
1. Introduction

The New Keynesian Phillips Curve (NKPC) has played an important role in recent the-

oretical work on inflation as well as monetary policy analysis. It explains the inflation

dynamics through the relation of expected inflation and marginal cost, and its hybrid

version includes lagged inflation as an additional component that shifts the curve. This

paper empirically examines the US hybrid NKPC focusing on the roles of forward-looking

and backward-looking components and studies the monetary policy implications. However,

rather than using the traditional mean relations, we explore the relations in multiple quan-

tiles. Analyzing multiple quantiles helps investigating various aspects of relations between

inflation and the components in the NKPC other than the conditional mean. In general,

those components may influence not only the conditional mean but also many other char-

acteristics of the conditional distribution, such as expanding its dispersion, stretching one

tail of the distribution, and even inducing multimodality. Thus, it is possible that the roles

of backward-looking and forward-looking components in the NKPC vary across quantiles if

they have assymmetric relations to the uncertainty structure of inflation, and relying only

on the mean would not be sufficient to capture the relations. Explicit investigation of these

relations via multiple quantile estimation can provide a more informative empirical analysis.

The primary purpose of using multiple quantile model in this paper is to make a useful

inference of the asymmetric monetary policy. The asymmetry can be captured in two

ways. First, the monetary authority may respond asymmetrically to different economic

circumstances. If the central bank expects inflationary pressure in the near future, it has

to focus more on the probability that future inflation will exceed a certain level, such as

the target range in the inflation targeting system; thus, the equations for upper quantiles

are more interesting. Second, the policy effect on the risk of inflation is asymmetric. If the

quantile coefficients are asymmetric in the upper and lower quantiles, then the increase and

decrease in the components change the distribution in an asymmetric way, indicating that

the changes in the risk structure in expansionary and tightening monetary policies would

be different.

The NKPC model used in this paper is the hybrid version. The canonical NKPC based on

Calvo (1983) does not contain the lagged inflation term, and as Gali, Gertler, and López-

Salido (2005) point out, the microfoundation of the lagged term is not clear. However,

Fuhrer and Moore (1995) find that the canonical NKPC is not successful in explaining the

stylized fact that the monetary policy has a delayed effect on inflation. Thus, many works

augment the NKPC with lagged inflation to capture the persistency of inflation, calling it a

hybrid NKPC, and thereby improve analysis of the lagged effect (Adam and Padula (2011),

Fuhrer and Moore (1995), Gali and Gertler (1999)). On the other hand, Hall et al. (2009)
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and Kim and Kim (2008) claim that a seemingly significant lagged inflation coefficient

is primarily due to the misspecification of the NKPC such as the existence of a structural

break and nonlinearity. Examining the backward looking component provides an important

monetary policy implication. Without the lagged inflation, the monetary policy effect is

generally described by the direct change in expected inflation due to the policy change.

The presence of the backward looking component indicates the indirect effect of monetary

policy by affecting the real economy, implying that the policy effects are more complicated.

We estimate the model using Chernozhukov and Hansen (2008)’s instrumental variable

quantile regression(IVQR) and use Fitzenberger (1997)’s moving blocks bootstrap to esti-

mate the heteroscedasticity and serial correlation robust (HAC) varianc-covariance matrix.

Chortareas, Magonis, and Panagiotidis (2012) estimate a similar model with a different

method using the Euro data. But their estimation is not based on the HAC estimation,

which generally loses the consistency in this structural set-up of the NKPC. Also, their

suggested estimation method does not provide the covariance estimators for coefficients in

different quantiles, which makes it hard to test the asymmetry. Considering recent findings

of the existence of structural breaks in the inflation process (Clark and McCracken (2006),

Estrella and Fuhrer (2003), and Jouini and Boutahar (2003)), and the relations of the struc-

tural breaks and the backward-looking component (Kim and Kim (2008)), we also perform

a test for a single structural break in each quantile level.

The estimation results without a structural break substantially differ across quantile lev-

els. In upper quantiles, the estimated coefficients are close to those of canonical NKPC in

that the expected inflation coefficients are higher and the lagged inflation is statistically

insignificant. However, the estimation somewhat supports the hybrid version in the mid

and lower quantile levels, in which the coefficients for the lagged inflation are significant.

Moreover, the results support the view that inflation becomes riskier in the sense of dis-

persive order (Shaked and Shanthikumar (2006)) when increasing expected inflation while

decreasing expected inflation makes it less risky. These results indicate that contractionary

monetary policy would be more efficient in terms of reducing risks.

The structural break tests detect the existence of a break in all quantile levels, and

the break point generally ranges between 1982 and 1983. The pattern of nondecreasing

expected inflation coefficient with respect to quantile is still present after the break. As for

the lagged inflation coefficient, there is a moderate change after the break: The coefficient

is statistically insignificant even in lower quantiles. This result indicates that, when there

is a change in the monetary policy, it is expected that the risk changes immediately while

there is still a lagged effect around the median.
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The remainder of this paper is organized as follows. Section 2 introduces multiple quantile

models in the bench mark NKPC. Section 3 shows the results of the empirical analysis and

Section 4 concludes.

2. The New Keynesian Phillips Curve and the Conditional Quantile Model

The canonical NKPC model, originated from Calvo (1983)’s staggered price setting to-

gether with forward-looking economic agents, expresses current inflation as a function of

expected inflation and marginal costs. This model has faced criticism due to insufficient

explanation of the persistence of the US inflation dynamics. The hybrid version was intro-

duced to tackle this problem by including backward-looking component (Gali and Gertler

(1999)), which can be expressed as

(2.1) πt = γ0 + γfπe
t+1 + γbπt−1 + λmct

where πt is the rate of inflation, πe
t+1 is expected inflation for t + 1 at time t, and mct

is marginal cost of production. If γb = 0, (2.1) is reduced to the canonical NKPC. The

choice between the canonical model and the hybrid version has been an important issue

not only in theoretic explanation of the inflation dynamics, but also in policy analysis. The

presence of lagged inflation in the NKPC indicates the lagged effect of the monetary policy

via changing the real economy while the forward-looking term explains the direct effect by

changing economic agents’ expectation. Consequently, an important policy implication of

the hybrid version is that, if the backward-looking component is not significant, the central

bank can control current inflation by managing expected inflation with little distortion of

the real economy. Gali and Gertler (1999), Gali, Gertler, and López-Salido (2001), and

Sbordone (2002, 2005) show that expected inflation is an important driving force of current

inflation, while Fuhrer and Moore (1995), Fuhrer (1997), and Roberts (1997) insist that

lagged inflation is a more important component than expected inflation in explaining actual

inflation.

The main purpose of this paper is to examine the hybrid NKPC at multiple quantile

levels. To this end, we introduce the conditional quantile equation to the NKPC. Let

xt = (1, πe
t+1, πt−1,mct) and zt be the vector of instrumental variables for xt. In addition, let

πt have the conditional distribution function Ft(π) = Pr(πt ≤ π|Ωt), where Ωt = {Ft−1, zt}

and Ft−1 is the information set at t− 1. The αth quantile of πt conditional on Ωt, denoted

as qα
t , is defined as

qα
t ≡ inf

v∈R
{v : Ft(v) > α}

or if Ft(π) is continuous, qα
t ≡ F−1

t (α)(2.2)
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That is, conditional quantile qα
t is that the probability of πt being less than qα

t is α. In

this paper we assume that there exists a parameter vector βα = (γα
c , γα

f , γα
b , λα)′ for all

0 < α < 1 such that the NKPC in Equation (2.1) applies to the quantile function qα
t , i.e.

qα
t = γα

c +γα
f πe

t+1 +γα
b πt−1 +λαmct . Then the conditional quantile model can be rewritten

in a more familiar formulation as

(2.3) πt = x′
tβ

α + ǫα
t t = 1, . . . , T

where εα
t has the following quantile restriction of Pr(εα

t < 0|Ωt) = α. The data generating

process of (2.3) is not truly distinctive to common linear regression models. Indeed, many

traditional conditional mean equations can be transformed to (2.3). For example, consider

the conventional NKPC model (2.1) with heteroscedastic error.

(2.4) πt = x′
tβ + x′

tγǫt

where β is the mean parameter, and ǫt is iid with E[ǫt|Ωt] = 0. The conditional quantile of

πt in (2.4) is then simply qα
t = x′

tβ + x′
tγ · qα,ǫ

t = x′
tβ

α
t , where q

α,ǫ
t is the αth quantile

of ǫt and βα = β + γq
α,ǫ
t . Thus, the quantile parameter βα is determined by the mean

parameters β, the scale parameters γ, and other parameters that determine the shape of

the conditional distribution.

This comparison clarifies a motivation to consider the quantile model in that the con-

ditional mean model is insufficient to make inferences about the risks of inflation. The

measurement and management of uncertainty have been an important issue in macroeco-

nomics. For this reason, many of the central banks prefer density forecasts of inflation, such

as the inflation fan chart, to point forecasts in the sense that the former contain the uncer-

tainty structure of the forecasts. Conditional quantiles have more information than simply

the conditional mean because they include information about the uncertainty structure of

the variable of interest such as skewness, kurtosis, and any other factors determining the

shape of the distribution.

Another strength to consider multiple quantile model is that doing so captures the asym-

metric monetary policy. The conventional mean equation assumes symmetry. For instance,

the effects of inflation on the expected inflation gap and the expected deflation gap are

equivalent as long as the size of the gap is the same; thus, the Fed’s responses to inflation-

ary and deflationary pressures are identical. However, if a model contains the equations for

multiple quantiles, it is possible to capture the asymmetry of the responses in two ways:

First, the responses of monetary authorities are asymmetric. It is reasonable to consider

that the monetary authorities are interested in different quantiles depending on different

economic circumstances. For example, suppose a central bank adopts the inflation targeting

system to commit it to stabilizing the inflation in a specific range. Then, if the central bank
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expects inflationary risk in the near future, it must focus more on the probability that the

future inflation will exceed the upper bound of the target range. Accordingly, the equations

for upper quantiles are more useful in implementing a policy reaction. Consequently, if the

coefficients for the NKPC are different between lower and upper quantiles, the Fed’s reac-

tion should be different according to whether it is an inflationary or a deflationary pressure

periods.

Second, the policy effect on the risk of inflation is asymmetric in that having monotonic

quantile coefficients with respect to the level of quantile implies that stochastic orders

that measure the risk asymmetrically change with a change in the covariates. A process is

considered to be less risky (or less uncertain) if the probability distribution is less dispersed.

More precisely, X is defined to be smaller than Y in dispersive order if for all 0 ≤ α1 ≤

α2 ≤ 1, the quantiles for X and Y , denoted as qα
Xt and qα

Y t, respectively, satisfy qα2

Xt− qα1

Xt ≥

qα2

Y t − qα1

Y t and the inequality holds for at least one pair of αs. Suppose πe
t+1 is increased

by 1% point, then the quantile distances of πt are changed by γα2

f − γα1

f . Thus, if γαi

f

is monotonically increasing with αi, the distances between quantiles get wider with the

increase in πe
t+1, which implies that the risk of πt becomes larger in the sense of dispersive

order. That is, an expansionary monetary policy that increases πe
t+1 may also increase the

uncertainty of inflation while a tightening monetary policy decreases it. On the other hand,

if the lower and upper quantile coefficients are different, a change in the value of covariate

spreads the tails of distribution in different ways depending on the sign of the change, which

alters the risk structure in asymmetric ways.

This asymmetry is also viewed as capturing various types of asymmetric loss function

in forecasting. As Granger and Newbold (1986) point out, although an assumption of

symmetry about the conditional mean is likely to be an easy one to accept, a symmetry

assumption for the loss function is much less acceptable and the corresponding practitioners

are more likely to use asymmetric loss functions. In this case, the loss function for forecasting

πt+i is generally defined as

(2.5) L(ǫ̂t+i) = L1(ǫ̂t+i)1{ǫ̂t+i>0} + L2(ǫ̂t+i)1{ǫ̂t+i<0}

where ǫ̂t+i is the forecast error of πt+i. One popular choice for the asymmetric loss function

is the LinLin loss function suggested by Granger (1969), in which Li = ai|ǫ̂t+i|. If the loss

function is LinLin, the optimal forecast is equivalent to the forecast of the ath
2 conditional

quantile. That is, when the linear quantile model is constructed for forecasting purposes,

the conditional quantile model is consistent with the optimal linear forecasting in which

practitioners put more weight on positive/negative forecast error, that is, for α < 0.5, they

are concerned with the possibilities that the actual process is less than the forecasted value.

It is reasonable to assume that central banks are more concerned about stabilizing inflation
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and macroeconomy, while governments are more likely to boost the economy by emphasizing

on the growth at the cost of modest inflation. Thus, it is expected that central banks will

be more interested in the upper quantile of the inflation process, while governments concern

more with the lower quantiles.

3. Empirical Analysis

3.1. Data Description and Issues

. Some empirical issues have arisen in the choice of data in the hybrid NKPC. First, the

empirical analysis of the forward-looking behavior is affected by what is used as a proxy

for expected inflation. A traditional method is to use realized future inflation data (Gali

and Gertler (1999)). However, using actual πt+1 may induce a measurement error (Zhang,

Osborn, and Kim (2007)), and often causes the problem of weak identification of the instru-

ments (Mavroeidis (2006)). Instead, Zhang, Osborn, and Kim (2009) and Adam and Padula

(2011) use observed inflation expectation data which can mitigate the problems. Following

the latter, we use the US Survey of Professional Forecast (SPF) of GDP deflator inflation

as a proxy for πe
t+1. As introduced by Croushore (1993), SPF is useful for monetary policy

analysis and for measuring the response of expectations to policy change.

Another issue is the measure of the marginal cost of firms. Labor income share and

output gap are widely used as proxies for real marginal cost. Gali and Gertler (1999) insist

that labor income share is a more suitable measure than output gap for real marginal cost,

while Neiss and Nelson (2005) argue that output gap better explains the inflation dynamics

of the NKPC when it is estimated in theory-consistent manner. We consider both measures

to calculate the marginal cost by using real GDP and non-farm unit labor cost (ULC).

GDP is detrended using either the CBO’s PGDP or Hodrick-Prescott filtering. ULC is

detrended using Hodrick-Prescott filtering. Consequently, we estimate NKPC using three

different marginal cost data sets. The data used in the estimation span the quarterly period

between 1969:I and 2008:II. All data are seasonally adjusted. Detailed data descriptions

are provided in Table 6.

Figure 1 shows the GDP deflator inflation and the GDP gap from CBO, with the GDP

gap on the left vertical axis and the right vertical axis indicating inflation. As can be seen

from the figure, actual inflation has been stable at a low level since the mid-1980s. On the

other hand, the GDP gap has expanded its cycle to about 10 years. Clearly, the GDP gap

shows a different pattern between the high inflation period, before the mid-1980s, and the

low inflation periods, after the mid-1980s, when the second oil shock ended. This result

has two possible interpretations. First, the empirical analysis may require structural breaks
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Figure 1. GDP deflator inflation and GDP gap

because of the change in the economic environments. Second, the traditional conditional

mean model cannot explain the economic surroundings because the relationship between

inflation and the GDP gap appears differently according to the levels of inflationary pressure.

This section empirically examines the possibilities of both interpretations.

Figure 2 represents the GDP deflator inflation and SPF inflation forecasts and shows that

the actual inflation and the inflation forecasts have very similar patterns. However, when

actual inflation increases, the inflation forecasts are usually less than the actual inflation.

When the actual inflation decreases, the inflation forecasts are greater than the actual

inflation. That is, the relation between actual inflation and the inflation forecast differs

according to the level of inflationary pressure. Thus, multiple quantile analysis can be

useful to analyze the various economic situations.

3.2. Empirical Findings

. This section estimates the US NKPC at multiple quantile levels. Although using SPF

mitigates the endogeneity problem, as Zhang, Osborn, and Kim (2009) point out, it may not

completely overcome the endogeneity bias because (1) the current output gap is endogenous

in that a demand shock causes both GDP and the noise in NKPC, and (2) SPF is possibly

correlated with the noise in that one can observe the noise when performing the current
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Figure 2. GDP deflator inflation and the SPF inflation forecasts

forecast. Therefore, we estimate the model using instrumental variable quantile regression

(IVQR) of Chernozhukov and Hansen (2008) in which the four lags of inflation, interest rate

spread (10-year treasury bill rate - 3-month treasury bill rate), the nominal wage growth,

and the measure of the marginal cost are used as instruments.

The basic idea of the IVQR method is that, from the quantile condition Pr[πt < γα
c +

γα
b πt−1 + γα

f πe
t+1 + λαyt|Ωt] = α, if we regress the quantile of πt − γ̄α

f πe
t+1 − λ̄αyt on πt−1

and zt, then γ̄α
f and λ̄α will be close to their true values if the coefficients for zt are close

to zero. Consequently, the estimation is done by searching for values of (γ̄α
f , λ̄α) that make

the coefficient for z closest to zero. We set the search range for γα
f as [0, 1.5], and for λα as

[−0.1, 1.0] with an interval of 0.01, respectively. Because the structural equation contains

only the first lag of the inflation, it is reasonable to consider a possible serial correlation

of the error process as well as the heteroscedasticity. The covariance estimator suggested

by Chernozhukov and Hansen (2008) is robust to heteroscedasticity but is not consistent

under the existence of the serial correlation. Thus, it is desirable to seek an alternative

estimator that is heteroscedasticity and autocorrelation consistent (HAC). In this paper,

we apply Fitzenberger (1997)’s moving blocks bootstrap (MBB) which is shown to have a

HAC property in quantile regression. Because our framework of IVQR is a generalization

of the quantile regression, the MBB standard error will obtain the HAC property. We
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Table 1. Estimation results using GDP (full sample)

CBO’s PGDP H-P filtered trend
α πe

t+1 πt−1 yt c πe
t+1 πt−1 yt c

0.1
0.530∗∗ 0.377∗∗ 0.010 -0.788 0.600∗∗ 0.328∗∗ 0.030 -0.817
(0.184) (0.105) (0.167) (0.369) (0.131) (0.126) (0.077) (0.418)

0.2
0.620∗∗ 0.339∗∗ 0.070 -0.559 0.590∗∗ 0.335∗∗ 0.100 -0.499
(0.125) (0.084) (0.037) (0.335) (0.099) (0.081) (0.058) (0.207)

0.3
0.520∗∗ 0.451∗∗ 0.100 -0.431 0.560∗∗ 0.364∗∗ 0.120∗ -0.351
(0.159) (0.034) (0.120) (0.424) (0.119) (0.101) (0.060) (0.206)

0.4
0.540∗∗ 0.458∗∗ 0.110 -0.256 0.540∗∗ 0.402∗∗ 0.180∗ -0.151
(0.201) (0.156) (0.120) (0.607) (0.131) (0.116) (0.086) (0.235)

0.5
0.500∗ 0.497∗∗ 0.140 0.048 0.480∗ 0.490∗∗ 0.150 0.116
(0.211) (0.153) (0.156) (0.739) (0.128) (0.118) (0.115) (0.222)

0.6
0.730∗∗ 0.357∗∗ 0.230∗∗ 0.014 0.700∗∗ 0.362∗ 0.220 -0.022
(0.136) (0.117) (0.071) (0.227) (0.146) (0.138) (0.117) (0.253)

0.7
0.810∗∗ 0.395∗∗ 0.190∗∗ -0.107 0.830∗∗ 0.314∗ 0.210∗ 0.027
(0.131) (0.114) (0.070) (0.264) (0.151) (0.157) (0.111) (0.299)

0.8
1.090∗∗ 0.208 0.220∗ -0.156 1.220∗∗ 0.158 0.230∗ -0.057
(0.118) (0.168) (0.074) (0.347) (0.107) (0.209) (0.117) (0.576)

0.9
1.370∗∗ 0.225 0.220∗ 0.416 1.220∗∗ 0.263 0.020 0.278
(0.142) (0.219) (0.110) (1.012) (0.147) (0.242) (0.112) (0.933)

mean
0.694∗∗ 0.433∗∗ 0.177∗∗ -0.340 0.687∗∗ 0.399∗∗ 0.178∗ -0.255

eq. (0.089) (0.075) (0.028) (0.157) (0.092) (0.082) (0.056) (0.147)

Notes: a) Standard errors appear in parentheses.
b) ∗∗ and ∗ in πe

t+1, πt−1 and yt columns indicate statistical significance at
1% and 5% levels, respectively.

c) The standard deviation is calculated based on MBB with 500 bootstrap
resampling and the block size of 8.

d) The mean equation is estimated by GMM with Newey-West co-
variance estimator.

use 500 bootstrap resampling with the block size of 8 quarters to estimate the standard

deviation of the coefficients.

Note that IV QR is the equation-by-equation single estimation, while our set-up of mul-

tiple quantiles is a special form of multiple-equation models. But we maintain the single

estimation method because, as Jun and Pinkse (2009) find, the efficiency loss of the single

estimation is asymptotically negligible when the regressors are identical for all quantile lev-

els such as ours. Instead, the bootstrap covariance estimator is calculated in the multiple

quantile equations set-up, to perform the test of asymmetry across different quantiles.

The estimation results using GDP as a proxy for the marginal cost are shown in Table

1. Substantial differences occur in the effect of the expected inflation across the lower and
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Table 2. Selected test results for differences in πe
t+1 coefficients

Alt. Hypothesis γ0.2
f > γ0.1

f γ0.6
f > γ0.5

f γ0.6
f > γ0.2

f γ0.7
f > γ0.5

f

F-stat
PGDP 0.3758 3.0756∗ 0.3916 3.4321∗

HP filter 0.3900 2.4569 0.3038 4.1241∗

Alt. Hypothesis γ0.7
f > γ0.2

f γ0.8
f > γ0.5

f γ0.8
f > γ0.2

f γ0.9
f > γ0.2

f

F-stat
PGDP 1.1074 6.2689∗∗ 6.0025∗ 42.3483∗∗

HP filter 1.5488 6.9919∗∗ 12.8574∗∗ 11.2842∗∗

Notes: a) ∗∗ and ∗ indicate statistical significance at 1% and 5% levels, respectively.
b) Tests are done separately for each pair of the coefficients to perform one-

sided tests. The tests of joint hypothesis that all βαi

1
s are equivalent are

rejected at 1% level.

upper quantiles: that is, the coefficient for πe
t+1 is higher in the upper quantiles compared

to the lower quantiles. The coefficient for the lagged inflation is moderately higher in mid-

quantiles, but is statistically insignificant in the upper quantiles. The results are similar

for all the measures of the marginal cost. Consequently, we find different patterns of the

inflation dynamics in lower, mid, and upper quantiles. In the upper quantiles, the inflation

is more toward the canonical NKPC in which the backward-looking component is negligible,

and the hybrid version fits the mid and lower quantiles better, while the backward-looking

component is moderately more important in the mid-quantiles.

As noted in the previous section, the coefficients for πe
t+1 and πt−1 explain how the Fed’s

monetary policy affects the inflation. A high coefficient for πe
t+1 indicates that the Fed’s

announcement of a monetary policy change causes the inflation to change faster so that

the monetary policy is more effective. Lower coefficients for πt−1 indicates that the lagged

effect of the monetary policy via the change in the real economy is relatively weaker so

that the monetary policy affects inflation with little distortion of the real economy. The

estimation result indicates that the Fed’s monetary policy concerning inflationary pressure

can quickly decrease the upper risks. For instance, many central banks adopting inflation

targeting system intend for the inflation to stay within a target range. Thus, the risk that

the inflation will be outside the range is its primary concern. Our estimate results indicate

that, when the economy is currently facing an inflation, the monetary policy effectively

eliminates the risk faster than what we expect based on the point path of the inflation.

As note in Section 2, a monotonic increasing γα
f implies that the overall uncertainty of πt

becomes larger as πe
t+1 increases in the sense of dispersive order. To examine the monotonic

increasing γα
f , we also perform the test of H1 : γα2

f − γα1

f > 0 for all possible αs of which

selected test results are shown in Table 2. We find no evidence of decreasing coefficient

with increasing α, and, in most upper α2 with mid and lower α1, the tests indicate γα2

f
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Figure 3. Conditional densities given various πe
t+1 using GDP

is greater. Consequently, within the chosen nine quantiles, our test results do not counter

to the argument that decreasing expected inflation can reduce the overall uncertainty of

inflation, and vice versa.
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The dependency of the shape of the conditional distribution with respect to the economic

condition is clearer if we look at the conditional density functions at the various levels of

expected inflation. We draw rough estimates of the conditional densities by transforming

nine quantile levels to a density function. Note that a quantile is, by definition, the inverse

mapping of the cumulative distribution function. Therefore, we can obtain the density

function via inverse mapping if we have sufficient levels of quantiles. Our transformation

is a rough approximation in that we have only nine observations in this inverse mapping:

that is, our figure is based on nine observations of the probability distribution function. In

charting the densities, we assume that the inflation at t − 1 is the historical average, 3%,

and examine the case when the expected inflation is 1% point above, equivalent to, and 1%

point below πt−1, respectively. For simplicity, we disregard the effect of output and focus

on the effect of forward-looking component.

Figure 3 shows the conditional densities using the CBO’s PGDP, in which the bands with

different shades indicate different quantile levels. In each graph, the median is represented

with the bold line. The two darkest bands on either side of the median represent equal

probability density (10%), resulting in a 20% confidence band around the median. That is,

the probability that the inflation lies in this range is 20%. In the same way, adding the next

two darkest shades creates a 40% confidence band, and the largest bands indicate an 80%

one. The same color bands are not of equal width if the risks are unbalanced. If we regard

the median as the central projection, then a wider band on one side indicates that more

risks occur to that side in that there is a greater chance that the actual inflation in that

direction is far from the central projection. For example, if one is concerned with the 20%

confidence band around the median, in Figure 3(a), then one does not have to worry about

inflation exceeding the median, but should be concerned with the other direction that is up

to 0.3% point below the median.

The figure shows that the shape of the conditional distribution clearly depends on the

value of πe
t+1. The density is positively skewed if there is deflationary pressure (πe

t+1 < πt−1),

and the skewness moves downward as πe
t+1 goes up. In addition, there is a substantial change

in the upper part of the distribution when πe
t+1 shifts, while the downward part is stable.

That is, a higher expected inflation than πt−1 spreads out the upper tails of the conditional

distribution, while a lower one causes little change. This asymmetry in the figure provides

useful information about the asymmetric effect of the monetary policy, shifting expected

inflation. For example, suppose the Fed reacts to increasing inflationary pressure by an-

nouncing a policy change to suppress the inflation. If the announcement affects economics

agents’ expectation of the future inflation path, the conditional distribution would shift

from Figures 3(c) or 3(d) ( 3(e) or 3(f)) to 3(a) (3(b)), if we disregard the level of πt−1 and

focus on the change in πe
t+1 − πt−1. We can also view 3(e) and 3(f) as the risk effect of the
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opposite case: easing the monetary policy. The figures show that the upper risks are re-

duced significantly after the announcement of a tightening monetary policy compared with

little change in the lower risk. When comparing 3(c) to 3(a), the 60%-70%, 70%-80% and

80%-90% bands are decreased by 0.08, 0.28, and 0.34 percent point, respectively. On the

other hand, the expansionary policy to overcome recession has little effect on the downside

risk while increasing the risk of inflation. Consequently, if we assume that the effect of the

monetary policy on expected inflation is symmetric, the monetary policy is more effective

in eliminating the risks when tightening rather than easing. The asymmetric pattern is un-

changed even if we view the conditional mean as the central projection although the effect

is milder. Since the asymmetry is due to the nondecreasing expected inflation coefficient,

the results is still valid even when the previous inflation is lower so that an expansionary

policy is more reasonable. We chart a distribution when πt−1 = 2% as shown in Figure 7,

which shows that the asymmetric pattern is unchanged.

In the above estimation, we exclude a possible structural break in each quantile NKPC.

However, many researchers have detected structural breaks in the inflation processes. Clark

and McCracken (2006) find a break in 1982, while Estrella and Fuhrer (2003) suggest

another break in 1984. Furthermore, Kim and Kim (2008) find that the backward-looking

component is negligible if structural breaks at 1977 and 1982 are explicitly considered in

the hybird NKPC. Accordingly we perform the structural break test, estimate the break

point and finally modify the NKPC including the detected structural breaks. A few studies

propose structural break test methods in quantile equations. Qu (2008) applies supF and

expF type tests to quantile regressions. Lee (2010) suggests the quantile counterpart of

Elliott and Müller (2006)’s point optimal test. This paper uses the supF test because it

provides a break point estimate as a by-product of the test.

Qu (2008)’s supF test does not explicitly consider the instrumental variable case. How-

ever, it is not difficult to show that the test is valid for instrumental variable estimation

if the coefficient estimators in the split samples are asymptotically normal under the null

hypothesis of no structural break, which is proved in Chernozhukov and Hansen (2008).

Rather than performing a single Bai-Perron type test in all quantiles, we perform the test

independently at each quantile level to examine the specific property of the structural breaks

across different quantiles.

Table 3 shows the structural break test results. The tests reject no structural break

at most quantile levels regardless of the choice of the measure of the marginal cost. In

most cases, the test detects a break between 1982 and 1984. The break point is consistent

with the existing tests for the conditional mean coefficients. However, we could not find a

distinctive pattern in the break points across different quantiles. Note that a change in the
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Table 3. Test results for structural breaks

CBO’s PGDP GDP H-P filter ULC H-P filter
α supF break point supF break point supF break point

0.2 56.90∗∗ 82:II 81.45∗∗ 81:II 33.01∗∗ 82:IV
0.3 85.72∗∗ 82:III 73.51∗∗ 83:IV 23.90∗∗ 83:IV
0.4 70.94∗∗ 82:II 40.76∗∗ 83:III 138.51∗∗ 81:IV
0.5 161.81∗∗ 82:III 63.15∗∗ 83:IV 65.09∗∗ 82:I
0.6 157.60∗∗ 84:III 54.02∗∗ 83:IV 51.57∗∗ 82:I
0.7 42.52∗∗ 83:II 74.02∗∗ 82:II 78.26∗∗ 82:I
0.8 34.14∗∗ 82:III 49.60∗∗ 82:III 64.05∗∗ 83:I

Notes: ∗∗ and ∗ indicates that the test rejects the hypothesis of no structural
break at 1% and 5% levels, respectively.

conditional mean indicates a shift in distribution function, thereby a shift in all quantiles.

Accordingly, it is natural that we observe a structural break in all quantiles if there is a

structural break in the conditional mean.

To examine the effect of the structural break across quantiles, we estimate the model using

the data from 1984:I. Roughly, the pre-break period was dominated by high inflation while

stable inflation was common after the break. Table 4 shows the result using the GDP in the

post-break period. The overall pattern of γ̂α
f is similar to the full sample case, although the

monotonic nondecreasingness is less clear. The coefficient for πe
t+1 is around 0.5 when q is less

than 0.8 while it is substantially higher in the upper quantiles. Consequently, the downside

risk is stable with respect to the change in πe
t+1, but there is a substantial asymmetric

change in the upside risk in response to a tightening or an expansionary monetary policy.

As for the πt−1 coefficient, there is a considerable variation across quantiles: The coefficient

is greater and statistically significant around the median, supporting the hybrid version of

NKPC, and is close to zero and insignificant when the quantile goes further toward the

end of the distribution. These results indicate that, when a change in the monetary policy

occurs, it is expected that the risk responds more quickly while there is a lagged effect

around the median. The median estimation results coincide with the conditional mean

estimation results in that the lagged effect is statistically significant, but this finding is

counter to that of Kim and Kim (2008).

Figure 4 shows the conditional densities for post-break inflation when the GDP gap is

used as a proxy for the marginal cost. There are moderate changes after focusing on post-

break data: We find a symmetry or a mild asymmetry in the risk structure when the

confidence bands are 20% and 40%. However, a substantial asymmetry still exists in the

larger confidence bands.
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Table 4. Estimation results using GDP (1984:I - )

CBO’s PGDP H-P filtered trend
α πe

t+1 πt−1 yt c πe
t+1 πt−1 yt c

0.1
0.405∗∗ 0.186 0.060 -0.065 0.360∗ 0.160 0.050 0.302
(0.129) (0.117) (0.060) (0.342) (0.153) (0.115) (0.090) (0.419)

0.2
0.435∗∗ 0.178 0.020 0.225 0.540∗∗ 0.035 0.100 0.254
(0.104) (0.124) (0.044) (0.315) (0.096) (0.106) (0.075) (0.263)

0.3
0.390∗∗ 0.301∗∗ 0.040 0.439 0.490∗∗ 0.148 0.080 0.354
(0.100) (0.118) (0.039) (0.300) (0.093) (0.117) (0.070) (0.284)

0.4
0.465∗∗ 0.197 0.040 0.476 0.430∗∗ 0.241∗ 0.100 0.432
(0.103) (0.121) (0.048) (0.277) (0.092) (0.110) (0.081) (0.256)

0.5
0.420∗∗ 0.357∗∗ 0.020 0.426 0.350∗∗ 0.489∗∗ 0.080 0.559
(0.078) (0.099) (0.062) (0.254) (0.088) (0.101) (0.088) (0.276)

0.6
0.360∗∗ 0.413∗∗ 0.040 0.641 0.350∗∗ 0.477∗∗ 0.060 0.469
(0.076) (0.071) (0.056) (0.268) (0.094) (0.081) (0.087) (0.312)

0.7
0.450∗∗ 0.414∗∗ 0.040 0.548 0.830∗∗ 0.363∗ 0.040 -0.231
(0.128) (0.091) (0.060) (0.342) (0.156) (0.119) (0.093) (0.353)

0.8
0.990∗∗ 0.147 0.100 0.295 1.140∗∗ 0.060 0.230∗ 0.014
(0.243) (0.161) (0.090) (0.519) (0.236) (0.190) (0.106) (0.547)

0.9
1.060∗∗ 0.090 0.120 1.182 1.180∗∗ -0.127 0.220∗ 0.831
(0.208) (0.218) (0.109) (0.959) (0.209) (0.245) (0.108) (0.953)

mean
0.604∗∗ 0.203∗∗ 0.049∗∗ 0.338 0.618∗∗ 0.210∗∗ 0.074 0.268

eq. (0.086) (0.063) (0.028) (0.209) (0.069) (0.057) (0.047) (0.203)

Notes: a) Standard errors appear in parentheses.
b) ∗∗ and ∗ in πe

t+1, πt−1 and yt columns indicate statistical significance at
1% and 5% levels, respectively.

c) The standard deviation is calculated based on MBB with 500 bootstrap
resampling and the block size of 8.

d) The mean equation is estimated by GMM with Newey-West co-
variance estimator.

Table 5. Selected test results for differences in πe
t+1

coefficients(1984-)

Alt. Hypothesis γ0.2
f > γ0.3

f γ0.2
f > γ0.5

f γ0.2
f > γ0.6

f γ0.3
f > γ0.5

f

F-stat
PGDP 0.0092 0.0911 0.0074 0.2963

HP filter 0.1515 1.1246 1.3622 0.8099

Alt. Hypothesis γ0.3
f > γ0.6

f γ0.7
f > γ0.6

f γ0.8
f > γ0.2

f γ0.9
f > γ0.2

f

F-stat
PGDP 0.0094 1.1671 2.8927∗ 3.5687∗

HP filter 1.5934 7.2000∗∗ 3.0769 4.0039∗

Notes: a) ∗∗ and ∗ indicate statistical significance at 1% and 5% levels, respectively.
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Figure 4. Conditional densities given various πe
t+1 using GDP

(1984:I - )
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4. Conclusion

In this paper, we examine the hybrid NKPC in multiple quantiles. By using the quantile

analysis, we find two important features not captured by the traditional conditional mean

analysis. First, the response of inflation with respect to the change in expected inflation

is asymmetric across quantiles. The lower quantiles are relatively stable for a change in

πe
t+1 while the upper quantiles are more sensitive to change. An important implication is

that a positive shock on πe
t+1 increases the risk of inflation in the sense that it spreads out

the distribution, while a negative shock decreases the risk. This asymmetry provides an

interesting policy implication that tightening monetary policy is more effective in stabilizing

the economy in that it reduces uncertainty.

Second, the role of the backward-looking component strongly depends on the level of the

quantiles. After considering the structural break at about 1983, we find that the coefficient

of the lagged inflation is significant only in the center of the distribution. Because one

implication of the existence of the backward-looking component is the indirect and more

complicated effect of the monetary policy by affecting the real economy, the result indicates

the possibility that the risk structure will shift against a monetary policy shock more quickly

while the point path of the inflation shows a relatively gradual change.
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Appendix A. Tables and Figures

Table 6. Data Description

Variables quarterly average basisa)

πt Annualized growth rate of GDP deflator
πe

t+1 The quarterly median forecast of the annualized percent change
of GDP implicit price deflator(one-quarter ahead forecast) from SPF

mct 1) Percentage deviation of real GDP from the CBO’s PGDP or its
Hodrick-Prescott (HP) trend yt

2) Percentage deviation of Non-farm business sector Unit Labor Costs
from the Hodrick-Prescott (HP) trend

Instrumental Constant
variables Four lags of πt, and mct 1) and 2)

Four lags of the yield spread between long-term and short-term

government bondb)

Four lags of the wage inflationc)

Notes: a) All data are obtained from web-based database (FRED) in Federal Reserve

Bank of St. Louis.

b) We use yield spread between 10 year and 3 month U.S. Treasury bonds.

c) We use the growth rate of non-farm business compensation
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Table 7. Estimation results using ULC (full sample)

α πe
t+1 πt−1 yt c

0.1
0.700∗∗ 0.250 0.140 -0.724
(0.160) (0.129) (0.100) (0.354)

0.2
0.520∗∗ 0.341∗ 0.120 -0.394
(0.171) (0.125) (0.136) (0.310)

0.3
0.430∗ 0.480∗∗ 0.120 -0.232
(0.181) (0.151) (0.142) (0.257)

0.4
0.460∗∗ 0.486∗∗ 0.220∗ -0.063
(0.190) (0.163) (0.127) (0.229)

0.5
0.380∗ 0.566∗∗ 0.150 0.152
(0.180) (0.159) (0.131) (0.200)

0.6
0.360∗∗ 0.602∗∗ 0.150 0.101
(0.209) (0.191) (0.123) (0.278)

0.7
0.600∗∗ 0.557∗∗ 0.150 -0.071
(0.225) (0.218) (0.128) (0.317)

0.8
1.070∗∗ 0.195 0.220 0.122
(0.144) (0.180) (0.140) (0.337)

0.9
1.110∗∗ 0.165 0.380∗ 0.615
(0.164) (0.261) (0.148) (0.523)

mean
0.605∗∗ 0.443∗∗ 0.250∗ -0.158

eq. (0.093) (0.076) (0.108) (0.150)

Notes: a) Standard errors appear in parentheses.
b) ∗∗ and ∗ in πe

t+1, πt−1 and yt columns indicate statistical significance
at 1% and 5% levels, respectively.

c) The standard deviation is calculated based on MBB with 500 bootstrap
resampling and the block size of 8.

d) The mean equation is estimated by GMM with Newey-West co-
variance estimator.
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Table 8. Estimation results using ULC (1984:I - )

α πe
t+1 πt−1 yt c

0.1
0.720∗∗ -0.051 0.240∗ -0.266
(0.140) (0.121) (0.106) (0.440)

0.2
0.510∗∗ 0.088 0.180 0.247
(0.122) (0.129) (0.101) (0.237)

0.3
0.370∗ 0.210 0.180 0.514
(0.095) (0.124) (0.103) (0.209)

0.4
0.420 0.294∗ 0.260∗∗ 0.378
(0.089) (0.130) (0.097) (0.244)

0.5
0.440∗∗ 0.426∗∗ 0.180∗ 0.280
(0.093) (0.113) (0.088) (0.243)

0.6
0.370∗∗ 0.460∗∗ 0.180∗ 0.445
(0.085) (0.094) (0.074) (0.232)

0.7
0.330∗∗ 0.512∗∗ 0.160 0.518
(0.139) (0.104) (0.085) (0.306)

0.8
0.990∗∗ 0.181 0.160 0.196
(0.220) (0.159) (0.108) (0.457)

0.9
0.850∗∗ 0.029 -0.068 1.385
(0.217) (0.219) (0.120) (0.987)

mean
0.689∗∗ 0.190∗∗ 0.266∗∗ 0.053

eq. (0.077) (0.071) (0.061) (0.200)

Notes: a) Standard errors appear in parentheses.
b) ∗∗ and ∗ in πe

t+1, πt−1 and yt columns indicate statistical significance
at 1% and 5% levels, respectively.

c) The standard deviation is calculated based on MBB with 500 bootstrap
resampling and the block size of 8.

d) The mean equation is estimated by GMM with Newey-West co-
variance estimator.



23

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P
ro

ba
bi

li
ty

 D
en

si
ty

81-90%

71-80%

61-70%

51-60%

Median

41-50&

31-40%

21-30%

11-20%

π

(a) π
e

t+1 = πt−1 − 1%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

P
ro

ba
bi

li
ty

 D
en

si
ty

81-90%

71-80%

61-70%

51-60%

Median

41-50%

31-40%

21-30%

11-20%

π

(b) π
e

t+1 = πt−1 − 1%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P
ro

ba
bi

li
ty

 D
en

si
ty

81-90%

71-80%

61-70%

51-60%

Median

41-50%

31-40%

21-30%

11-20%

π

(c) π
e

t+1 = πt−1

0

0.2

0.4

0.6

0.8

1

1.2

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

P
ro

ba
bi

li
ty

 D
en

si
ty

81-90%

71-80%

61-70%

51-60%

Median

41-50%

31-40%

21-30%

11-20%

π

(d) π
e

t+1 = πt−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

P
ro

ba
bi

li
ty

 D
en

si
ty

81-90% 71-80% 61-70%

51-60% Median 41-50%

31-40% 21-30% 11-20%

π

(e) π
e

t+1 = πt−1 + 1%

0

0.1

0.2

0.3

0.4

0.5

0.6

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

P
ro

ba
bi

li
ty

 D
en

si
ty

81-90% 71-80% 61-70%

51-60% Median 41-50%

31-40% 21-30% 11-20%

π

(f) π
e

t+1 = πt−1 + 1%

ddddd <CBO’s GDP GAP > < HP filtered GDP GAP >

note: 1. πt−1 is set at 2%. ddddddddddddddddddddddddddddddddddddddddddddddddd

2. If the quantiles are overlapped, we set the quantile difference at 0.1% point.

Figure 5. Conditional densities given various πe
t+1 using GDP (2)
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Figure 6. Conditional densities given various πe
t+1 using ULC
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Figure 7. Conditional densities using ULC (1984:I -)


