τ) .

I Fourth, continue till converge.



Discontinuous Threshold Model



Discontinuous Threshold Model
We add the following conditions to characterize the discontinuous
model.

Assumption (Identification under Sparsity)
For some s ≥M (α0) , and for any α ∈ {α :M (α) ≤ s} and τ
such that (α, τ) 6= (α0, τ 0) and |τ − τ 0| ≥ mini 6=j |Qi − Qj | ,∥∥f(α,τ) − f(α0,τ 0)∥∥n 6= 0.

Assumption (Discontinuity of Regression)
For a given s ≥M (α0) , and for any η and τ s.t.
|τ − τ 0| ≥ η > mini 6=j |Qi − Qj | and α ∈ {α :M (α) ≤ s, }, there
exists a c > 0 such that∥∥f(α,τ) − f(α0,τ 0)∥∥2n ≥ cη > 0.



Remark on Discontinuity Assumption
I The classical threshold regression model with discontinuity
satisfies the condition under a fairly general condition that Q
has a density that is continuous and positive everywhere.

I To justify it, the paper works out a simple case where the only
regressor is the constant 1,

E (yi − fi (α, τ))2 − E (yi − fi (α0, τ 0))2

= E (fi (α0, τ 0)− fi (α, τ))2

= (α1 − α10)2 P (Q < τ ∧ τ 0) + (α2 − α20)2 P (Q ≥ τ ∨ τ 0)
+ (α2 − α10)2 P (τ ≤ Q < τ 0) + (α1 − α20)2 P (τ 0 ≤ Q < τ)

≥ c |τ − τ 0| ,

for some c, where α1 = β + δ and α2 = β, unless |α2 − α10|
is too small when τ < τ 0 or |α1 − α20| is too small when
τ > τ 0. However, when |α2 − α10| is small, say smaller than
ε, |α2 − α20| is bounded above zero due to the discontinuity
that α10 6= α20 and P (Q ≥ τ ∨ τ 0) = P (Q ≥ τ 0) is also
bounded above zero. This implies the inequality still holds.
Since the same reasoning applies for the latter case, we can
conclude our discontinuity assumption holds in the standard
discontinuous threshold regression setup.



Additional Assumptions (cont.)

Assumption (Smoothness of Design)
For any η > 0, there exists C such that

sup
j

sup
|τ−τ 0|<η

∣∣∣∣∣1n
n∑
i=1

∣∣∣X (j)i ∣∣∣2 [1 (Qi < τ 0)− 1 (Qi < τ)]

∣∣∣∣∣ ≤ Cη.
Now, introduce an event D, which is defined as{

sup
|τ−τ 0|<η

∣∣∣∣∣2n
n∑
i=1

UiX ′i δ0 [1 (Qi < τ 0)− 1 (Qi < τ)]

∣∣∣∣∣ ≤ λ√η : η1 ≤ η ≤ η2

}
,

where η1 = 36L2
c(1−µ)κ2

X 3max
Xmin

λ2s and η2 = 5λXmaxαmax (M (α̂)) /c .



Theorem (Oracle Inequalities for Discontiuous Threshold
Model)
Under certain regularity conditions and

λ = Aσ
( log 3M
nrn

)1/2
with A > 2

√
2/µ, we have

∥∥∥f̂ − f0∥∥∥
n
≤ 3Aσ

√
L2

κ

(
log 3M
nrn

)1/2√
sXmax,

|α̂− α0|1 ≤
9AσL2

(1− µ)κ2
X 2max
Xmin

(
log 3M
nrn

)1/2
s.

and

|τ̂ − τ 0| ≤
36A2σ2L2
c (1− µ)κ2

X 3max
Xmin

log 3M
nrn

s

M (α̂) ≤ 36φmaxL2
(1− µ)2 κ2

X 2max
X 2min

s,

with probability at least 1− (3M)1−A
2µ2/8 − 8 (3M)−A

2h2n/8rn ,
provided that λ < c (1− µ)X 2min (12XmaxC |δ0|1)

−1 and√
η2 ≥ (2Xmin)−1 C |δ0|1 η2.



Monte Carlo Simulation



Simulation Design

I The base model

Yi = X ′i β0 + X ′i δ01{Qi < τ 0}+ Ui , i = 1, . . . , n,

where Xi is a M-dimensional vector generated from N(0, I ),
Qi is a scalar generated from the uniform distribution on the
interval of (0, 1), and the error term Ui is generated from
N(0, 0.52).

I The threshold parameter is set as τ 0 = 0.3, 0.4, or 0.5
I And β0 = (1, 0, 1, 0, . . . , 0), and δ0 = c · (0,−1, 1, 0, . . . , 0)
where c = 0 or 1. Thus, there is no threshold effect when
c = 0.

I The number of observations is set as n = 200.
I Finally, the dimension of Xi is set as M = 50, 100, and 200, so
that the total number of regressors are 100, 200, and 400,
respectively.



Estimation Algorithm
I A slight modification of the standard LASSO/LARS algorithm:

I Given the regularization parameter λ, we estimate the model
for each grid point of τ that spans over 71 equi-spaced points
on the interval of [0.15, 0.85].

I Next, choose τ̂ by

τ̂ := arg min
τ∈T ⊂R

{
Ŝ (α̂ (τ) , τ) + λ

∣∣∣D (τ)1/2 α̂ (τ)
∣∣∣
1

}
and α̂ := α̂(τ̂).

I The regularization parameter λ is chosen by

λ := A× σ

√
log (3M)

nrn

where rn = minj ||X (j)(t0)||2n/||X (j)||2n and σ = 0.5 is assumed
to be known.

I For the constant A, we use four different values such as
A = 2.8, 3.2, 3.6, 4.0.



Comparison
I Least Squares when possible
I Oracle 1 - knows which variables are relevant
I Oracle 2 - knows the true threshold value τ 0 in addition.
I Criterion: mean-squared prediction error (PE ), which is
computed numerically for each sample as follows.

I For each sample s and corresponding estimates β̂s , δ̂s , and τ̂ s ,
we generate a new data {Yj ,Xj ,Qj} of 400 observations and
calculate

P̂E s =
1
400

400∑
j=1

(
g(xj , qj ;β0, δ0, τ 0)− g(xj , qj ; β̂s , δ̂s , τ̂ s )

)2
where g(x , q;β, δ, τ) = x ′β + x ′δ1{q < τ}. The mean,
median, and standard deviation of the prediction error are
calculated from the 400 replications, {P̂E s}400s=1.

I Dependence: Σ has the form of (Σ)i ,j = ρ|i−j | for
i , j = 1, . . . ,M, and ρ = 0.1, 0.3, and 0.5.



Table: Simulation Results (M = 50, τ 0 = 0.5)

Jump Estimation Regularization Prediction Error τ̂ Consistency
Scale Method Parameter Mean Median SD Bias RMSE

c = 1 LS None 0.285 0.276 0.074 -0.001 0.014
LASSO A = 2.8 0.041 0.030 0.035 -0.002 0.020

A = 3.2 0.048 0.033 0.049 -0.001 0.029
A = 3.6 0.067 0.037 0.086 0.007 0.059
A = 4.0 0.095 0.050 0.120 0.024 0.088

Oracle 1 None 0.013 0.006 0.019 -0.001 0.009
Oracle 2 None 0.005 0.004 0.004 0.000 0.000

c = 0 LS None 6.332 0.460 41.301 N/A
LASSO A = 2.8 0.013 0.011 0.007

A = 3.2 0.014 0.012 0.008
A = 3.6 0.015 0.014 0.009
A = 4.0 0.017 0.016 0.010

Oracle 1 None 0.009 0.008 0.005
Oracle 2 None 0.005 0.004 0.004

Note: M denotes the column size of Xi and τ denotes the threshold parameter.

Oracle 1 & 2 are estimated by the LS when sparcity is known and when

sparcity and τ 0 are known, respectively. All simulations are based on 400

replications of a sample with 200 observations.



Table: Simulation Results (M = 50, τ 0 = 0.3 or 0.4, c = 1)

Threshold Estimation Regularization Prediction Error τ̂ Consistency
Method Parameter Mean Median SD Bias RMSE

τ = 0.3 LS None 2.559 0.511 16.292 0.008 0.021
LASSO A = 2.8 0.062 0.035 0.091 0.014 0.101

A = 3.2 0.089 0.041 0.125 0.037 0.150
A = 3.6 0.127 0.054 0.159 0.078 0.208
A = 4.0 0.185 0.082 0.185 0.147 0.280

Oracle 1 None 0.012 0.006 0.017 -0.001 0.008
Oracle 2 None 0.005 0.004 0.004 0.000 0.000

τ = 0.4 LS None 0.317 0.304 0.095 -0.000 0.014
LASSO A = 2.8 0.052 0.034 0.063 -0.001 0.043

A = 3.2 0.063 0.037 0.083 0.001 0.065
A = 3.6 0.090 0.045 0.121 0.016 0.103
A = 4.0 0.133 0.061 0.162 0.054 0.157

Oracle 1 None 0.014 0.006 0.022 -0.002 0.009
Oracle 2 None 0.005 0.004 0.004 0.000 0.000

Note: The results with c = 0, i.e. no threshold, are very similar to those in

Table 1. The notation and estimation methods are explained in the footnote of

Table 1.



Table: Simulation Results (M = 100, τ 0 = 0.5)

Jump Estimation Regularization Prediction Error τ̂ Consistency
Scale Method Parameter Mean Median SD Bias RMSE

c = 1 LS None N/A N/A
LASSO A = 2.8 0.048 0.033 0.046 -0.003 0.026

A = 3.2 0.056 0.037 0.059 -0.004 0.034
A = 3.6 0.072 0.045 0.087 0.003 0.054
A = 4.0 0.101 0.056 0.122 0.018 0.087

Oracle 1 None 0.013 0.006 0.018 -0.002 0.009
Oracle 2 None 0.005 0.005 0.004 0.000 0.000

c = 0 LS None N/A N/A
LASSO A = 2.8 0.016 0.015 0.008

A = 3.2 0.017 0.015 0.009
A = 3.6 0.019 0.017 0.010
A = 4.0 0.021 0.019 0.012

Oracle 1 None 0.009 0.009 0.005
Oracle 2 None 0.005 0.005 0.004



Table: Simulation Results (M = 100, τ 0 = 0.3 or 0.4, c = 1)

Threshold Estimation Regularization Prediction Error τ̂ Consistency
Method Parameter Mean Median SD Bias RMSE

τ = 0.3 LS None N/A N/A
LASSO A = 2.8 0.060 0.038 0.074 0.004 0.081

A = 3.2 0.084 0.043 0.115 0.026 0.138
A = 3.6 0.121 0.051 0.154 0.069 0.201
A = 4.0 0.175 0.067 0.186 0.135 0.274

Oracle 1 None 0.015 0.006 0.021 -0.002 0.009
Oracle 2 None 0.005 0.004 0.004 0.000 0.000

τ = 0.4 LS None N/A N/A
LASSO A = 2.8 0.052 0.038 0.053 -0.002 0.042

A = 3.2 0.064 0.044 0.069 -0.002 0.056
A = 3.6 0.095 0.052 0.123 0.023 0.112
A = 4.0 0.135 0.066 0.161 0.054 0.160

Oracle 1 None 0.014 0.006 0.021 -0.002 0.008
Oracle 2 None 0.005 0.005 0.004 0.000 0.000



Table: Simulation Results (M = 200, τ 0 = 0.5)

Jump Estimation Regularization Prediction Error τ̂ Consistency
Scale Method Parameter Mean Median SD Bias RMSE

c = 1 LS None N/A N/A
LASSO A = 2.8 0.049 0.039 0.033 -0.004 0.016

A = 3.2 0.058 0.043 0.050 -0.002 0.031
A = 3.6 0.080 0.054 0.083 0.001 0.051
A = 4.0 0.121 0.069 0.137 0.015 0.097

Oracle 1 None 0.015 0.007 0.020 -0.002 0.009
Oracle 2 None 0.006 0.005 0.004 0.000 0.000

c = 0 LS None N/A N/A
LASSO A = 2.8 0.019 0.018 0.010

A = 3.2 0.020 0.019 0.011
A = 3.6 0.023 0.021 0.012
A = 4.0 0.026 0.024 0.014

Oracle 1 None 0.010 0.009 0.005
Oracle 2 None 0.006 0.005 0.004



Table: Simulation Results (M = 200, τ 0 = 0.3 or 0.4, c = 1)

Threshold Estimation Regularization Prediction Error τ̂ Consistency
Method Parameter Mean Median SD Bias RMSE

τ = 0.3 LS None N/A N/A
LASSO A = 2.8 0.067 0.044 0.071 -0.004 0.061

A = 3.2 0.099 0.052 0.131 0.024 0.139
A = 3.6 0.141 0.064 0.171 0.065 0.205
A = 4.0 0.191 0.092 0.195 0.111 0.261

Oracle 1 None 0.014 0.006 0.018 -0.001 0.009
Oracle 2 None 0.005 0.004 0.004 0.000 0.000

τ = 0.4 LS None N/A N/A
LASSO A = 2.8 0.054 0.043 0.039 -0.006 0.020

A = 3.2 0.074 0.050 0.085 -0.003 0.062
A = 3.6 0.104 0.062 0.128 0.013 0.103
A = 4.0 0.155 0.082 0.175 0.040 0.160

Oracle 1 None 0.016 0.007 0.022 -0.002 0.010
Oracle 2 None 0.006 0.005 0.004 0.000 0.000



Table: Simulation Results (M = 50, τ 0 = 0.5, ρ = 0.1)

Jump Estimation Regularization Prediction Error τ̂ Consistency
Scale Method Parameter Mean Median SD Bias RMSE

c = 1 LS None 0.279 0.271 0.067 -0.001 0.013
LASSO A = 2.8 0.048 0.033 0.047 -0.002 0.029

A = 3.2 0.059 0.037 0.068 0.003 0.047
A = 3.6 0.089 0.045 0.118 0.020 0.094
A = 4.0 0.121 0.060 0.141 0.036 0.121

Oracle 1 None 0.012 0.006 0.016 -0.001 0.009
Oracle 2 None 0.005 0.004 0.004 0.000 0.000

c = 0 LS None 6.939 0.437 42.698 N/A
LASSO A = 2.8 0.013 0.012 0.008

A = 3.2 0.014 0.012 0.009
A = 3.6 0.015 0.013 0.010
A = 4.0 0.017 0.015 0.011

Oracle 1 None 0.010 0.009 0.005
Oracle 2 None 0.005 0.004 0.004



Table: Simulation Results (M = 50, τ 0 = 0.5, ρ = 0.3)

Jump Estimation Regularization Prediction Error τ̂ Consistency
Scale Method Parameter Mean Median SD Bias RMSE

c = 1 LS None 0.283 0.273 0.075 -0.001 0.018
LASSO A = 2.8 0.075 0.043 0.087 -0.002 0.086

A = 3.2 0.108 0.059 0.115 0.014 0.129
A = 3.6 0.160 0.099 0.137 0.041 0.177
A = 4.0 0.208 0.181 0.143 0.062 0.217

Oracle 1 None 0.013 0.006 0.017 -0.001 0.011
Oracle 2 None 0.005 0.004 0.004 0.000 0.000

c = 0 LS None 6.939 0.437 42.698 N/A
LASSO A = 2.8 0.012 0.011 0.007

A = 3.2 0.013 0.011 0.008
A = 3.6 0.014 0.013 0.009
A = 4.0 0.016 0.014 0.010

Oracle 1 None 0.009 0.008 0.005
Oracle 2 None 0.005 0.004 0.004



Table: Simulation Results (M = 50, τ 0 = 0.5, ρ = 0.5)

Jump Estimation Regularization Prediction Error τ̂ Consistency
Scale Method Parameter Mean Median SD Bias RMSE

c = 1 LS None 0.289 0.277 0.077 -0.003 0.023
LASSO A = 2.8 0.153 0.133 0.109 0.043 0.209

A = 3.2 0.202 0.231 0.106 0.042 0.257
A = 3.6 0.232 0.255 0.098 0.049 0.283
A = 4.0 0.259 0.271 0.088 0.027 0.300

Oracle 1 None 0.012 0.006 0.014 -0.002 0.012
Oracle 2 None 0.005 0.004 0.004 0.000 0.000

c = 0 LS None 6.939 0.437 42.698 N/A
LASSO A = 2.8 0.011 0.010 0.007

A = 3.2 0.012 0.011 0.007
A = 3.6 0.013 0.012 0.008
A = 4.0 0.014 0.013 0.009

Oracle 1 None 0.009 0.008 0.005
Oracle 2 None 0.005 0.004 0.004



Conclusion



Conclusion

1. We propose the Lasso for high-dimensional regression with a
possible change-point.

2. The method was illustrated by the growth model with
multiple equilibria.

3. We derive the Oracle inequalities (non-asymptotic) for the
Lasso estimators and provide regularity conditions.

4. Main advantage of the proposed method is that it works
without prior knowledge of the presence of change-point.

5. Numerical study demonstrates that it works well under various
scenarios.
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