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Abstract

Economic and financial time series frequently exhibit time irreversible dynamics. For in-
stance, there is considerable evidence of asymmetric fluctuations in many macroeconomic
and financial variables, and certain game theoretic models of price determination predict
asymmetric cycles in price series. In this paper we make two primary contributions to
the econometric literature on time reversibility. First, we propose a new test of time
reversibility, applicable to stationary Markov chains. Compared to existing tests, our test
has the advantage of being consistent against arbitrary violations of reversibility. Second,
we explain how a circulation density function may be used to characterize the nature of
time irreversibility when it is present. We propose a copula-based estimator of the circu-
lation density, and verify that it is well behaved asymptotically under suitable regularity
conditions. We illustrate the use of our time reversibility test and circulation density
estimator by applying them to five years of Canadian gasoline price markup data.

∗We thank William McCausland for providing us with the Canadian gasoline price mark-up data used
in our empirical section, and Peter Phillips, Dimitris Politis, Hal White, and seminar participants at
UC San Diego for helpful comments. The first author thanks Roman Tymkiv for introducing him to
circulatory analysis in a poster session at the 2010 CIREQ Time Series Conference in Montreal.
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1 Introduction

A central concern of time series econometrics is modeling the dynamic behavior of random

processes over time. Dynamic behavior may be classified as either time reversible or time

irreversible. Loosely speaking, we say that a process is time reversible if its probabilistic

structure is unaffected by reversing the direction of time. For instance, if a process is

characterized by frequent small decreases and occasional large increases, then if we were

to reverse the direction of time we would instead obtain a process characterized by frequent

small increases and occasional large decreases. Such a process may therefore be described

as time irreversible.

Questions about time reversibility arise naturally in the study of the business cycle. Roth-

man (1991) refers to the so-called Mitchell-Keynes business cycle hypothesis, which posits

that economic expansions are more gradual than economic contractions. In the General

Theory, Keynes (1936, p. 314) wrote that “the substitution of a downward for an up-

ward tendency often takes place suddenly and violently, whereas there is, as a rule, no

such sharp turning point when an upward is substituted for a downward tendency” This

quotation appears also in Neftçi (1984) and DeLong and Summers (1986). In these two

papers an attempt was made to test empirically for the presence of asymmetry in the

business cycle. Neftçi (1984) argued for the importance of asymmetric fluctuations, find-

ing evidence of time irreversibility in the US unemployment rate. DeLong and Summers

(1986) concurred with Neftçi’s assessment of irreversible dynamics in US unemployment,

but found no evidence of time irreversibility in US gross national product or industrial

production, or in any of these three variables in five other OECD nations. However, in

the 1990’s and beyond, more sophisticated econometric techniques were used to identify

time irreversible behavior in a wide range of macroeconomic and financial variables; see

e.g. Rothman (1991), Ramsey and Rothman (1996), Hinich and Rothman (1998), Chen

et al. (2000), Chen and Kuan (2002), Darolles et al. (2004), Racine and Maasoumi (2007),

and Psaradakis (2008).

Time irreversible behavior may also arise naturally in models of oligopolistic price set-

ting. Edgeworth price cycles are said to occur when competing firms engage in extended

periods of sequential price undercutting, interspersed with occasional short periods of

“relenting”, during which one firm raises its price significantly and the others follow. This
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behavior leads to time irreversible price series exhibiting gradual declines and sudden

sharp increases, a pattern sometimes referred to as “rockets and feathers” (see e.g. Tap-

pata, 2009). Maskin and Tirole (1988) provided dynamic game-theoretic foundations for

the existence of Edgeworth price cycles in Bertrand duopolies. Subsequent extensions

were provided by Eckert (2003), who examined the case of asymmetrically sized firms,

and Noel (2008), who considered markets with more than two firms, among other sce-

narios. Empirical researchers (see e.g. Eckert, 2002; Noel, 2007; Wang, 2009; Lewis and

Noel, 2011) have found that many retail gasoline markets exhibit prominent Edgeworth

price cycles over time. This behavior is not confined to gasoline markets: Peltzman (2000)

examined price data for 242 different goods, finding evidence of asymmetric price move-

ments in more than two thirds of them. Edgeworth price cycles have also been reproduced

in an experimental setting (Cason et al., 2005).

In this paper we consider the property of time reversibility in the context of copula-based

Markov models. This class of models was introduced to the econometric literature by

Chen and Fan (2006); subsequent contributions to the subject include Fentaw and Naik-

Nimbalkar (2008), Gagliardini and Gouriéroux (2008), Bouyé and Salmon (2009), Chen,

Koenker and Xiao (2009), Chen, Wu and Yi (2009), Ibragimov (2009), Beare (2010, 2012),

and the recent book by Cherubini et al. (2011). The time series of interest is assumed

to be a stationary real valued Markov chain. Model specification involves the selection of

a distribution function F to characterize the invariant, or stationary, distribution of the

chain, and a copula function C to characterize dynamic dependence. There are two key

advantages to this approach. First, complex forms of nonlinear dynamic dependence may

easily be introduced with an appropriate choice of C, without any possibility of violating

the stationarity condition. Second, there is the possibility of combining a parametric cop-

ula C with a nonparametric choice of F , limiting the effect of the curse of dimensionality

while maintaining a degree of flexibility not achievable with fully parametric models.

For the class of copula-based Markov models, time reversibility is equivalent to a property

of C called exchangeability. In Section 2 we discuss this equivalence, and explain how a

technique proposed by Genest et al. (1998) may be used to construct parametric families

of nonexchangeable copula functions. Our main contributions are provided in Sections 3

and 4. In Section 3 we propose a new test of time reversibility for stationary real valued

Markov chains. The key advantage of our test is that it is consistent against any violation
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of time reversibility; existing procedures are typically only able to detect specific forms of

time irreversibility. We derive the asymptotic behavior of our test statistic, and explain

how asymptotically valid critical values may be obtained using the local bootstrap of

Paparoditis and Politis (2002). Finite sample numerical evidence illustrates the primary

strength and weakness of our test relative to a similar test proposed by Paparoditis and

Politis (2002). In Section 4, building on novel work by McCausland (2007) in the context of

finite state Markov chains, we propose to characterize the structure of time irreversibility

in a stationary Markov chain using a circulation density function. The circulation density

function decomposes the total circulation of the chain – the difference between the uncon-

ditional probabilities of an increase or decrease – into contributions associated with each

quantile of the invariant distribution. This provides us with information about whether

the process tends to be more likely to increase or decrease at different quantiles. It turns

out that, under mild regularity conditions, the circulation density function is determined

by the partial derivatives of C along the main diagonal of the unit square. We propose

a nonparametric estimator of the circulation density function and establish consistency

and asymptotic normality. Some encouraging finite sample results are provided.

We illustrate the use of our time reversibility test and circulation density estimator in

Section 5, with an application to five years of weekly Canadian gasoline price markup

data. Our results appear to confirm the presence of Edgeworth price cycles in these data.

Moreover, our estimated circulation density is suggestive of price undercutting sequences

being more prevalent when we are in the lower half of the invariant distribution. This

finding is consistent with earlier work by McCausland (2007) using these data.

We offer some concluding thoughts in Section 6. The Appendix contains some technical

conditions used to demonstrate the validity of the local bootstrap, and proofs of the results

given throughout the main body of the paper, along with some supplementary lemmas.

2 Nonexchangeable copulas and time irreversibility

Let X = {Xt : t ∈ Z} be a stationary real valued Markov chain with invariant cdf

F : R → [0, 1]. Darsow et al. (1992) suggested that copula functions may provide a

convenient and powerful way to model the dynamic properties of X . If F is continuous,
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then Sklar’s theorem ensures the existence of a unique copula function C : [0, 1]2 → [0, 1]

characterizing the relationship between Xt and Xt+1, for any t ∈ Z. Letting H : R2 →
[0, 1] denote the joint cdf of Xt and Xt+1, we have

P (Xt ≤ x,Xt+1 ≤ y) = H(x, y) = C (F (x), F (y)) for all x, y ∈ R and all t ∈ Z.

Taken together, C and F jointly determine all finite dimensional distributions of X ,

with dynamic dependence at lags greater than one determined by the Markov property.

Further details on copula functions, Sklar’s theorem and related concepts may be found

in the monograph of Nelsen (2006).

The following result provides three equivalent formulations of time reversibility for sta-

tionary Markov chains. It is well understood and we do not provide a proof.

Proposition 2.1. Suppose X is a stationary real valued Markov chain with continuous

invariant distribution. The following statements are equivalent.

(a) For any integers t1 < · · · < tn, we have (Xt1 , . . . , Xtn)
d
= (Xtn , . . . , Xt1).

(b) H(x, y) = H(y, x) for all x, y ∈ R.

(c) C(u, v) = C(v, u) for all u, v ∈ [0, 1].

Property (a) is the standard definition of time reversibility for stationary time series.

Under the Markov property, time reversibility is equivalent to property (b), sometimes

known as the detailed balance equations. When F is continuous, the copula C is uniquely

defined, and so (b) and (c) are equivalent. Time reversibility of X is therefore a property

of C, the copula characterizing serial dependence. If X is not time reversible, we say

that it is time irreversible.

A joint cdf H satisfying property (b) in Proposition 2.1 or a copula C satisfying property

(c) in Proposition 2.1 is said to be exchangeable. Nelsen (2007) studied some aspects of

nonexchangeable copulas. He proposed to measure the nonexchangeability of a copula C

using the following quantity:

δ(C) = 3 sup
u,v
|C(u, v)− C(v, u)| . (2.1)
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Theorem 2.2 of Nelsen (2007) establishes that 0 ≤ δ(C) ≤ 1 for all copulas C, with the

lower and upper bounds attainable. Evidently we have δ(C) = 0 if and only if C is

exchangeable. Larger values of δ(C) signify more substantial nonexchangeability of C –

or, in our context, time irreversibility of X . In Section 3 we will use Nelsen’s measure of

nonexchangeability as the basis for constructing a statistical test of time reversibility.

There are various ways to construct parametric families of nonexchangeable copulas. Gen-

est et al. (1998) proposed a particularly convenient method by which this may be achieved.

Proposition 2 in their paper states that, if C is an exchangeable copula and α, β ∈ [0, 1],

then the following transformation of C is a copula:

C̃(u, v) = u1−αv1−βC(uα, vβ). (2.2)

We may use (2.2) to generate a family of nonexchangeable copulas using an exchangeable

copula. For instance, one well-known family of exchangeable copulas is the Gumbel family;

see e.g. Nelsen (2006, Table 4.1, line 4). This is an Archimedean family having generator

u 7→ (− lnu)γ, with parameter γ ∈ [1,∞). If we apply transform (2.2) to the Gumbel

copula, then we obtain the family of so-called asymmetric Gumbel copulas:

C̃Gmbl(u, v) = u1−αv1−β exp
(
− ((−α lnu)γ + (−β ln v)γ)1/γ

)
. (2.3)

The asymmetric Gumbel copula has parameters (α, β, γ) ∈ [0, 1] × [0, 1] × [1,∞), and

is nonexchangeable if α, β > 0, α 6= β, and γ > 1. When γ → ∞, the asymmetric

Gumbel copula reduces to the well-known Marshall-Olkin copula (Nelsen, 2006, p. 53)

with parameters α and β.

In Figure 2.1 we display several scatterplots and Markov sample paths generated using the

asymmetric Gumbel copula. The scatterplots on the left were constructed by drawing from

the asymmetric Gumbel copula with α = 1, β = 0.5, and γ = 2, 5, 10. Nonexchangeability

is mildly apparent when γ = 2, and much more obviously apparent when γ = 5, 10. The

nonexchangeability measure given in (2.1) was numerically calculated to be 0.077 when

γ = 2, 0.1716 when γ = 5, and 0.2087 when γ = 10. The Markov sample paths on the

right side of Figure 2.1 were generated using the copulas in the corresponding scatterplots

to the left. The invariant distribution of each chain was chosen to be uniform on (0, 1).

Casual inspection reveals that decreases in these sample paths tend to be smaller and more
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frequent than increases. Again, this is much more obvious for larger values of γ. The

tendency to exhibit many small decreases and occasional large increases is manifested in,

for instance, Edgeworth price cycles. We shall return to the subject of Edgeworth price

cycles in our empirical application in Section 5. For more details on how to simulate

Markov chains using a given copula function and invariant distribution, and on how to

empirically estimate models of this kind, we refer the reader to Chen and Fan (2006).
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Figure 2.1: Scatterplots and Markov sample paths generated using the asymmetric
Gumbel copula. We set α = 1, β = 0.5 and take the invariant distribution to be uniform
on (0, 1). γ is equal to 2 in the top row, 5 in the center row, and 10 in the bottom row.
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3 Testing for time irreversibility

Following the empirical macroeconomic literature on business cycle asymmetry in the

1980s and early 1990s (see e.g. Neftçi, 1984; DeLong and Summers, 1986; Rothman,

1991), a number of authors have proposed statistical tests of time reversibility. Ramsey

and Rothman (1996) proposed a test of time reversibility based on symmetric bicovari-

ances, while Chen et al. (2000) proposed a test based on the characteristic function of

the differenced process. Chen (2003) proposed a more general class of time reversibility

tests subsuming both of the aforementioned tests. Hinich and Rothman (1998) proposed

a frequency-domain test involving the bispectrum. Paparoditis and Politis (2002) and

Psaradakis (2008) suggested using resampling techniques to test whether the differenced

process has median zero. Darolles et al. (2004) proposed a test based on nonlinear canon-

ical correlation analysis. Racine and Maasoumi (2007) proposed an entropy-based test

that targets asymmetry in the distribution of the differenced process. Sharifdoost et al.

(2009) proposed a test applicable to finite state Markov chains.

In this section we propose a new test of time reversibility. A key advantage of our test is

that it is consistent against arbitrary forms of time irreversibility. Most of the tests just

mentioned are only consistent against specific forms of time irreversibility. The test of

Sharifdoost et al. (2009) does not appear to be subject to this critique, but its applicability

is limited by the assumption of a finite state space. In Section 3.1 we explain how our

test statistic is constructed, and discuss its asymptotic behavior under time reversibility

and time irreversibility. In Section 3.2 we explain how the local bootstrap of Paparoditis

and Politis (2002) can be used to obtain suitable critical values for our test statistic. In

Section 3.3 we report numerical evidence pertaining to the finite sample performance of

our test, using the test of Paparoditis and Politis (2002) as a point of comparison.

3.1 Test statistic and limiting distribution

As in the previous section, let X = {Xt : t ∈ Z} be a stationary real valued Markov chain

with continuous invariant distribution F , joint cdf H for (Xt, Xt+1), and corresponding
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copula function C. Let θ ∈ [0, 1/3] be given by

θ = sup
x,y
|H(x, y)−H(y, x)| .

Since F is continuous, we must have θ = 1
3
δ(C), where δ(C) is the measure of nonex-

changability proposed by Nelsen (2007) and given in (2.1) above. Recalling Proposition

2.1(b), we know that X is time reversible if and only if θ = 0. We therefore propose to

test the null hypothesis of time reversibility using a test statistic formed from an empir-

ical analogue to θ. Suppose we observe the T random variables X1, . . . , XT . A natural

empirical analogue to θ is

θT = sup
x,y
|HT (x, y)−HT (y, x)| ,

where HT is the empirical distribution function

HT (x, y) =
1

T − 1

T−1∑
t=1

1(Xt ≤ x,Xt+1 ≤ y).

θT is the statistic we will use to test the null hypothesis that X is time reversible. We

shall obtain the asymptotic behavior of θT under the following conditions on X .

Assumption 3.1. The following statements are true.

(a) X is a stationary real valued Markov chain.

(b) F is continuous.

(c) The α-mixing coefficients of X satisfy αT = O(T−η) for some η > 1.

Parts (a,b) of Assumption 3.1 are basic to our analysis. The mixing condition introduced

in part (c) is mild for practical purposes. Beare (2010, 2012) identifies conditions on C,

satisfied for a wide range of copula functions used in applications, that imply a geometric

rate of α-mixing. On the other hand, Example 4.1 of Beare (2012) identifies a family of

copula functions that generate α-mixing at a rate no faster than T−1, so part (c) is not

automatically satisfied.
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Under Assumption 3.1 we are able to establish the following result concerning the asymp-

totic behavior of θT under the null and alternative hypotheses. The proof, which may

be found in the Appendix, is a straightforward application of results due to Rio (2000)

delivering functional central limit theory for weakly dependent processes.

Theorem 3.1. Under Assumption 3.1, the following statements are true.

(a) If X is time reversible, then T 1/2θT →d supx,y |B(x, y)−B(y, x)| as T → ∞,

where B is a centered Gaussian process on R2 with covariance kernel

cov (B(x, y),B(x′, y′)) =
∑
t∈Z

cov (1(X0 ≤ x,X1 ≤ y), 1(Xt ≤ x′, Xt+1 ≤ y′)) .

(b) If X is time irreversible, then for any c ∈ R we have T 1/2θT > c with probability

approaching one as T →∞.

Theorem 3.1(a) gives us the limiting distribution of T 1/2θT in terms of the process B

under the null hypothesis that X is time reversible. A test of time reversibility may be

formed by rejecting the null when T 1/2θT exceeds the relevant quantile of that limiting

distribution. Theorem 3.1(b) tells us that, for any fixed critical value c, the probability of

T 1/2θT exceeding c approaches one when the null hypothesis of time reversibility is false.

This means that tests based on T 1/2θT will be consistent against any violation of time

reversibility.

The covariance structure of the limiting process B depends on H, which is unknown.

Therefore, critical values for our test must be estimated in some fashion. In the following

subsection we explain how the local bootstrap procedure of Paparoditis and Politis (2002)

may be used to obtain asymptotically valid critical values. We close this subsection

with some additional remarks on our test, and on its relation to existing tests of time

reversibility.

Remark 3.1. Theorem 3.1(b) indicates that our test is consistent against any viola-

tion of time reversibility. As mentioned at the beginning of this section, most existing

tests of time reversibility do not share this property. In particular, the tests of Chen et

al. (2000), Paparoditis and Politis (2002), Racine and Maasoumi (2007) and Psaradakis
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Figure 3.1: A pair of random variables distributed uniformly over the shaded region is
nonexchangeable, but the distribution of their difference is symmetric about zero.

(2008) cannot detect any violation of time reversibility for which the univariate distribu-

tion of Xt+1−Xt is symmetric about zero. Symmetry of this distribution is a necessary but

not sufficient condition for time reversibility. Consider the probability distribution that

distributes mass uniformly over the shaded region of the unit square depicted in Figure

3.1. It is easy to see that this distribution has uniform marginals and is asymmetric about

the main diagonal of the unit square, implying that it may be represented by a nonex-

changeable copula function. Further inspection reveals that, if the joint distribution of

(Xt, Xt+1) is uniform over the shaded region, then the distribution of Xt+1−Xt is symmet-

ric about zero. To see this, note that the sets {(x, y) : y ≤ x+ a} and {(x, y) : y ≥ x− a}
have equal mass for all a ≥ 0. It follows that this form of time irreversibility cannot be

detected by the tests just cited, but is consistently identified by the test proposed here.

Remark 3.2. Darolles et al. (2004) propose an elegant test for time reversibility based

on nonlinear canonical correlation analysis; see e.g. Lancaster (1958). Their procedure

works by testing whether a given pair of canonical directions are equal to one another.

A drawback of this approach in the context of copula-based Markov models is that the

representation of a joint distribution in terms of canonical correlations and canonical

directions is valid only when the distribution exhibits finite mean square contingency.

As noted by Beare (2010), when C is absolutely continuous, H has finite mean square

contingency if and only if C has square integrable density. Theorem 3.3 of Beare (2010)
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states that this condition rules out the presence of tail dependence in C. Tail dependence

is a common property of parametric copula functions used in applications. Thus the

test of Darolles et al. (2004) is not always ideally suited to the class of models under

consideration. The test proposed here does not suffer from this drawback, as H is not

required to have finite mean square contingency.

Remark 3.3. It is straightforward to modify our test of time reversibility so that it ap-

plies to higher-order Markov processes. If X is an mth-order Markov chain with m ≥ 2,

then we simply take H and HT to be the distribution function and empirical distribution

function of (Xt, . . . , Xt+m), and set θ = sup |HT (x0, . . . , xm) − HT (xm, . . . , x0)|. Theo-

rem 3.1 then continues to apply, with the limiting distribution in part (a) replaced by

sup |B(x0, . . . , xm) − B(xm, . . . , x0)|, where B is now a centered Gaussian process on

Rm+1 with cov (B(x0, . . . , xm),B(x′0, . . . , x
′
m)) given by∑

t∈Z

cov (1(X0 ≤ x0, . . . , Xm ≤ xm), 1(Xt ≤ x′0, . . . , Xt+m ≤ x′m)) .

3.2 Local bootstrap critical values

A difficulty in implementing the test just described is that the law of the process B, and

therefore the null limiting distribution of T 1/2θT given in Theorem 3.1(a), is unknown.

We may nevertheless approximate these laws using a bootstrap procedure. Since X is

typically serially dependent, a standard nonparametric bootstrap based on independent

resampling from the observed pairs (Xt, Xt+1) cannot be expected to yield useful results.

On the other hand, a block bootstrap would fail to exploit the Markovian structure of

X . Instead, we propose to use the local bootstrap of Paparoditis and Politis (2002),

which was designed specifically for Markovian time series. Further discussion of the local

bootstrap may be found in Paparoditis and Politis (1998, 2001).

The local bootstrap may be applied in the following way. We wish to draw a boot-

strap sample X∗1 , . . . , X
∗
T based on the observed sample X1, . . . , XT . (Strictly speaking

we should write X∗1,T , . . . , X
∗
T,T for the bootstrap sample, as each bootstrap observation

depends on the full sample X1, . . . , XT , but we will ignore this notational detail outside

of the Appendix.) Suppose for the moment that we have already drawn X∗1 , . . . , X
∗
t for
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some t ∈ {1, . . . , T − 1}. For the (t + 1)th bootstrap observation we set X∗t+1 = XJ+1,

where J is a discrete random variable drawn from the probability mass function

P (J = j) =
Wb(X

∗
t −Xj)∑T−1

i=1 Wb(X∗t −Xi)
, j = 1, . . . , T − 1.

Here, b = bT is a bandwidth parameter, W is a kernel function, and Wb(·) = b−1W (·/b).
Our initial bootstrap observation X∗1 is drawn at random from the entire sample

X1, . . . , XT , with equal probability assigned to each observation. Recursive application

of the procedure just described yields the bootstrap sample X∗1 , . . . , X
∗
T . Paparoditis and

Politis (2002, pp. 314–316) provide some guidelines for the data-based selection of b, which

we shall not repeat here.

The idea behind the local bootstrap is that the probability of drawing a particular obser-

vation from our sample will be relatively greater if the preceding observation is relatively

closer to the most recently drawn bootstrap observation. Given X∗t , the kernel weights

governing the behavior of the random variable J direct us to an observation XJ that

is likely to be relatively close to X∗t , and then we select XJ+1 as our next bootstrap

draw X∗t+1. This has the effect of implicitly estimating the transition probabilities gov-

erning X , while restricting the state space of the bootstrap sample to the values taken

by the observed sample. For large sample sizes, the transition probabilities governing

the bootstrap draws will mimic those governing the underlying process X . Radulović

(2002) provides a helpful discussion of bootstrap techniques for Markov chains and other

dependent processes, with many additional references.

We wish to use the local bootstrap to approximate the law of the limiting process B.

This may be done as follows. Let H∗T denote the bootstrap analogue to HT computed

from our bootstrap sample:

H∗T (x, y) =
1

T − 1

T−1∑
t=1

1(X∗t ≤ x,X∗t+1 ≤ y).

Let E∗T denote the expectation operator conditional on the observed sample X1, . . . , XT ;

this is the “bootstrap expectation”. Our bootstrap version of the process B is given by

B∗T (x, y) = T 1/2 (H∗T (x, y)− E∗TH∗T (x, y)) .
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In practice, E∗TH
∗
T (x, y) is computed as the average value of H∗T (x, y) over a large number

of bootstrap samples. This is a little more involved than in the case of the iid bootstrap,

where we would simply have E∗TH
∗
T (x, y) = HT (x, y).

We will demonstrate shortly that the bootstrap distribution (i.e., the distribution con-

ditional on the observed sample) of B∗T approximates the distribution of B when T is

large. Theorem 3.1(a) states that the limiting distribution of T 1/2θT is the distribution of

supx,y |B(x, y) −B(y, x)|. Since this distribution is unknown, to obtain a test with ap-

proximate size α, we set our critical value c equal to the (1−α)-quantile of the bootstrap

distribution of supx,y |B∗T (x, y)−B∗T (y, x)|. This quantile is calculated in practice by gen-

erating a large number of bootstrap processes B∗T , calculating supx,y |B∗T (x, y)−B∗T (y, x)|
for each of them, and then selecting the appropriate order statistic.

Let L ∗
T (B∗T ) denote the distribution of B∗T , as an element of `∞(R2), conditional on

X1, . . . , XT . Here, `∞(R2) denotes the space of bounded real valued functions on R2,

equipped with the uniform metric. L ∗
T (B∗T ) can be thought of as the “bootstrap dis-

tribution” or “bootstrap law” of B∗T . The following result demonstrates that, under

regularity conditions imposed by Paparoditis and Politis (2002), L ∗
T (B∗T ) approximates

the distribution of B when T is large. Note that this result potentially extends the ap-

plicability of the local bootstrap to a much wider range of inferential problems than the

time reversibility test considered here. The symbol  denotes weak convergence in some

metric space; see e.g. van der Vaart and Wellner (1996, Def. 1.3.3).

Lemma 3.1. Under Assumption A.1, as T →∞ we have L ∗
T (B∗T ) B in `∞(R2), with

probability one.

Assumption A.1 may be found in the Appendix, and consists of technical conditions used

by Paparoditis and Politis (2002) to establish desirable properties of the local bootstrap

procedure. These conditions are not intended to be necessary, and indeed Paparoditis and

Politis (2002, Remark 3.2) discuss one direction in which they may be relaxed. Our proof

of Lemma 3.1, also found in the Appendix, applies Theorem 4.2 of Paparoditis and Politis

(2002) to obtain a.s. finite dimensional (fidi) convergence of B∗T to B, and Theorem 2.2

of Andrews and Pollard (1994) to establish a.s. stochastic equicontinuity of the sequence

of bootstrap processes.
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Let L ∗
T (supx,y |B∗T (x, y) − B∗T (y, x)|) denote the distribution of supx,y |B∗T (x, y) −

B∗T (y, x)| conditional on X1, . . . , XT ; i.e., its bootstrap distribution. We proposed ear-

lier to approximate the limiting distribution of T 1/2θT , given in Theorem 3.1(a), by

L ∗
T (supx,y |B∗T (x, y)−B∗T (y, x)|). The following result justifies this approach.

Theorem 3.2. Under Assumption A.1, for any c ∈ R we have

P

(
sup
x,y
|B∗T (x, y)−B∗T (y, x)| > c

∣∣∣∣X1, . . . , XT

)
→ P

(
sup
x,y
|B(x, y)−B(y, x)| > c

)
as T →∞, with probability one.

Theorem 3.2 indicates that, given a critical value c, we may use the local bootstrap to

consistently estimate the pointwise asymptotic size of our test. Conversely, we may use

the local bootstrap to obtain a critical value c for our test that delivers a given pointwise

asymptotic size. The proof of Theorem 3.2, found in the Appendix, is a straightforward

application of Lemma 3.1 and the continuous mapping theorem.

3.3 Finite sample performance

Here we report some numerical evidence pertaining to the finite sample performance of

our proposed test of time reversibility. We consider two families of bivariate distributions

H, each indexed by a single parameter. The first choice of H is the asymmetric Gumbel

copula given in (2.3). We fix α = 1, β = 0.5, and let γ vary over the interval [1,∞).

When γ = 1, the asymmetric Gumbel copula reduces to the product copula, and so X

is time reversible. X is time irreversible when γ > 1, becoming more irreversible as γ

increases.

We calculated the rejection rate of our time reversibility test, and also the rejection rate

of the test of Paparoditis and Politis (2002), for a range of values of γ. In all cases, we

set T = 100 and employed 500 bootstrap replications and 1000 experimental replications.

The nominal size of both tests was 0.05. The local bootstrap was implemented using a

Gaussian kernel for W , and smoothing parameter b determined using the data dependent

selection rule described by Paparoditis and Politis (2002, p. 315), with plug-in parameters

extracted from an auxiliary first-order autoregression.
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(a) Asymmetric Gumbel copula
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(b) Zero total circulation copula

Proposed test

Paparoditis and 
Politis (2002)

Figure 3.2: Rejection rates of our time reversibility test, and the test of Paparoditis
and Politis (2002). Panel (a) displays results for the asymmetric Gumbel copula with
α = 1, β = 0.5, and γ ∈ [1,∞). Panel (b) displays results for a convex linear combination
of the product copula and the copula displayed in Figure 3.1; the weight on the latter is
λ ∈ [0, 1]. We set T = 100 and employed 500 bootstrap replications and 1000 experimental
replications. The nominal size of the tests is 0.05.

The outcome of our numerical calculations using the asymmetric Gumbel copula is dis-

played in Figure 3.2(a). The horizontal axis tracks the value of 1 − 1/γ, so we have X

time reversible at the left endpoint of the axis, and increasingly irreversible as we move

rightward. Both tests have a rejection rate of 0.070 when γ = 1, indicating a minor

tendency to overreject the null hypothesis of time reversibility. As γ →∞, the rejection

rate of both tests rises to approximately one. At intermediate values of γ, the test of

Paparoditis and Politis has a uniformly higher rejection rate than the test proposed here.

The natural conclusion is that, for this family of distribution functions H, our test is less

powerful than the test of Paparoditis and Politis.

In Remark 3.1 we noted that the test of Paparoditis and Politis should be unable to detect

deviations from time reversibility that are such that Xt+1−Xt is distributed symmetrically

about zero. Our second choice of H exploits this fact. We take H to be a convex linear

combination of two copula functions. The first of these is the product copula. The second

distributes mass uniformly over the shaded area in Figure 3.1. We assign weight 1 − λ
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to the first copula and λ to the second, with λ ∈ [0, 1]. Thus X is time reversible when

λ = 0 and time irreversible when λ > 0, becoming more irreversible as λ increases. For

reasons that will be made clear in Section 4.1, we refer to this mixture copula as a zero

total circulation copula.

The outcome of our numerical calculations using the zero total circulation copula is dis-

played in Figure 3.2(b). The horizontal axis tracks the value of λ, so we have X time

reversible at the left endpoint of the axis, and increasingly irreversible as we move right-

ward. Both tests exhibit good size control: when λ = 0, the rejection rate of our test is

0.046, and the rejection rate of the test of Paparoditis and Politis is 0.053. As λ increases,

the behavior of the two tests is very different. The rejection rate of our test rises quickly

to one, while the rejection rate of the test of Paparoditis and Politis decreases to zero.

The test statistic used by Paparoditis and Politis is θPPT = 1
T−1

∑T−1
t=1 1(Xt+1 > Xt), the

proportion of differenced observations that are positive. Time reversibility is rejected

when |θPPT − 1
2
| exceeds a critical value generated using the local bootstrap. Since the

zero total circulation copula was specifically constructed so that P (Xt+1 > Xt) = 1
2
, it is

not surprising that the test of Paparoditis and Politis does not achieve a rejection rate in

excess of 5%. The fact that the rejection rate declines to zero as λ → 1 is less obvious

and merits further explanation. Consider the extreme case where λ = 1. In view of the

periodic nature of the distribution in Figure 3.1, the statistic θPPT will be exactly equal

to one half whenever T − 1 is a multiple of four. Therefore θPPT converges to one half

at the rate T−1, and our asymptotic rejection rate will be zero unless our critical value

decays to zero at the rate T−1 or faster. Apparently critical values obtained from the

local bootstrap do not decay to zero at this rate; this may be due to the kernel smoothing

used in the construction of bootstrap samples. Consequently, the asymptotic rejection

rate falls to zero as λ→ 1.

Panels (a) and (b) of Figure 3.2 serve to illustrate both the strength and weakness of

our approach to testing time reversibility. The key advantage of our test is that, unlike

existing tests, it consistently rejects any violation of time reversibility. This versatility

comes at a price: tests that are constructed to target specific forms of time irreversibility

are likely to be more powerful than our test when irreversibility is indeed of that form.

Therefore, our test serves to complement existing procedures.
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4 Characterizing time irreversibility

In this section we consider a characterization of time irreversibility that may be useful for

applications. Building on work by McCausland (2007), we define the circulation density

for a stationary real valued Markov chain. The circulation density quantifies the net

probability upflow at each quantile of the invariant distribution. Visual inspection of the

circulation density, a real valued function on the unit interval, provides a convenient way

to assess the nature of time irreversibility in a Markov chain.

The circulation density is defined and explained in Section 4.1. In Section 4.2 we propose

a simple copula-based estimator of the circulation density, and investigate its asymptotic

and finite sample behavior.

4.1 Circulatory analysis of stationary Markov chains

McCausland (2007) introduced the notion of circulation for stationary Markov chains

with finite state space. Circulation is intended to measure the direction and intensity

of the flow of probability through each state. If a Markov chain is time reversible, then

we must necessarily have zero circulation through each state. If it is time irreversible,

then the circulation through each state provides information about the nature of that

irreversibility. In this section we propose a definition of circulation that is similar in spirit

to the definition given by McCausland, but which applies in a natural way when the

invariant distribution of X may not be discrete. We demonstrate a connection between

the circulation of X and the copula function C characterizing its dynamic dependence. At

the end of the section we explain how our treatment of circulation builds on McCausland’s

contribution.

To describe the circulatory behavior of X , we introduce a number of functions from R
to [0, 1] which we refer to as flows. The two fundamental flows, denoted F↑ and F↓, are

defined and referred to as follows.

F↑(x) = P (Xt−1 ≤ x|Xt = x) probability upflow to x

F↓(x) = P (Xt+1 ≤ x|Xt = x) probability downflow from x.
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Figure 4.1: Probability upflows and downflows to and from x. The circulation density
at u = F (x) is equal to the sum of the upward flows minus the sum of the downward
flows, divided by two.

Two additional flows, F ↑ and F ↓, are uniquely determined by the two fundamental flows:

F ↑(x) = P (Xt+1 > x|Xt = x) probability upflow from x

F ↓(x) = P (Xt−1 > x|Xt = x) probability downflow to x.

By the law of total probability, our four flows satisfy the identities

F↑(x) + F ↓(x) = 1, F ↑(x) + F↓(x) = 1. (4.1)

The terms upflow and downflow are evocative of the circulation, or current, of a body

of water. Figure 4.1 displays our four flows as arrows pointing toward, or away from,

x. Suppose we know that Xt = x. The two arrows pointing toward x represent the

probabilities that Xt−1 was less than, or greater than, x. The two arrows pointing away

from x represent the probabilities that Xt+1 will be less than, or greater than, x.

Strictly speaking, conditional probabilities like P (Xt+1 ≤ x|Xt = x) are not uniquely

defined when F is continuous at x, because we are conditioning on a set of measure zero.

Rather, P (Xt+1 ≤ x|Xt = x) should be viewed as an equivalence class of functions of x,

where any two members of the class must be equal to one another outside a set of F -

measure zero. Likewise, the flows F↑(x), F ↑(x), F ↓(x) and F↓(x) should be viewed as

being uniquely defined up to a set of F -measure zero. For further discussion of technical

issues associated with conditional probabilities of this kind, we refer the reader to Chang
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and Pollard (1997).

It may be helpful to introduce some additional terminology to describe certain combina-

tions of our four flows F↑, F ↑, F ↓ and F↓:

F↑(x) + F ↑(x) probability upflow through x

F ↓(x) + F↓(x) probability downflow through x

F↑(x)−F↓(x) net probability upflow to x

F ↑(x)−F ↓(x) net probability upflow from x

F↑(x) + F ↑(x)−F ↓(x)−F↓(x) net probability upflow through x.

A consequence of the identities in (4.1) is that the net probability upflow to x is equal

to the net probability upflow from x, which is equal to half the net probability upflow

through x. If X is time reversible, then the flows F↑, F ↑, F ↓ and F↓ satisfy two

additional identities:

F↑(x) = F↓(x), F ↑(x) = F ↓(x).

Thus, when X is time reversible, the net probability upflows to, from, and through x are

all equal to zero.

Given u ∈ (0, 1), let Q(u) = inf{y : F (y) ≥ u}, the u-quantile of the invariant distribution

F . We define the circulation density of X to be the function ψ : (0, 1) → [−1, 1] given

by

ψ(u) =
1

2

(
F↑(Q(u)) + F ↑(Q(u))−F ↓(Q(u))−F↓(Q(u))

)
, u ∈ (0, 1).

That is, ψ(u) is one half of the net probability upflow through Q(u). The circulation

density tells us whether, at a given quantile of the invariant distribution, observations

tend to be in the middle of an upward or downward string of three observations. If the

density is positive, an observation at that quantile is relatively likely to be part of an

increasing string, whereas if the density is negative, the observation is more likely to be

part of a decreasing string.

As noted earlier, our flows F↑, F ↑, F ↓ and F↓ are uniquely defined only up to a set

of F -measure zero. Consequently, our circulation density ψ(u) may not be uniquely

defined for all u ∈ (0, 1). Rather, ψ(u) is uniquely defined up to a set A ⊂ (0, 1), where

A = {u : Q(u) ∈ B} for some set B ⊂ R of zero F -measure. Since the F -measure of B
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is precisely the Lebesgue measure of A, we find that ψ(u) is uniquely defined up to a set

of u having zero Lebesgue measure. When the invariant distribution of X is discrete, so

that F is a step function, we find that A is empty for any B of zero F -measure, and so

ψ(u) is in fact uniquely defined for all u ∈ (0, 1).

Theorem 4.1 demonstrates that, under additional smoothness conditions, our circulation

density ψ may be expressed in terms of the copula function C describing the dynamic

dependence structure of X . More specifically, ψ is the difference between the first partial

derivatives of C along the main diagonal of the unit square. The proof of Theorem 4.1

may be found in the Appendix.

Theorem 4.1. Let X be a stationary real valued Markov chain with continuous invari-

ant distribution F , and copula C admitting continuous partial derivatives ∂1C and ∂2C

everywhere on (0, 1)2. Then the circulation density ψ of X satisfies

ψ(u) = ∂2C(u, u)− ∂1C(u, u)

for Lebesgue-a.e. u ∈ (0, 1).

In Figure 4.2 we use the expression for ψ(u) given in Theorem 4.1 to graph the circulation

density functions corresponding to the asymmetric Gumbel copula given in (2.3), with

α = 1, β = 0.5, and γ = 2, 5, 10. These are the same parameter configurations used to

generate the scatterplots and Markov sample paths in Figure 2.1. In each case we see that

ψ(u) is negative for all u ∈ (0, 1), indicating a net probability downflow at all quantiles.

We also see that ψ(u) is monotone decreasing in each case, rising to zero as u ↓ 0. This is

consistent with the pattern of dependence evident in Figure 2.1, where we see many small

decreases and occasional large increases – at least when γ = 5, 10 – with the likelihood of

an increase rising as we approach the bottom of the state space. Note that if we were to

exchange the values of α and β, the effect would be to multiply each circulation density

by −1.

The circulation density tells us whether, at a particular quantile of the invariant distribu-

tion, our Markov chain tends to be increasing or decreasing. Integrating the circulation

density over the unit interval gives us a single index of circulation, Ψ =
∫ 1

0
ψ(u)du. We

refer to Ψ as the total circulation of X . The following result shows that, defined in this
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Figure 4.2: Circulation densities for the asymmetric Gumbel copula with α = 1, β = 0.5,
and γ = 2, 5, 10.

way, the total circulation has a convenient interpretation. The proof may be found in the

Appendix.

Theorem 4.2. Let X be a stationary real valued Markov chain. Then Ψ, the total

circulation of X , satisfies Ψ = P (Xt−1 ≤ Xt)− P (Xt+1 ≤ Xt).

Theorem 4.2 reveals that the total circulation measures the overall tendency of X to

increase more frequently than it decreases, or vice-versa. If increases and decreases are

equally likely, the total circulation is zero. The circulation density serves to decompose the

total circulation into contributions from different quantiles of the invariant distribution. In

this sense, it plays a similar role to the spectral density of a covariance stationary process,

which decomposes the variance into contributions from cycles of different frequency.

A stationary Markov chain with zero total circulation is not necessarily time reversible.

For instance, the copula used to construct the power curves in Figure 3.2(b) generates a

time irreversible stationary Markov chain with zero total circulation. In fact, even when

a stationary Markov chain has zero circulation density at all quantiles, time reversibility

does not necessarily hold. In Figure 4.3 we provide an example of a copula function that

generates a time irreversible Markov chain having zero circulation density at all quantiles.

This copula function should be understood to distribute mass uniformly over the shaded
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Figure 4.3: If (Xt, Xt+1) is distributed uniformly over the shaded region, then X is
time irreversible, yet has zero circulation density at all quantiles. The probability upflow
to u is equal to the length of the solid part of the line extending between (0, u) and (u, u),
while the probability downflow from u is equal to the length of the solid part of the line
extending between (u, 0) and (u, u).

region. Clearly the shaded region is not symmetric about the 45◦-line, implying that the

associated Markov chain X is time irreversible. The probability upflow to u is equal

to the length of the solid part of the line extending between (0, u) and (u, u), while the

probability downflow from u is equal to the length of the solid part of the line extending

between (u, 0) and (u, u). Careful inspection of Figure 4.3 reveals that these two quantities

are equal to one another, and continue to be equal for any choice of u ∈ (0, 1). Thus we

find that the circulation density of X is zero at all quantiles.

Our discussion of circulation in this section has built on prior work by McCausland (2007)

for Markov chains with discrete state space. Suppose our stationary real valued Markov

chain X takes only the values x1, . . . , xn ∈ R. McCausland defined the circulation through

xi to be the quantity

1

2
(P (Xt = xi and Xt+1 > xi)− P (Xt−1 > xi and Xt = xi)) .

With some elementary manipulations, we may rewrite this expression as

1

4
P (Xt = xi)

(
F↑(xi) + F ↑(xi)−F ↓(xi)−F↓(xi)

)
.

23



Thus, McCausland’s circulation through xi is one quarter of the net probability upflow

through xi, multiplied by the probability assigned by the invariant distribution to xi. By

comparison, as defined here, the circulation density at quantiles corresponding to xi is

half the net probability upflow through xi, which differs from McCausland’s circulation

through xi by a factor of 1
2
P (Xt = xi). Dropping the factor P (Xt = xi) makes sense here

because we wish to allow the invariant distribution to be continuous, while dropping the

factor of one half appears natural in view of Theorem 4.1 and Theorem 4.2. The notion of

total circulation was also introduced by McCausland, who defined it as half the difference

between P (Xt−1 ≤ Xt) and P (Xt+1 ≤ Xt), and showed that this quantity is equal to the

sum of state-specific circulations. Theorem 4.2 makes it clear that our own definition of

total circulation differs from McCausland’s definition by a factor of one half.

4.2 Estimation of the circulation density

The circulation density function provides a convenient way to quickly assess the nature

of time irreversibility in a Markov chain. In this section we consider estimating the

circulation density from data. We propose an estimator based on a kernel smoothed

version of the empirical copula function, establish its pointwise asymptotic behavior, and

assess its finite sample performance using Monte Carlo simulation.

4.2.1 Estimator and asymptotic properties

Theorem 4.1 established that, under mild regularity conditions, the circulation density of

X is given by the difference between the partial derivatives of C along the diagonal of the

unit square. A natural estimator for the circulation density may therefore be extracted

from the partial derivatives of a smooth estimate of C. Let k be a kernel function, let h be

a bandwidth parameter, and, for x ∈ R, let kh(x) = h−1k(x/h) and Kh(x) =
∫ x
−∞ kh(y)dy.

Given an observed sample X1, . . . , XT , we may construct smooth estimates of H, F , Q
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and C as follows:

ĤT (x, y) =
1

T − 1

T−1∑
t=1

Kh (x−Xt)Kh (y −Xt+1)

F̂T (x) =
1

T

T∑
t=1

Kh (x−Xt)

Q̂T (u) = inf{y ∈ R : F̂T (y) ≥ u}

ĈT (u, v) = ĤT

(
Q̂T (u), Q̂T (v)

)
.

A simple nonparametric estimator of ψ is then given by

ψ̂T (u) = ∂2ĈT (u, u)− ∂1ĈT (u, u).

We will establish the pointwise asymptotic properties of ψ̂T under the following technical

conditions.

Assumption 4.1. The following statements are true.

(a) X is a stationary real valued Markov chain.

(b) F is four times continuously differentiable, and C admits continuous mixed partial

derivatives to the fourth order.

(c) The α-mixing coefficients of X satisfy αT = O(T−η) for some η > 2.

(d) The kernel k integrates to one, is even, has compact support, and is four times

continuously differentiable.

(e) The bandwidth h = hT satisfies Th3 →∞ and Th4 → 0.

Parts (a,b,c) of Assumption 4.1 may be compared to the corresponding parts of Assump-

tion 3.1. Note that (b) ensures that H admits continuous mixed partial derivatives to

the fourth order. The compact support condition imposed on k in Assumption 4.1(d) is

mathematically convenient, but may perhaps be replaced by a condition on the rate at

which the tails of k decay to zero. Assumption 4.1(e) provides the admissible rates of

decay for the bandwidth h. The requirement that Th4 → 0 could likely be weakened if we
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were to allow nonzero bias in the asymptotic distribution of ψ̂T (u), but we do not pursue

this extension here.

Theorem 4.3 establishes the asymptotic normality of ψ̂T (u), giving the asymptotic vari-

ance σ2(u) in terms of k, C, Q, and the invariant pdf f = F ′. A consistent estima-

tor of σ2(u) is provided. In the statement of Theorem 4.3, and in its proof, we define

ψ(u) = ∂2C(u, u)− ∂1C(u, u) to avoid ambiguity about the values taken by ψ on sets of

Lebesgue measure zero.

Theorem 4.3. Suppose X satisfies Assumption 4.1. Then, for any u ∈ (0, 1) such that

f(Q(u)) > 0, we have

(Th)1/2
(
ψ̂T (u)− ψ(u)

)
→d N

(
0, σ2(u)

)
,

where

σ2(u) =

∫
k(z)2dz

f (Q(u))
· (∂1C(u, u) (1− ∂1C(u, u)) + ∂2C(u, u) (1− ∂2C(u, u))) .

The limiting variance σ2(u) may be consistently estimated by

σ̂2
T (u) =

∫
k(z)2dz

f̂T

(
Q̂T (u)

) · (∂1ĈT (u, u)
(

1− ∂1ĈT (u, u)
)

+ ∂2ĈT (u, u)
(

1− ∂2ĈT (u, u)
))

,

where f̂T = F̂ ′T .

Nonnegativity of the limiting variance σ2(u) appearing in Theorem 4.3 follows from the

fact that 0 ≤ ∂iC ≤ 1 for i = 1, 2; see e.g. Nelsen (2006, Theorem 2.2.7). We may rule

out the possibility that σ2(u) = 0 if we assume that 0 < ∂iC(u, u) < 1 for i = 1, 2.

If σ2(u) > 0, Theorem 4.3 can be used to construct pointwise asymptotic confidence

intervals for ψ(u). Alternatively, the local bootstrap of Paparoditis and Politis (2002)

could be used to construct confidence intervals. We investigate this possibility in the

finite sample simulations reported in the following subsection.

Our proof of Theorem 4.3, which may be found in the Appendix, adapts methods em-

ployed by Fermanian and Scaillet (2003). Those authors seek to find the joint asymptotic

behavior of a single mixed partial derivative of ĈT evaluated at multiple points in the unit
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square. Here, our concern is with the joint asymptotic behavior of the two first partial

derivatives of ĈT evaluated at a single point on the main diagonal of the unit square.

The application of a result due to Robinson (1983), used also by Fermanian and Scaillet

(2003), is central to our argument.

4.2.2 Finite sample performance

Here we report some limited numerical evidence pertaining to the finite sample perfor-

mance of our circulation density estimator. For T = 75 and T = 150, we generated 1500

samples of T iid standard normal random variables. For each sample we computed the

circulation density estimator ψ̂T (u) at the quantiles u = 0.1, 0.3, 0.5, 0.7, 0.9. Pointwise

nominal 80%, 90% and 95% confidence bands for each circulation density estimate were

computed using the local bootstrap of Paparoditis and Politis (2002), with 600 boot-

strap replications. For each quantile, we calculated the coverage rate of each confidence

band over the 1500 randomly generated samples, and also the mean squared error for the

circulation density estimator.

Implementation of the circulation density estimator and local bootstrap requires us to

choose kernel functions k and W and bandwidth parameters h and b. Both kernels were

taken to be Gaussian. For the local bootstrap bandwidth parameter b we used the data

dependent selection rule described by Paparoditis and Politis (2002, p. 315), with plug-

in parameters extracted from an auxiliary first-order autoregression. For the bandwidth

parameter h used to construct the circulation density estimator, we followed the Silverman

rule of thumb and set h = 1.06ŝTT
−1/5, where ŝT is the sample standard deviation.

The results of our experiment are provided in Table 4.1. For both sample sizes T and all

quantiles u, the coverage probabilities of our pointwise confidence bands were extremely

close to the nominal rate. This suggests that, in this context, the local bootstrap procedure

does a very good job at approximating the sampling uncertainty associated with our

estimators. The mean square errors for our estimators were also very small, peaking at

only 0.0035 when T = 75 and 0.0023 when T = 150.

We have not reported coverage rates for confidence intervals obtained using the first order

asymptotic approximation given in Theorem 4.3, and variance estimator σ̂2
T (u). Con-
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Sample size: T = 75
Quantile

0.1 0.3 0.5 0.7 0.9
95% coverage 0.955 0.949 0.939 0.955 0.944
90% coverage 0.897 0.899 0.895 0.902 0.892
80% coverage 0.789 0.789 0.803 0.793 0.776

Mean square error 0.0023 0.0033 0.0035 0.0033 0.0023

Sample size: T = 150
Quantile

0.1 0.3 0.5 0.7 0.9
95% coverage 0.933 0.943 0.951 0.948 0.953
90% coverage 0.884 0.895 0.905 0.901 0.884
80% coverage 0.770 0.817 0.792 0.810 0.782

Mean square error 0.0016 0.0022 0.0023 0.0022 0.0016

Table 4.1: Coverage rates and mean square errors for our circulation density estimator,
with confidence bands constructed using the local bootstrap. We employed 600 bootstrap
replications and 1500 experimental replications. Samples were iid standard normal.

fidence intervals constructed in this way tended to be excessively conservative. With

T = 150, the coverage rate for nominal 80% confidence intervals was above 95% at all

quantiles. Even with T = 1500, the coverage rate remained above 91%. The discrep-

ancy between asymptotic and finite sample results may be explained by the fact that the

automatic bandwidth selection rules used in our simulations generate bandwidths that

decay to zero at the rate T−1/5, whereas Assumption 4.1(e) requires our bandwidths to

decay faster than T−1/4. Assumption 4.1(e) eliminates bias in the first-order asymptotic

distribution of (Th)1/2(ψ̂T (u) − ψ(u)); however, a general principle for optimal band-

width selection is that one seeks to achieve an ideal balance between asymptotic bias and

variance, and such a balance would typically entail nonzero bias. We recommend that

the local bootstrap be used to form confidence bands in situations where a bandwidth

selection procedure not satisfying Assumption 4.1(e) is used.
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5 Empirical illustration

In this section we illustrate the use of our time reversibility test and circulation density

estimator by applying them to a time series of weekly gasoline price markups in Windsor,

Ontario from August 20, 1989 to September 25, 1994. These markups, displayed in

Figure 5.1(a), were calculated by dividing the average retail price across a sample of

gasoline stations in Windsor by the wholesale price of large scale purchases of unbranded

gasoline at the terminal in Toronto, Ontario. The same data were used by Eckert (2002),

who studied the asymmetry of price responses to cost increases and decreases, and by

McCausland (2007), who divided the markups into six bins and used Bayesian techniques

to estimate the circulation through each bin.

Gasoline price dynamics have attracted considerable attention during the last decade due

to the presence of Edgeworth cycles in a substantial proportion of markets. Edgeworth

cycles involve extended periods of gradual price reduction, followed by shorter periods of
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Figure 5.1: Panel (a) displays the average weekly gasoline price markups in Windsor,
Ontario from 8/20/1989 to 9/25/1994. Panel (b) displays the circulation density esti-
mated using these data, with pointwise 95% confidence bands constructed using the local
bootstrap.
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rapid price increase. Game theoretic foundations for Edgeworth cycles were provided by

Maskin and Tirole (1988), who showed that Edgeworth price cycles emerge naturally as

a Markov perfect equilibrium in a dynamic model of Bertrand competition between two

firms. Extensions of this result have been provided by Eckert (2003) and Noel (2008).

Other key papers on Edgeworth cycles in gasoline markets include Noel (2007), Wang

(2009) and Lewis and Noel (2011); further references may be found in Noel (2011).

On casual inspection, the time series of price markups in Figure 5.1(a) seems to contain

a large number of long decreasing strings of observations, consistent with the presence of

Edgeworth cycles. Applying our test of time reversibility to this series yields a p-value of

0.000, indicating overwhelming rejection of reversibility. In Figure 5.1(b) we display our

estimated circulation density for the price markup time series, including 95% pointwise

confidence bands obtained using the local bootstrap. The circulation density estimate is

negative everywhere, and the 95% confidence bands exclude zero at all quantiles between

0.1 and 0.85. This pattern is consistent with the presence of Edgeworth cycles, under

which downward price movements are more likely than upward price movements unless

the markup is very low. Further, the circulation density appears to dip substantially

in the lower half of the state space, achieving its minimum value near the 0.3 quantile

of the invariant distribution. In the language of Section 4.1, we say that there is a

significant net probability downflow through this region. This suggests that sequences of

price undercutting may be most likely to occur when the markup is near the 0.3 quantile.

Our estimated circulation density is broadly consistent with the pattern of circulation

estimated by McCausland (2007) using the same data. After dividing the markups into

six bins, McCausland estimated the circulation through each interior bin. (The circula-

tion through the first and last bins is necessarily zero.) Table 4 of McCausland (2007)

reveals that, while the estimated circulation through each bin is negative, the estimated

circulation through the third bin is at least six times as large as the estimated circulation

through any of the other bins. This third bin corresponds to markups between 1.1 and 1.2;

the corresponding empirical quantiles are 0.22 and 0.56. Our circulation density estimate

exhibits a similar pattern, but provides us with a more precise idea of where the tendency

for downward price movement is strongest, and avoids the loss of information inherent to

methods that classify observations into discrete bins.
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It is apparent from Figure 5.1(a) that our price markup series is somewhat more volatile in

the first half of the sample than it is in the second half. The class of models considered in

this paper permits conditional heteroskedasticity, but of a form limited by the assumption

that our series is Markovian. In particular, ARCH-type conditional heteroskedasticity

(Engle, 1982) may be accommodated in our framework, but this is not true in general for

GARCH-type conditional heteroskedasticity (Bollerslev, 1986), as the former is Markovian

while the latter is not. Of course, unconditional heteroskedasticity violates our stationary

condition and therefore falls outside the scope of our analysis. Dividing our sample in

two, we continued to obtain negative circulation density estimates at all quantiles using

either half of the sample. In the first half of the sample, the circulation density estimate

appears more symmetric than it does in the full sample, achieving a minimum of −0.22

at the 0.45 quantile. In the latter half of the sample, the estimated circulation density is

significantly negative and below −0.1 when we are at or below the 0.3 quantile, but above

−0.1 and insignificantly different from zero at higher quantiles.

6 Conclusion

In this paper we have made two primary contributions to the literature on time reversibil-

ity. First, we proposed a new test of time reversibility, applicable to stationary Markov

chains. Compared to existing tests, our test has the advantage of being consistent against

arbitrary violations of reversibility. Second, building on work by McCausland (2007), we

proposed a new way to characterize the nature of time irreversibility when it is present.

Our circulation density estimator was shown to be well behaved asymptotically under

suitable regularity conditions, and numerical evidence suggests that it also performs well

in finite samples.

Our work here may be extended in several directions. On the technical side, it may

be interesting to consider the problem of bandwidth selection for our circulation density

estimator in more detail. The bandwidth rules used in our numerical simulations converge

to zero too slowly to satisfy Assumption 4.1(e). Moreover, they are not explicitly designed

to minimize the mean square error of our circulation density estimator. Relaxation of the

condition Th4 → 0 in Assumption 4.1(e), so that the asymptotic bias given in Theorem
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4.3 is potentially nonzero, may be required in order to deal rigorously with the problem of

bandwidth selection. Extending Theorem 4.3 in this way involves a number of technical

difficulties and goes beyond the scope of the present paper.

On the more practical end, a priority for future work is to systematically apply our time

reversibility test and circulation density estimator to a range of macroeconomic time

series. Business cycle asymmetry is by now fairly well established for many variables of

interest, but the study of circulation densities may perhaps yield new insights into the

nature of this asymmetry. It may also be of interest to investigate whether the asymmetric

Gumbel copula, or other nonexchangeable copula families, may be used to improve the

empirical modeling and forecasting of macroeconomic and financial variables exhibiting

asymmetric cyclical behavior. We leave these matters to future research.

A Mathematical appendix

A.1 Technical conditions for local bootstrap validity

To formally establish the applicability of the local bootstrap to our testing procedure, we

build on some of the results in Paparoditis and Politis (2002). Those authors obtain their

results under a number of technical conditions. We shall employ the same conditions here.

Assumption A.1. The following statements are true.

(a) X is an aperiodic, stationary, geometrically ergodic, real valued Markov chain.

(b) The invariant distribution F (·) and one-step transition distributions F (·|x), x ∈ R,

satisfy the following conditions.

(i) F (·) and F (·|x), x ∈ R, are absolutely continuous, with bounded densities f(·)
and f(·|x), x ∈ R.

(ii) There exists L ∈ (0,∞) such that, for all x1, x2 ∈ R and y ∈ R̄,

|F (y|x2)f(x2)− F (y|x1)f(x1)| ≤ L|x2 − x1|.

32



(iii) There exists L′ ∈ (0,∞) such that, for all x, y1, y2 ∈ R,

|f(y2|x)− f(y1|x)| ≤ L′|y2 − y1|.

(c) There exists a compact set S ⊂ R such that P (X0 ∈ S) = 1 and f(·|x) > 0 for all

x ∈ S.

(d) The kernel W is a bounded, Lipschitz continuous, even pdf on R satisfying W (x) > 0

for all x ∈ R, and
∫
|x|W (x)dx <∞.

(e) The bandwidth b = bT satisfies b � T−δ for some δ ∈ (0, 1/2). That is, there exist

a1, a2 ∈ (0,∞) such that a1 ≤ bT δ ≤ a2 for all sufficiently large T .

A.2 Proofs

The following preliminary result is used in our proofs of Theorem 3.1 and Lemma 3.1.

Lemma A.1. Suppose Assumption 3.1 holds. Then as T →∞ we have T 1/2(HT −H) 

B in `∞(R2). This continues to be true if X is not a Markov chain.

Proof of Lemma A.1. HT is the empirical distribution function of a sample of size T − 1

drawn from the bivariate process {(Xt, Xt+1) : t ∈ Z}. This bivariate process inherits

the stationarity and α-mixing rate of the univariate process X . Therefore, since H is

continuous when F is continuous, results due to Rio (2000, ch. 7) imply that T 1/2(HT −
H) B.

Proof of Theorem 3.1. If X is time reversible, then H(x, y) = H(y, x) for all x, y ∈ R,

and so

T 1/2θT = sup
x,y

∣∣T 1/2(HT (x, y)−H(x, y))− T 1/2(HT (y, x)−H(y, x))
∣∣ .

Since T 1/2(HT − H)  B by Lemma A.1, part (a) now follows from an application of

the continuous mapping theorem. If X is time irreversible, then we may choose x, y ∈ R
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such that H(x, y) 6= H(y, x). Since HT (x, y)−HT (y, x) = H(x, y)−H(y, x) +Op(T
−1/2)

by Lemma A.1, we find that

T 1/2θT ≥ T 1/2|HT (x, y)−HT (y, x)| = T 1/2|H(x, y)−H(y, x)|+Op(1).

Divergence of T 1/2|H(x, y)−H(y, x)| to infinity establishes part (b).

Proof of Lemma 3.1. Let BT =
√
T (HT − H) and recall that B∗T =

√
T (H∗T − E∗H∗T ).

Let L ∗(B∗T ) denote the law of B∗T conditional on X . Noting that L ∗
T (B∗T ) = L ∗(B∗T )

a.s., we see that it suffices for us to show that L ∗(B∗T )  B a.s. We will do this by

verifying a.s. fidi convergence and a stochastic equicontinuity condition; see e.g. Theorem

10.2 of Pollard (1990).

First, Theorem 4.2 of Paparoditis and Politis (2002) will be used to show a.s. fidi conver-

gence. Fix s pairs (x1, y1), . . . , (xs, ys) ∈ R2. Let g : R2 → {0, 1}s be given by

g(v, w) = (1(v ≤ x1, w ≤ y1), . . . , 1(v ≤ xs, w ≤ ys)) .

We may now write

(BT (x1, y1), . . . ,BT (xs, ys)) =

√
T

T − 1

T−1∑
t=1

(g(Xt, Xt+1)− Eg(Xt, Xt+1)) (A.1)

and

(B∗T (x1, y1), . . . ,B
∗
T (xs, ys)) =

√
T

T − 1

T−1∑
t=1

(
g(X∗t , X

∗
t+1)− E∗g(X∗t , X

∗
t+1)
)
. (A.2)

The assumptions of Theorem 4.2 of Paparoditis and Politis (2002) are satisfied1 under

Assumption A.1. Applying this result in combination with (A.1) and (A.2) we obtain

dKS (L ∗ (B∗T (x1, y1), . . . ,B
∗
T (xs, ys)) ,L (BT (x1, y1), . . . ,BT (xs, ys)))→ 0

1In fact, Paparoditis and Politis (2002) require g to be continuous, which is not the case here. However,
inspection of their proofs of Theorems 4.1 and 4.2 reveals that it suffices for g to be continuous on a subset
of R2 of full H-measure. Continuity of H ensures that this condition is satisfied here.
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a.s., where dKS is the Kolmogorov-Smirnov metric on the space of probability distributions

on Rs. In view of Lemma A.1, it follows that

L ∗ (B∗T (x1, y1), . . . ,B
∗
T (xs, ys)) (B(x1, y1), . . . ,B(xs, ys))

a.s. This proves a.s. fidi convergence of L ∗(B∗T ) to B.

It remains to verify stochastic equicontinuity. To this end we shall apply Theorem 2.2 of

Andrews and Pollard (1994). In this paragraph it will be helpful to explicitly recognize

that the bootstrap draws are properly viewed as a triangular array, so we shall write

X∗1,T , . . . , X
∗
T,T for the bootstrap sample constructed from X1, . . . , XT . Also, we condition

on X throughout, and omit a.s. qualifiers. Now, for any x, y ∈ R we may write

B∗T (x, y) =

√
T

T − 1

T−1∑
t=1

(
f(Y ∗t,T−1)− E∗f(Y ∗t,T−1)

)
, (A.3)

where f (not to be confused with the pdf of X0) is the indicator of (−∞, x] × (−∞, y],

and Y ∗t,T−1 = (X∗t,T , X
∗
t+1,T ). Let F be the collection of all such f as (x, y) varies over

R2. Comparing Theorem 2.2 of Andrews and Pollard (1994) with (A.3), we see that B∗T
satisfies stochastic equicontinuity if, for some even integer Q ≥ 2 and some γ > 0, we

have (i)
∑∞

j=1 j
Q−2α

γ/(Q+γ)
j <∞, and (ii)

∫ 1

0
x−γ/(2+γ)N(x,F)1/Qdx <∞. Here, the αj’s

are α-mixing coefficients corresponding to the array {Y ∗t,T : t ≤ T, T = 1, 2, . . .}, while

N(x,F) is a bracketing number for F ; see Andrews and Pollard (1994, p. 120) for details.

Theorem 3.4 of Paparoditis and Politis (2002) implies that the ρ-mixing coefficients for

the array {Y ∗t,T : t ≤ T, T = 1, 2, . . .} decay at a geometric rate. It follows from the

well-known inequality between ρ- and α-mixing coefficients (see e.g. Proposition 3.11 in

Bradley, 2007) that the α-mixing coefficients must also decay at a geometric rate, and so

condition (i) holds for any permissible Q and γ. Further, it is known (see e.g. Examples

2.5.4 and 2.5.7 in van der Vaart and Wellner, 1996) that N(x,F) increases at a polynomial

rate as x ↓ 0, so we may choose Q and γ such that condition (ii) is satisfied. Theorem 2.2

of Andrews and Pollard (1994) therefore yields stochastic equicontinuity of B∗T .

We have established that, conditional on X , B∗T satisfies fidi convergence and stochastic

equicontinuity with probability one. The weak convergence to be proved now follows from

Theorem 10.2 of Pollard (1990) or Corollary 2.3 of Andrews and Pollard (1994).
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Proof of Theorem 3.2. We know from Lemma 3.1 that L ∗
T (B∗T ) B a.s. An application

of the continuous mapping theorem yields

L ∗
T

(
sup
x,y
|B∗T (x, y)−B∗T (y, x)|

)
→d sup

x,y
|B(x, y)−B(y, x)|

a.s. The statement to be proved follows from the continuity of this limiting distribution.

Proof of Theorem 4.1. Since F and ∂2C are continuous, we may define a regular family of

conditional cdfs for Xt given Xt+1 by writing P (Xt ≤ x|Xt+1 = y) = ∂2C(F (x), F (y)) for

all x ∈ R and F -a.e. y ∈ R. Continuity of F ensures that F (Q(u)) = u for all u ∈ (0, 1),

so we have F↑(Q(u)) = ∂2C(u, u) for a.e. u ∈ (0, 1). Similarly, F↓(Q(u)) = ∂1C(u, u) for

a.e. u ∈ (0, 1). Our desired result follows by noting that the identities in (4.1) allow us to

write ψ(u) = F↑(Q(u))−F↓(Q(u)) for a.e. u ∈ (0, 1).

Proof of Theorem 4.2. In view of (4.1) and the definitions of F↑ and F↓, we have∫
ψ(u)du =

∫
P (Xt−1 ≤ Q(u)|Xt = Q(u))du−

∫
P (Xt+1 ≤ Q(u)|Xt = Q(u))du

=

∫
P (Xt−1 ≤ x|Xt = x)dF (x)−

∫
P (Xt+1 ≤ x|Xt = x)dF (x).

The law of iterated expectations allows us to write∫
P (Xt−1 ≤ x|Xt = x)dF (x) =

∫
P (Xt−1 ≤ Xt|Xt = x)dF (x) = P (Xt−1 ≤ Xt).

Similarly, we have
∫
P (Xt+1 ≤ x|Xt = x)dF (x) = P (Xt+1 ≤ Xt).

To prove Theorem 4.3, the following two preliminary results will be useful.

Lemma A.2. Suppose Assumption 4.1 holds. Then for any x ∈ R, as T → ∞ the
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random vector

(Th)1/2 ·

 ∂1ĤT (x, x)− ∂1H(x, x)

∂2ĤT (x, x)− ∂2H(x, x)

f̂T (x)− f(x)


converges in distribution to the trivariate normal distribution with zero mean and covari-

ance matrix

Σ =

∫
k(z)2dz · f(x) ·

 ∂1C(u, u) ∂1C(u, u)∂2C(u, u) ∂1C(u, u)

∂1C(u, u)∂2C(u, u) ∂2C(u, u) ∂2C(u, u)

∂1C(u, u) ∂2C(u, u) 1

 ,
where u = F (x).

Proof of Lemma A.2. Our proof of this result bears some resemblance to the proof of

Theorem 7 of Fermanian and Scaillet (2003). Like those authors, we establish our result

by applying Lemma 7.1 of Robinson (1983). In view of the Cramér-Wold theorem it

suffices for us to show that, for any λ = (λ1, λ2, λ3)
> ∈ R3,

(Th)1/2

(
2∑
i=1

λi(∂iĤT (x, x)− ∂iH(x, x)) + λ3(f̂T (x)− f(x))

)
→d N(0, λ>Σλ).

Using integration by parts and a change of variables, we may show that

Ef̂T (x) =

∫
kh(x− y)f(y)dy =

∫
f(x− hr)k(r)dr.

Applying a Taylor expansion to f and exploiting the fact that k is even,2 we obtain

Ef̂T (x) = f(x) + O(h2). Similar arguments yield E∂iĤT (x, x) = ∂iH(x, x) + O(h2) for

i = 1, 2. Since Th5 → 0, the bias in our estimators is asymptotically negligible, and now

2Fermanian and Scaillet (2003, pp. 48–49) do not exploit the fact that k is even in the proof of their

Theorem 7, thereby obtaining Ef̂T (x) = f(x) +O(h). This leads them to impose the condition Th3 → 0
in order to achieve asymptotically negligible bias, which is stronger than necessary.

37



we need only show that

(Th)1/2

(
2∑
i=1

λi(∂iĤT (x, x)− E∂iĤT (x, x)) + λ3(f̂T (x)− Ef̂T (x))

)
→d N(0, λ>Σλ).

(A.4)

We now apply Lemma 7.1 of Robinson (1983). For t = 0, . . . , T let

V1tT = λ1h (kh(x−Xt+1)Kh(x−Xt+2)− Ekh(x−Xt+1)Kh(x−Xt+2)) ,

V2tT = λ2h (Kh(x−Xt)kh(x−Xt+1)− EKh(x−Xt)kh(x−Xt+1)) ,

V3tT = λ3h (kh(x−Xt+1)− Ekh(x−Xt+1)) .

The term on the left-hand side of (A.4) is equal to

(Th)1/2

(
1

T − 1

T−2∑
t=0

h−1V1tT +
1

T − 1

T−1∑
t=1

h−1V2tT +
1

T

T−1∑
t=0

h−1V3tT

)
.

Boundedness of k ensures that the random variables VitT are bounded uniformly in i,

t and T , so we may rewrite this quantity as ST + O(T−1/2h−1/2) = ST + o(1), where

ST = T−1/2
∑T

t=1

∑3
i=1 h

−1/2VitT . If applicable, Lemma 7.1 of Robinson (1983) establishes

the asymptotic normality of ST ; we now verify its assumptions, which are labeled A3.1

and A7.1–A7.4. A3.1 is implied by our condition3 on the α-mixing rate of X . A7.1 holds

with q = 2 due to the stationarity of X . A7.2 holds since Th→∞.

A7.3 is satisfied if we can identify constants σij, i, j = 1, 2, 3, such that h−1EVitTVjtT →
λiλjσij. Let κ2 =

∫
k(x)2dx. Arguments given in the proof of Theorem 7 in Fermanian

and Scaillet (2003, pp. 49–51) establish that for i = 1, 2 we may take σii = κ2∂iH(x, x),

σ33 = κ2f(x) and σi3 = σ3i = κ2∂iH(x, x). It remains for us to identify σ12 = σ21.

Fermanian and Scaillet (2003, pp. 48–49) establish that Ekh(x−Xt+1)Kh(x−Xt+2) = O(1)

and EKh(x−Xt)kh(x−Xt+1) = O(1), so we have

h−1EV1tTV2tT = λ1λ2hE
(
Kh(x−Xt)kh(x−Xt+1)

2Kh(x−Xt+2)
)

+O(h). (A.5)

3Fermanian and Scaillet (2003) assume that αT = O(T−2), but this is not quite enough to ensure
that A3.1 of Robinson (1983), which requires

∑∞
j=T αj = o(T−1), is satisfied. αT = O(T−η) for some

η > 2 suffices. In fact, Lemmas A.2 and A.3 and Theorem 4.3 remain true if our Assumption 4.1(c) is
replaced with A3.1 of Robinson (1983).
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Since X is a Markov chain, the joint cdf of Xt and Xt+2 conditional on Xt+1 is of the

form

P (Xt ≤ w,Xt+2 ≤ z|Xt+1 = y) = ∂2C(F (w), F (y))∂1C(F (y), F (z));

see e.g. Darsow et al. (1992). We may therefore write

E (Kh(x−Xt)Kh(x−Xt+2)|Xt+1 = y) (A.6)

=

(∫
Kh(x− w)∂2C(F (dw), F (y))

)(∫
Kh(x− z)∂1C(F (y), F (dz))

)
.

Integration by parts and a change of variables yield∫
Kh(x− w)∂2C(F (dw), F (y)) =

∫
∂2C(F (x− hr), F (y))k(r)dr.

Applying a Taylor expansion to ∂2C(F (·), F (y)) and exploiting the symmetry of k, we find

that this last term is equal to ∂2C(F (x), F (y)) + O(h2), with the order of the remainder

term holding uniformly in y over any set on which f(y) is bounded away from zero. We

may show in similar fashion that∫
Kh(x− z)∂1C(F (y), F (dz)) = ∂1C(F (y), F (x)) +O(h2),

with the order of the remainder term again holding uniformly in y over any set on which

f(y) is bounded away from zero. Returning to (A.6), we now have

E (Kh(x−Xt)Kh(x−Xt+2)|Xt+1 = y) = ∂2C(F (x), F (y))∂1C(F (y), F (x)) +RT (y),

where the remainder term RT (y) satisfies supf(y)>ε |RT (y)| = O(h2) for any ε > 0. Apply-

ing the law of iterated expectations and making another change of variables, we obtain

E
(
Kh(x−Xt)kh(x−Xt+1)

2Kh(x−Xt+2)
)

=

∫
∂2C(F (x), F (y))∂1C(F (y), F (x))kh(x− y)2f(y)dy +

∫
RT (y)kh(x− y)2f(y)dy

= h−1
∫
∂2C(F (x), F (x− hr))∂1C(F (x− hr), F (x))k(r)2f(x− hr)dr +O(h).
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Here, to obtain the order of the approximation error, we note that∫
RT (y)kh(x− y)2f(y)dy = h−1

∫
RT (x− hr)f(x− hr)k(r)2dr,

which is O(h) since k has compact support, f and k are bounded, and RT is uniformly

O(h2) in a neighborhood of x. Next, taking a Taylor expansion and once again exploiting

the symmetry of k, we find that

E
(
Kh(x−Xt)kh(x−Xt+1)

2Kh(x−Xt+2)
)

= h−1∂1C(F (x), F (x))∂2C(F (x), F (x))f(x)

∫
k(r)2dr +O(h),

and so (A.5) allows us to set σ12 = σ21 = κ2∂1C(F (x), F (x))∂2C(F (x), F (x))f(x). Thus

A7.3 of Robinson (1983) is satisfied.

To verify A7.4 we will demonstrate that EVitTVj,t+s,T = O(h2) for i, j = 1, 2, 3 and s ≥ 1.

Boundedness of Kh allows us to write

|EVitTVj,t+s,T | ≤ ah2Ekh(x−Xt+1)kh(x−Xt+s+1) +O(h2)

for some a < ∞. Let Hs denote the joint cdf of Xt+1 and Xt+s+1. Integration by parts

and a change of variables yield

h2Ekh(x−Xt+1)kh(x−Xt+s+1) = h2
∫∫

kh(x− y)kh(x− z)Hs(dy, dz)

=

∫∫
k′(v)k′(w)Hs(x− hv, x− hw)dvdw.(A.7)

Using the Markov property of X and smoothness of H, one may show without difficulty

that Hs is twice continuously differentiable in a neighborhood of (x, x). Therefore, since∫
k′ = 0, we may use a Taylor expansion to show that the right-hand side of (A.7) is

O(h2). We conclude that EVitTVj,t+s,T = O(h2), and so A7.4 is satisfied. Lemma 7.1 of

Robinson (1983) thus implies that (A.4) holds, with Σ having (i, j)th element σij. This

completes the proof.

Lemma A.3. Suppose Assumption 4.1 holds. Then for any x ∈ R, as T →∞ we have
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(i) (Th)1/2
(
∂1ĤT (x̂T , x̂T )− ∂1ĤT (x, x)

)
→p 0,

(ii) (Th)1/2
(
∂2ĤT (x̂T , x̂T )− ∂2ĤT (x, x)

)
→p 0, and

(iii) (Th)1/2
(
f̂T (x̂T )− f̂T (x)

)
→p 0,

where x̂T = Q̂T (u) and u = F (x).

Proof of Lemma A.3. We begin by noting that Theorem 6 of Fermanian and Scaillet

(2003) implies4 that x̂T = x + Op(T
−1/2). Next, using a third-order Taylor expansion,5

we find that

∂1ĤT (x̂T , x̂T )− ∂1ĤT (x, x) =
3∑
j=1

1

j!
(x̂T − x)j

dj

dzj
∂1ĤT (z, z)|z=x +RT , (A.8)

where the remainder term RT is equal to

RT =
1

24
(x̂T − x)4

d4

dz4
∂1ĤT (z, z)|z=x̃T

for some x̃T between x̂T and x. Boundedness of k and its first four derivatives ensures

that

sup
x̃∈R

∣∣∣∣ d4

dz4
∂1ĤT (z, z)|z=x̃

∣∣∣∣ = O(h−5).

Therefore, since Th3 →∞, we have RT = Op(T
−2h−5) = op(T

−1/2h−1/2). To demonstrate

that the right-hand side of (A.8) is op(T
−1/2h−1/2), it now suffices for us to show that

dj

dzj
∂1ĤT (z, z)|z=x = op(T

(j−1)/2h−1/2)

4Strictly speaking, Theorem 6 of Fermanian and Scaillet (2003) requires that f is positive on the
interior of its support. However, for our purposes, it suffices that f is positive at x.

5Fermanian and Scaillet (2003, p. 47) seek to establish a result comparable to our Lemma A.3 by
employing a first-order Taylor expansion where we have employed a third-order expansion. They obtain
an approximation error of order Op(T

−1/2h−5/2), which is claimed to be op(1), but which in fact di-
verges under their assumptions. Here we avoid this difficulty by using a higher order Taylor expansion.
Consequently, our bandwidth and kernel conditions differ from theirs.
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for j = 1, . . . , 3. This will be true if

1

T

T∑
t=1

k
(i)
h (x−Xt)K

(j−i)
h (x−Xt+1) = op(T

(j−1)/2h−1/2) (A.9)

for j = 1, . . . , 3 and i = 0, . . . , j, where parenthesized superscripts signify higher-order

differentiation. Using integration by parts and a change of variables, we find that

Ek
(i)
h (x−Xt)K

(j−i)
h (x−Xt+1) =

∫∫
k(v)k(w)H(i+1,j−i)(x− hv, x− hw)dvdw = O(1).

It follows that

1

T

T∑
t=1

k
(i)
h (x−Xt)K

(j−i)
h (x−Xt+1) = T (j−1)/2h−1/2ST +O(1), (A.10)

where, suppressing the dependence of ST and VtT on i and j in our notation6, we define

ST = T−1/2
∑T

t=1(T
j/2h2j)−1/2VtT and

VtT = T−j/4hj+1/2
(
k
(i)
h (x−Xt)K

(j−i)
h (x−Xt+1)− Ek(i)h (x−Xt)K

(j−i)
h (x−Xt+1)

)
.

In view of (A.10) and the fact that T (j−1)/2h−1/2 → ∞, we may verify (A.9) by showing

that ST = op(1). We shall do this by verifying that ST and VtT satisfy assumptions

A3.1, A7.1-A7.4 of Lemma 7.1 of Robinson (1983), with σ2 = 0. A3.1 holds under our

assumption on the mixing rate of X . A7.1 holds with q = 1 due to the stationarity of

X . A7.2 holds since Th3 → ∞. A7.3 holds with σ2 = 0 if EV 2
tT = o(T j/2h2j). Using a

change of variables, we may show that

Ek
(i)
h (x−Xt)

2K
(j−i)
h (x−Xt+1)

2

= h−2j
∫∫

k(i)(v)2K(j−i)(w)2H(1,1)(x− hv, x− hw)dvdw = O(h−2j).

Therefore, we have

EV 2
tT ≤ 2T−j/2h2j+1Ek

(i)
h (x−Xt)

2K
(j−i)
h (x−Xt+1)

2 = O(T−j/2h) = o(T j/2h2j), (A.11)

6As defined here, ST and VtT differ from ST and VitT as defined in the proof of Lemma A.2, but play
the same role in the application of Lemma 7.1 of Robinson (1983).
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where the first inequality follows from the fact that the variance of any random vari-

able is no greater than twice its expected square. Thus A7.3 holds. A7.4 holds if (a)

sup1≤t≤T |VtT | = O(1), (b) E|VtTVt+1,T | = o(T j/2h2j), and (c) E|VtTVt+s,T | = O(T jh4j)

for s ≥ 2. Boundedness of k(i) and K(j−i) may be used to show that sup1≤t≤T |VtT | =

O(T−j/4h−1/2) = O(1), yielding (a). Parts (b) and (c) follow from (A.11) using the

Cauchy-Schwarz inequality. We have now verified all assumptions of Lemma 7.1 of

Robinson (1983), which allows us to conclude that ST = op(1). Thus, (A.9) holds for

any j = 1, . . . , 3 and i = 0, . . . , j, and so the right-hand side of (A.8) is op(T
−1/2h−1/2).

This proves part (i) of Lemma A.3. Parts (ii) and (iii) may be proved using the same

approach.

Proof of Theorem 4.3. Lemma A.2 and Lemma A.3 jointly imply that

(Th)1/2 ·

 ∂1ĤT (x̂T , x̂T )− ∂1H(x, x)

∂2ĤT (x̂T , x̂T )− ∂2H(x, x)

f̂T (x̂T )− f(x)

→d N(0,Σ), (A.12)

where x = Q(u) and x̂T = Q̂T (u). Noting that

ψ̂T (u) =
∂2ĤT (x̂T , x̂T )− ∂1ĤT (x̂T , x̂T )

f̂T (x̂T )
and ψ(u) =

∂2H(x, x)− ∂1H(x, x)

f(x)
,

we can use the delta method to obtain (Th)1/2(ψ̂T (u)− ψ(u))→d N(0, σ2(u)). Let

a1 =
−1

f(x)
, a2 =

1

f(x)
, a3 =

∂1H(x, x)− ∂2H(x, x)

f(x)2
.

Then, applying the delta method, σ2(u) is given by

σ2(u) =
3∑
i=1

3∑
j=1

aiajΣij

=

∫
k(z)2dz

f(Q(u))
· (∂1C(u, u) (1− ∂1C(u, u)) + ∂2C(u, u) (1− ∂2C(u, u))) .

That σ̂2
T (u)→p σ

2(u) follows easily from (A.12).
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