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Abstract

Instrumental variables are widely used to identify and estimate causal relationships

in models with endogenous explanatory variables. The consequences of weak instruments

have been extensively studied in the literature with linear simultaneous equations models.

One might conjecture that the problem of weak instruments becomes even more important

when studying endogenous explanatory variables in nonparametric models, as more �ex-

ible models generally require stronger identi�cation power, and hence plausibly stronger

instruments.

This paper is the �rst to analyze the e¤ect of weak instruments on identi�cation, esti-

mation, and inference in a nonparametric setting. We consider a triangular simultaneous

equations model, and follow the control function approach for identi�cation and estima-

tion. We derive a necessary and su¢ cient rank condition for identi�cation, based on which

weak identi�cation is established. Then, nonparametric weak instruments are de�ned as a

sequence of reduced form functions that converges to a constant function. We characterize

weak instruments as a multicollinearity problem or, more generally, as an inverse problem,

which motivates the introduction of a regularization scheme. We propose a series estima-

tion method with penalization to alleviate the e¤ects of weak instruments. We derive the

rate of convergence of the resulting penalized series estimator. Consistency and asymp-

totic normality are achieved with �mildly�weak instruments and a �rapidly� shrinking

penalization parameter. Monte Carlo results show that the �nite sample performance of

the penalized estimator is appealing. The results of this paper are applied to an empirical

example, where the e¤ect of class size on test scores is estimated nonparametrically.
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1 Introduction

Instrumental variables (IVs) are widely used to identify and estimate models with endogenous

explanatory variables. In linear simultaneous equations models, it is well-known that standard

asymptotic approximations break down when instruments are weak in the sense that (partial)

correlation between the instruments and endogenous variables is weak. The consequences of

and solutions for weak instruments in linear settings have been extensively studied in the

literature over the past decade; see, e.g., Bound, Jaeger and Baker (1995), Staiger and Stock

(1997), Dufour (1997), Kleibergen (2002, 2005), Moreira (2003), Stock and Yogo (2005),

and Andrews and Stock (2007).1 Weak instruments in nonlinear parametric models have

been studied less in the literature, either in the context of weak identi�cation, e.g., by Stock

and Wright (2000), Han and Phillips (2006), Newey and Windmeijer (2009), Andrews and

Cheng (2010), or in a particular limited-dependent-variables version of simultaneous equations

models by Han (2011).

One might expect that nonparametric models with endogenous explanatory variables will

generally require stronger identi�cation power than linear models as there is an in�nite num-

ber of unknown parameters to identify, and hence stronger instruments may be required.

Despite the problem�s importance and the growing popularity of nonparametric models, weak

instruments in nonparametric settings have not received much attention.2 Also, surprisingly

little attention has been paid to the consequences of weak instruments in applied research

using nonparametric models. Part of the theoretical neglect is due to the existing di¢ cul-

ties embedded in nonparametric models. In a framework introduced in this paper, however,

weak instruments can be formalized clearly and their e¤ect can be analyzed without further

di¢ culties.

This paper analyzes the e¤ect of weak instruments on identi�cation, estimation, and in-

ference in a simple but widely-used nonparametric simultaneous equations model. We also

provide estimation strategies that have desirable properties when instruments are possibly

weak. Speci�cally, we consider a nonparametric triangular model. The model, which is

fully described later, consists of a nonparametric structural equation (or outcome equation)

y = g(x) + ", where g(�) is a function of interest and x is endogenous, and a nonparametric
reduced-form equation x = �(z) + v, where z is a vector of instruments. This model is also

considered in Newey, Powell and Vella (1999), where identi�cation and estimation results are

established in a situation without weak instruments.
1See Andrews and Stock (2007) for exhaustive survey of the literature on weak instruments.
2Chesher (2003) mentions the issue of weak instruments in applying his key identi�cation condition in

the empirical example of Angrist and Krueger (1991), and Blundell, Chen and Kristensen (2007) determine
whether weak instruments are present in the Engel curve dataset of their empirical section. They do that
by conducting the Stock-Yogo (2005) test developed in linear models applied to their reduced form which is
linearized by sieve approximation.
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We take the standard control function approach in the identi�cation and estimation of

the structural function g(�) as in Newey, Powell and Vella (1999): the model with conditional
mean restrictions stated below implies that E[yjx; z] = g(x) + E["jv] = g(x) + �(v), where

the endogeneity (E["jv] 6= 0) is controlled by introducing an additional unknown function

�(v) of the reduced-form errors (or residuals in estimation). This equation serves as a basis

for identi�cation and estimation. The estimation method is series estimation because it is

suitable for imposing the additive structure of the equation. Series estimation is also used in

Newey, Powell and Vella (1999).

The nonparametric triangular model considered in this paper is frequently used in recent

applied research such as Blundell and Duncan (1998) and Dustman and Meghir (2005), as

it has a form analogous to its popular parametric counterpart. The series estimation based

on the control function approach is also easy to implement in practice. More importantly,

in analyzing weak instruments, the model has advantages over other nonparametric models

with endogenous explanatory variables, such as the nonparametric IV (NPIV) model which is

considered, e.g., in Newey and Powell (2003), Hall and Horowitz (2005) and Blundell, Chen

and Kristensen (2007). The NPIV model is an alternative nonparametric model with di¤erent

stochastic assumptions and no �rst-stage reduced-form equation. Unlike in the NPIV model,

the speci�cation of weak instruments is intuitive in the triangular model from the explicit

reduced-form relationship. Also, clear interpretation of the e¤ect of the weak instruments can

be made from the series estimation of the implied equation derived above. Lastly, no other

di¢ culties are intrinsic to the model, such as the ill-posed inverse problem which arises in the

NPIV model.

The main contributions of the paper are summarized as follows. First, we derive novel

identi�cation results in nonparametric triangular models that complement existing results in

the literature, and we establish the notion of weak identi�cation based on these results. With

a mild support condition, we show that a particular rank condition on �(�) is necessary and
su¢ cient for identi�cation. This rank condition is substantially weaker than the su¢ cient

rank condition established in Newey, Powell and Vella (1999). Deriving such a minimal rank

condition is important in that a �slight violation�of it has a binding e¤ect on identi�cation

and hence results in weak identi�cation.

Second, the concept of nonparametric weak instruments is then de�ned, which generalizes

the concept of weak instruments with a linear reduced form as in Staiger and Stock (1997).

We consider sequences of reduced-form functions that converge to a non-identi�cation region,

namely, a space of reduced-form functions that violate the rank condition for identi�cation.

Under this localization, the signal diminishes relative to the noise in the system, and hence

the model is weakly identi�ed. In particular, we consider a sequence where the reduced-form

functions become �atter. A particular rate is designated in terms of the sample size, which

e¤ectively measures the strength of the instruments and appears in our asymptotic results for

the estimator of the structural function g(�).
In general, the weak instrument problem can be seen as an inverse problem. In the

nonparametric control function framework, the problem becomes a nonparametric analogue
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of a multicollinearity problem. To see this, note that once the endogeneity is controlled

by the control function, the model can be rewritten as an additive nonparametric regression

y = g(x)+�(v)+� by de�ning � = y�E[yjx; z]. The endogenous variables x and reduced-form
errors v comprise two regressors, but weak instruments result in the variation in x being mainly

driven from the variation of v, so that x and v are close to �collinear.�Alternatively, a series

representation of the regression equation reveals that the problem can be seen as where the

regressors become less variable as the instruments become weak. This problem is related to the

ill-posed inverse problem inherent to the NPIV model. The integral equation produced under

the NPIV approach faces a discontinuity problem when recovering the structural function by

inversion. Again, once the structural function is represented by a series approximation, this

inverse problem is translated into a problem where the regressors have little variation, since

they form the conditional expectation of basis functions (e.g., Kress (1989, p. 235)). The

similarity of the problems motivates that regularization methods used in the NPIV literature

to solve the ill-posed inverse problem can be introduced to our problem. There is, however,

an important di¤erence between the two problems in that, among the regularization methods

used to solve the ill-posed inverse problem, only penalization alleviates the e¤ect of weak

instruments.

Third, given this insight, we introduce a penalization scheme in estimation as a regu-

larization method to alleviate the e¤ect of weak instruments. We de�ne a penalized series

estimator and establish its asymptotic properties. Our results on the rate of convergence of

the estimator suggest the way in which weak instruments and penalization a¤ect bias and vari-

ance. In particular, weak instruments characterized as a multicollinearity problem exacerbate

bias and variance �symmetrically,�unlike the situation in the linear regression model where

multicollinearity results in imprecise estimates but does not introduce bias. Consistency and

asymptotic normality are achieved provided that the instruments are only mildly weak and

the penalization parameter shrinks su¢ ciently fast, which are discussed more rigorously later.

Penalization can reduce both bias and variance through the same mechanism working in

an opposite direction to the e¤ect of weak instruments. The �nite sample performance of

the penalized series estimator as measured by Monte Carlo simulations suggests that variance

reduction is signi�cant compared to an unpenalized estimator. Furthermore, despite the

additional penalization term, the bias is no larger than that of the unpenalized estimators for

a wide range of the strengths of instrument and magnitudes of penalization parameter, and

in some cases even smaller.

This paper provides useful implications for applied researchers. First, when one is estimat-

ing a nonparametric structural function, the results of IV estimation and subsequent inference

can be misleading even when the instruments are strong in terms of conventional criteria for

linear models (such as the �rst-stage F > 10 in Staiger and Stock (1997)). Second, the the-

oretical result that weak instruments have a symmetric e¤ect on bias and variance implies

that the bias and variance trade-o¤ is the same across di¤erent strengths of instruments, and

hence weak instruments cannot be alleviated by the choice of the order of series. Third, penal-

ization, on the other hand, can alleviate weak instruments by signi�cantly reducing variance
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and sometimes bias. Fourth, the strength of instruments can be improved by having a non-

parametric reduced form, so that the nonlinear relationship between the endogenous variable

and instruments is fully exploited. Although a linear �rst-stage reduced form is commonly

used in applied research,3 it is more subject to weak instruments than is a nonparametric

reduced form. Also, the nonparametric �rst stage estimation is not likely to worsen the over-

all convergence rate of the estimator, since the nonparametric rate from the second stage is

already present. The issue of dimensionality of the instruments can be mitigated by using a

single-index model or an additive model for the reduced-form. In the rare case where a linear

reduced-form relationship is in fact justi�ed by theory, one might need to be more cautious

about weak instruments than in the case with a nonlinear reduced-form relationship.

We apply the �ndings of this paper to an empirical example, where we nonparametrically

estimate the e¤ect of class size on students�test scores. In a well-known paper by Angrist and

Lavy (1999), the e¤ect of class size on students�test scores is estimated using linear models.

Class size is endogenous, and exogenous variation due to a rule on maximum class size is

used as an instrument. In the present paper, we generalize the linear structural function

of their model to be nonparametric. The �exible functional form allows the marginal e¤ect

to be di¤erent across class-size levels. Given this nonparametric extension, one can test

whether the results of Angrist and Lavy (1999) are driven by parametric assumptions. We

calculate penalized series estimates of the class-size e¤ect, which indicates that the overall

e¤ect is negative while the marginal e¤ect is diminishing. We also contrast (unpenalized) series

estimates calculated based on linear reduced-form with those based on nonparametric reduced-

form, and provide evidence that the instrument can be considered weak in a nonparametric

sense. Lastly, with a larger sample that is also used in Horowitz (2011) where the IV is

considered extremely strong, we compare our control function estimates with the estimates of

Horowitz (2011) where the NPIV model is considered and hence the ill-posed inverse problem

is present. Unlike under the NPIV approach, the estimate under the control function approach

has a substantially narrow con�dence band, which indicates that the data is informative about

the class-size e¤ect.

The rest of the paper is organized as follows. Section 2 introduces the triangular model

and control function approach. Section 3 obtains new identi�cation results for the model and

discusses the resulting rank condition in the context of instrument relevance. Section 4 dis-

cusses lack of identi�cation and weak identi�cation, where the concept of nonparametric weak

instruments is de�ned using the localization technique. Section 5 relates the weak instrument

problem to the ill-posed inverse problem and motivates our penalized series estimator. The

estimator is de�ned and the competing e¤ects of weak instruments and penalization are dis-

cussed. Sections 6-7 establish the rate of convergence and consistency of the penalized series

estimator and the asymptotic normality of some functionals of it. Section 8 presents Monte

Carlo simulation results. Section 9 discusses the empirical application of estimating the e¤ect

of class size on test scores. Finally, Section 10 concludes.

3See, for example, Newey, Powell and Vella (1999), Blundell and Duncan (1998), Blundell, Duncan and
Pendakur (1998), and Dustman and Meghir (2005).
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2 Model

We consider a nonparametric triangular simultaneous equations model

y = g0(x; z1) + ", (2.1a)

x = �0(z) + v, (2.1b)

E["jv; z] = E["jv] a.s., (2.1c)

E[vjz] = 0 a.s., (2.1d)

where g0(�; �) is an unknown structural function of interest, �0(�) is an unknown reduced-
form function, x is a dx � 1 vector of endogenous variables, z = (z1; z2) is a (dz1 + dz2) � 1
vector of exogenous variables and z2 is a vector of excluded instruments. This model is also

considered in Newey, Powell, and Vella (1999) (NPV). The stochastic assumptions (2.1c)-

(2.1d) are often called the �control function�assumptions as they enable the control function

approach to be employed, which is discussed below. The stochastic assumptions are more

general than assuming full independence between ("; v) and z and E[v] = 0. As NPV point

out, the orthogonality condition (2.1c) allows for heteroskedasticity, whereas ("; v) ? z does
not. Without further conditions, assumptions (2.1c)-(2.1d) are not stronger nor weaker than

E["jz] = 0, which is the orthogonality condition introduced in the NPIV model.4

We follow the control function approach as in NPV in order to deal with the endogeneity

of x. Consider E[yjx; z] which can be consistently estimated from data. Write

E[yjx; z] = g0(x; z1) + E["jx; z] = g0(x; z1) + E["j�0(z) + v; z]

= g0(x; z1) + E["jv; z] = g0(x; z1) + E["jv]

= g0(x; z1) + �0(v) (2.2)

where �0(v) = E["jv], and the second last equality is from equation (2.1c). In e¤ect, we

capture endogeneity (E["jx; z] 6= 0) by an unobserved regressor v which serves as a �control
function.�This is done so that the dependence structure between the two error terms (which is

the source of endogeneity) is explicitly written as �0(v).5 Another intuition for this approach

is that, with the endogenous variable x = �(z)+ v, once v is controlled for or conditioned on,

the only variation of x comes from the exogenous variation of z. The control function approach

has been introduced in Heckman (1979) for linear models, Smith and Blundell (1986), Rivers

and Vuong (1988) for nonlinear models, and extended to nonparametric models by NPV with a

separable control function, by Chesher (2003), Lee (2007) and Imbens and Newey (2009) with

nonseparable control functions, and by Das, Newey and Vella (2004) with selection models,

among others.6

Based on equation (2.2) we establish identi�cation and estimation results.
4 It is easy to show that if v ? z is assumed, then (2.1c) with E["] = 0 implies E["jz] = 0.
5A similar procedure can be found in Heckman (1979) where the selection bias component is captured by

the dependence structure between the error terms, which is written as an inverse Mill�s ratio.
6Note that the control function approach is sometimes called the �control variable�approach in the litera-

ture.
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3 Identi�cation

In this section, we obtain novel identi�cation results which complement the identi�cation

results of NPV. Our results are also relevant to the subsequent weak identi�cation analysis.

We �rst restate the results of NPV for useful comparisons.

3.1 Results of Newey, Powell and Vella (1999)

Note that in (2.2), g0(x; z1) is identi�ed up to a constant if and only if, for any ~g(x; z1)

and ~�(v) such that E[yjx; z] = g0(x; z1) + �0(v) = ~g(x; z1) + ~�(v), we have that �(x; z1) =

g0(x; z1)� ~g(x; z1) is a constant function (and so is 
(v) = �0(v)� ~�(v)). This idea motivates
the following identi�cation condition.

Proposition 3.1 (Theorem 2.1 in NPV (p.565)) g0(x; z1) is identi�ed up to an addi-
tive constant, if and only if Pr[�(x; z1) + 
(v) = 0] = 1 implies there is a constant cg with

Pr [�(x; z1) = cg] = 1.

Identi�cation of g0(x; z1) is achieved if one can separately vary (x; z1) and v in g(x; z1) +

�(v). Since x = �0(z)+v, a suitable condition on �0(�) will guarantee such separate variation
of x and v via variation of z and v. In light of this intuition, NPV propose an identi�cation

condition based on �(�). Recall z is partitioned as z = (z1; z2).

Proposition 3.2 (Theorem 2.3 in NPV (p.569)) If g(x; z1), �(v), and �(z) are di¤er-
entiable, the boundary of the support of (z; v) has probability zero, and

Pr

�
rank

�
@�0(z)

@z02

�
= dx

�
= 1, (3.1)

then g0(x; z1) is identi�ed.

The identi�cation condition can be seen as a nonparametric generalization of the rank

condition. One can readily show that the order condition (dz2 � dx) is incorporated in this
rank condition. Notice that the condition is only a su¢ cient condition, which suggests that

the model can possibly be identi�ed with a relaxed rank condition. This observation motivates

our identi�cation analysis.

3.2 Identi�cation

We �nd a necessary and su¢ cient rank condition for identi�cation by introducing a mild sup-

port condition. This analysis is important for the later purpose of de�ning the notion of weak

identi�cation. Given that the rank condition is necessary and su¢ cient, a �slight violation�

of it has a binding e¤ect on identi�cation and hence results in the situation where the iden-

ti�cation is weak. By introducing a localization technique, we can de�ne weak identi�cation

by having the identi�cation condition hold locally near the region of lack of identi�cation.
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Note that, as the rank condition of Proposition 3.2 is only a su¢ cient condition, a lack-of-

identi�cation condition cannot be derived from it. We �rst state and discuss the assumptions

that we impose.

Assumption ID1 The functions g(x; z1), �(v), and �(z) are continuously di¤erentiable in
their arguments.

This condition is also assumed in NPV; see Proposition 3.2 above. Before we state a key

additional assumption for identi�cation, we �rst de�ne the supports of the random variables.

Let X � Rdx , Z � Rdz , and Z1 � Rdz1 be marginal supports of x, z = (z1; z2), and z1,

respectively. Also, let Xz be the condition support of x given z 2 Z. In identifying g(x; z1), it is
useful to �rst conduct the analysis conditional on z1, and then for all z1 2 Z1. Let Xz1 and Zz1
be the conditional support of x given z1 2 Z1 and the conditional support of z given z1 2 Z1,
respectively. In order to incorporate a rank condition in the next identi�cation assumption,

we partition Zz1 into two regions where the rank condition is satis�ed and otherwise.

De�nition 3.3 (Relevant set) Given z1 2 Z1, let Zrz1 be the subset of Zz1 de�ned by

Zrz1 = Z
r
z1(�0(�)) =

�
z 2 Zz1 : rank

�
@�0(z)

@z02

�
= dx

�
.

The relevant set Zrz1 is where the instruments z2 are relevant, so the identi�cation power is
determined by this set, which is discussed more precisely later. Also, let Z0z1 = Z

0
z1(�0(�)) =

Zz1nZrz1 be the complement of the relevant set. In the univariate x and z2 case, Z
r
z1 is the

region where �0(�) as a function of z2 has nonzero slope and Z0z1 is the region where it is
constant. Given z1 2 Z1, let X rz1 be the subset of Xz1 de�ned by X

r
z1 =

�
x 2 Xz : z 2 Zrz1

	
.

Given these de�nitions, we introduce an additional support condition.

Assumption ID2 For any given z1 2 Z1, the supports Xz1 and X rz1 di¤er only on a set of
probability zero, i.e., Pr[x 2 Xz1nX rz1 jz1] = 0 almost surely.

Intuitively, when z2 is in the relevant set, x = �(z) + v varies as z2 varies, and therefore

the support of x corresponding to the relevant set is large. Assumption ID2 assures that the

corresponding support is large enough to almost surely cover the entire support of x. ID2 is

not as strong as it may appear to be. Below, we provide mild su¢ cient conditions for ID2.

Next, although the support on which an unknown function is identi�ed is usually left

implicit, the following de�nition makes it more explicit in order to facilitate the proof.

De�nition 3.4 (Identi�cation of a function) g0(x; z1) is identi�ed if g0(x; z1) is identi-
�ed on the support of (x; z1) almost surely.

Note that this de�nition coincides with the identi�cation concept implicitly assumed in

Proposition 3.1. Suppose z1 2 Z1 is �xed. Given the de�nition, if we identify g0(x; z1) for
any x 2 X rz1 , then we achieve identi�cation of g0(x; z1) by Assumption ID2. Now, in order to
identify g0(x; z1) for x 2 X rz1 , we need a rank condition, which is going to be minimal. The
following is the result of identi�cation:
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Theorem 3.5 Suppose Assumptions ID1 and ID2 hold. Then g0(x; z1) is identi�ed up to an
additive constant, if and only if,

Pr

�
rank

�
@�0(z)

@z02

�
= dx

���� z1� > 0 (3.2)

almost surely.

The proof is given after the following discussion.

The rank condition (3.2) is necessary and su¢ cient. By De�nition 3.3, it can alternatively

be written as Pr
�
z 2 Zrz1 jz1

�
> 0, a.s. The condition is substantially weaker than (3.1) in

Proposition 3.2, since Pr
�
z 2 Zrz1 ; z1 2 Z1

�
= 1 implies Pr

�
z 2 Zrz1 jz1

�
= 1 a.s. Conditional

on z1, it is enough for identi�cation of g0(x; z1) to have a (small) positive probability with

which the rank condition is satis�ed, which can be seen as the local rank condition as in

Chesher (2003). That is, we achieve global identi�cation with a local rank condition. This

gain comes from having the additional support condition, but the trade-o¤ is still appealing

given the purpose of this identi�cation analysis; later, we build a weak identi�cation notion

based on this necessary and su¢ cient rank condition.

Note that without Assumption ID2, we still achieve identi�cation of g0(x; z1) (up to a

constant) under the assumptions of Theorem 3.5 but on the set
�
(x; z1) : x 2 X rz1 ; z1 2 Z1

	
.

Also, note that for identi�cation of g0(x; z1) at a given value of z1, it is enough to have that

(3.2) holds for such a value of z1.

The following is a set of su¢ cient conditions that implies Assumption ID2. The proof is

in the Appendix. Let Vz be the conditional support of v given z 2 Z.

Assumption ID20 The random variables x, z2, and v are continuously distributed and

either (a) or (b) holds: For any given z1 2 Z1 , (a) (i) x is univariate, (ii) Zz1 is a cartesian
product of connected intervals, and (iii) Vz = V~z for all z; ~z 2 Z0z1; (b) Vz = Rdx , for all
z 2 Zz1 .

The continuity of the r.v.�s is closely related to the support condition of Theorem 2.3

of NPV (Proposition 3.2) that the boundary of support of (z; v) has probability zero. For

example, when z = (z1; z2) and v are discrete their condition does not hold. Assumption

ID20(a)(i) assumes that the endogenous variable is univariate, which is most empirically rel-

evant in nonparametric models. An additional condition is required for the multivariate x

case. Even under ID20(a)(i), however, the exogenous covariates z1 in g(x; z1) can still be a

vector. ID20(a)(ii) and (iii) are rather mild. ID20(a)(ii) assumes that z has a connected sup-

port conditional on z1, which in turn requires that the instruments vary smoothly. ID20(a)(iii)

means that the conditional support of v given z is invariant when z is in Z0z1 . This support
invariance condition is the key to have the considerably weaker rank condition in the iden-

ti�cation theorem compared to that of NPV. Note that ID20(a)(iii) along with the control

function assumptions (2.1c)-(2.1d) is a more general set of assumptions for orthogonality of

z and v than the full independence condition (z ? v).
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Note that Vz = fx��0(z) : x 2 Xzg. Therefore, ID20(a)(iii) equivalently means that Xz is
equivalent to X~z for z and ~z such that E[xjz; z2] = E[xj~z; z1] = const. That is, the assumption
implies that if a range of x is realized with positive probability at a given z then a similar

range should be realized with positive probability at another given ~z as long as E[xjz1; z2]
stays the same. With ID20(a)(iii), the heteroskedasticity of v which is previously allowed, may

or may not be restricted. Note that this support invariance assumption can be tested from

data.

Given ID20(b) that the conditional support of v is equal to Rdx , ID2 is trivially satis�ed
and no additional restriction is imposed on the joint support of z and v. ID20(b) also does not

require univariate x nor the connectedness of Zz1 . This assumption on Vz is satis�ed with,
for example, a normally distributed error term (conditional on regressors).

Proof of Theorem 3.5: The identi�cation of g0(x; z1) is achieved in two steps; �rst, we
locally identify g0(x; z1) in the sense of Chesher (2003), and then we achieve global identi�-

cation. Consider equation (2.2), with z = (z1; z2),

E[yjx; z] = E[yjv; z] = g0(�0(z) + v; z1) + �0(v), (2.2)

and note that the conditional expectations and �0(�) are consistently estimable, and v can
also be estimated. By di¤erentiating both sides of (2.2) with respect to z1 and z2, we have

(for dx � 1 vectors x and v, and a dz � 1 vector z)

@E[yjv; z]
@z01

=
@g0(x; z1)

@x0
� @�0(z)
@z01

+
@g0(x; z1)

@z01
, (3.3)

@E[yjv; z]
@z02

=
@g0(x; z1)

@x0
� @�0(z)
@z02

.

dx�dz2

(3.4)

Now, for any �xed value �z1 2 Z1, suppose Pr
�
z 2 Zr�z1 jz1 = �z1

�
> 0. For any �xed value

�z2 such that �z = (�z1; �z2) 2 Zr�z1 , we have

rank

�
@�0(�z)

@z02

�
= dx, (3.5)

by de�nition, hence the system of equations (3.4) has a unique solution @g0(x;�z1)
@x0 for x 2 X�z.

That is, @g0(x;�z1)@x0 is locally identi�ed for x 2 X�z. (See Figure 1.) Note that due to the additive
separability of the reduced-form error, the variation of v in V su¢ ciently shifts the identifying
location x = �0(�z)+ v. See more discussion below on the separable structure of our problem.

The second part is to prove that the local rank condition is, indeed, enough for global

identi�cation of g0(x; z1). Since the above argument is true for any z = (�z1; z2) 2 Zr�z1 , we
have that @g0(x;�z1)

@x0 is identi�ed on x 2 X r�z1 . (See Figure 1.) Now by Assumption ID2, the

di¤erence between X r�z1 and X�z1 has probability zero. Thus
@g0(x;�z1)
@x0 is identi�ed by De�nition

3.4.

Since Pr
�
z 2 Zrz1 jz1

�
> 0 a.s., the above argument is true for all z1 2 Z1 a.s., and therefore

10



Figure 1: Identi�cation under Assumption ID20(a), univariate z and no z1.

@g0(x;z1)
@x0 is identi�ed by De�nition 3.4. This implies, @g0(x;z1)

@z01
is also identi�ed by (3.3).7

Consequently, g0(x; z1) is identi�ed up to an additive constant. The necessity part of the

proof is in the Appendix. �

In order to identify the level of g0(x; z1), we need to introduce some normalization as in

NPV. Either E["] = 0 or �0(�v) = �� su¢ ces to pin down g0(x; z1). With the latter normaliza-

tion, it follows g0(x; z1) = E[yjx; z1; v = �v]� ��, and we apply this normalization in estimation
as it is convenient to implement.

Suppose z = z2 is univariate and there is no z1. Figure 1 illustrates the intuition of

the identi�cation proof under Assumption ID20(a). With Assumption ID20(b), the analysis

is even more straightforward; see the proof of Lemma 11.2 in the Appendix. In the Figure,

the local rank condition (3.2) ensures global identi�cation of g0(x). The intuition of this

identi�cation result is the following. First, g0(x) is locally identi�ed for x corresponding to

a point of z in the relevant set Zr by the rank condition. As such a point of z varies within
Zr, x corresponding to it also varies enough to cover almost the entire support of x. At the
same time, x corresponding to irrelevant z (i.e., z outside of Zr) does not vary, while one can
always �nd z inside Zr that gives the same value of such x.

When Pr [z 2 Zr] is small but bounded away from zero, identi�cation is still achieved, and
the probability being small only a¤ects the e¢ ciency of estimators in the estimation stage.

This issue is related to the weak identi�cation concept discussed later; see Section 4.2.

Note that the strength of identi�cation of g0(x) is di¤erent for di¤erent subsets of X . For
instance, identi�cation must be strong in a subset of X corresponding to a subset of Z where
�0(�) is steep. Or, over-identi�cation can be present in a subset of X which corresponds to

multiple subsets of Z where �0(�) has nonzero slope, so that multiple associations of x and
7Once @g0(x;z1)

@x0 is identi�ed, we can identify @�0(v)
@v0 by di¤erentiating (2.2) w.r.t v:

@E[yjv; z]
@v0

=
@g0(x; z1)

@x0
+
@�0(v)

@v
.
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z contribute to identi�cation. This discussion implies that the shape of �0(�) provides useful
information on the strength of identi�cation in di¤erent parts of the domain of g0(x).

Lastly, it is worth mentioning that the separable structure of the reduced form along with

ID20(a)(iii) allows one to do global extrapolation in a manner that is analogous to global

extrapolation in a linear model. If we had a linear model for the reduced form, then the

local rank condition (3.2) would become a global rank condition and we would achieve global

identi�cation by Proposition 3.2. That is, this case is where linearity of the reduced-form

function contributes to �global extrapolation�of the reduced-form relationship. Likewise, the

identi�cation results of this paper imply that although the reduced-form function is unre-

stricted, the way that the additive error interacts with other components of the model, such

as the invariant support, enables global extrapolation of the relationship.

3.3 Rank Condition and Relevance of Instruments

Theorem 3.5 is useful in relating the relevance of instruments to the identi�cation of g0(x; z1).

The nonparametric rank condition, i.e., Pr [rank (@�0(z)=@z02) = dxjz1] > 0 a.s. implies re-

strictions on the shape of the conditional mean function �0(z) = E[xjz1; z2] as a function of
z2. That is, Theorem 3.5 describes the degree of the nonlinear association of the instruments

z2 to the endogenous variables x that is necessary and su¢ cient for identi�cation. This is

a more general way of considering the relevance of instruments than has been done in the

literature with linear models, where the coe¢ cients of instruments are the determinants of

the relevance.

Ultimately, we are interested in how the weak relevance of instruments a¤ects the perfor-

mances of subsequent nonparametric estimators of g0(�; �), e.g., the asymptotic properties of
series estimators. To facilitate the analysis, we consider the situation where (3.2) is �slightly

violated.�Since the condition is necessary and su¢ cient, a slight violation of it can e¤ectively

result in weak identi�cation, and since the condition is related to the relevance of instruments,

the concept of weak instruments is naturally de�ned. Note that this task will not be successful

with (3.1), since violating the condition, i.e., Pr [rank (@�0(z)=@z02) = dx] < 1, can still result

in the identi�cation of the model.

To proceed with a more general setup, we establish a full range of strengths of instruments,

i.e., irrelevant, weak, and strong instruments, in the framework of the lack of identi�cation,

weak identi�cation and strong identi�cation, respectively. The conditions for strong and

irrelevant instruments are rather straightforward from the identi�cation analysis above. The

concept of weak instruments, or more generally, weak identi�cation can be motivated by

considering a situation where the �slope�of �0(�) is close to zero. This situation is discussed
in detail in the next section. We start from the case of irrelevant instruments where the rank

condition completely fails.

12



4 Lack of Identi�cation and Weak Identi�cation

4.1 Lack of Identi�cation

The analysis of the lack of identi�cation is important as a benchmark, and the case where

the identi�cation is weak can be constructed based on it. This is also a key approach Dufour

(1997) takes in parametric models to formalize the concept of weak identi�cation and address

resulting inferential problems. Given the necessary and su¢ cient rank condition of Theorem

3.5, we can �nd the lack-of-identi�cation condition, namely, the condition under which there

exists ~g(x; z1) 6= g0(x; z1) (with positive probability) but is observationally equivalent to

g0(x; z1).

By contraposition of the necessity part of Theorem 3.5, we have the following theorem on

lack of identi�cation:

Corollary 4.1 Suppose Assumptions ID1 and ID2 hold. If

Pr
�
rank

�
@�0(z)=@z

0
2

�
< dxjz1

�
= 1

for some z1 in a set with positive probability, then g0(x; z1) is not identi�ed, even up to an

additive constant.

Using the notation of the relevant set, this lack-of-identi�cation condition is derived by

negating the rank condition Pr[z 2 Zrz1 jz1] 6= 0 a.s., which gives Pr[z 2 Zrz1 jz1] = 0 for

some z1 with positive probability. The lack-of-identi�cation condition is satis�ed either when

the number of the excluded instruments (dz2) is smaller than the number of the endogenous

variables (dx) so that the order condition fails, or when the excluded instruments are jointly

irrelevant for one or more of the endogenous variables, almost everywhere in their support.

With univariate x and z = z2, the condition simply becomes Pr[@�0(z)=@z = 0] = 1, namely,

that the function �0(�) is constant almost everywhere.
Let C(Z) be the class of conditional moment functions �(�) on Z that are bounded,

Lipschitz and continuously di¤erentiable. Note that the derivative of �(�) is bounded by the
Lipschitz condition. We de�ne a non-identi�cation region C0(Z) as a class of functions that
satisfy the lack-of-identi�cation condition:

C0(Z) = f�(�) 2 C(Z) : Pr
�
rank

�
@�0(z)=@z

0
2

�
< dxjz1

�
= 1,

for z1 in a set with positive probabilityg. (4.1)

Also de�ne C1(Z) = C(Z)nC0(Z) as an identi�cation region. With univariate x, C0(Z) is
merely an equivalence class of constant functions.

In the following subsection, we construct the notion of weak identi�cation by a localization

method around this non-identi�cation region.

13



4.2 Weak Identi�cation

In this section, we de�ne nonparametric weak instruments as a sequence of reduced-form

functions, which are localized around a function with no identi�cation power. The sequence of

models and localization technique are introduced to formally de�ne weak instruments relative

to the sample size n. As a result, the strength of instruments is represented in terms of a rate

of the localization, and hence is eventually re�ected in the convergence rate and asymptotic

distribution (i.e., in local asymptotics) of the estimator of g0(�; �).8

We consider sequences of triangular models

y = g0(x; z1) + ", x = �n(z) + v,

where �n(�) is sequences of functions in C1(Z) (the identi�cation region) which drift to a
function ��(�) in C0(Z) (the non-identi�cation region). The model is e¤ectively localized

around the non-identi�cation region and the notion of weak identi�cation thereby emerges.

Although g(x; z1) is identi�ed with �n(�) 2 C1(Z) for any �xed n by Theorem 3.5, as �n(�)
drifts towards ��(�), it can be said that g(x; z1) is only weakly identi�ed. Intuitively, the
function is weakly identi�ed as the noise (i.e., v) contributes more than the signal (i.e., �n(z))

in the total variation of x 2 f�n(z) + v : z 2 Z; v 2 Vg. The following de�nes the notion of
weak identi�cation:

De�nition 4.2 (Weak identi�cation) In the model (2.1), g(x; z1) is weakly identi�ed (up
to a constant) as n ! 1, if (i) �0(�) = �n(�) 2 C1(Z) for n � 1, and (ii) there exists
��(�) 2 C0(Z) such that 

�n(z)� ��(z)



! 0 (4.2)

almost surely, as n!1.

With univariate x and z = z2 for ease of exposition, condition (4.2) implies that �n(�) is
modelled as �local to a constant function.�This can also be seen as a result of �relaxing�the

equality that appears in the lack-of-identi�cation condition Pr[@ ��(z)=@z = 0] = 1, that is,

j@�n(z)=@zj ! 0 (4.3)

almost surely, as n ! 1. Note that (4.3) characterizes the case where the slope of �n(�)
becomes �atter as mentioned in Section 3.3. An example of the localization, that is, an

example of nonparametric weak instruments, is depicted in Figure 2, which is also related to

the next assumption.

In order to facilitate a meaningful asymptotic theory where the e¤ect of weak identi�cation

(or weak instruments) is re�ected, we further proceed by considering a speci�c sequence of

8The localization technique goes back to Pitman drift, which is used to analyze the local power properties
of test statistics. In the weak instruments literature with linear models, e.g., Staiger and Stock (1997), drifting
sequences of coe¢ cients of instruments are used for the local asymptotic theory of IV estimators. Drifting
sequences of functions are introduced e.g., in Stock and Wright (2000) with their parametric moment function
in order to develop asymptotic theory for GMM estimators and test statistics under weak identi�cation.
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Figure 2: Nonparametric weak instruments by localization, univariate x and z and no z1.

�n(�) with a certain rate. For vector x and z, the following assumption de�nes nonparametric
weak instruments as its special case by modeling the localization (4.3).

Assumption L (Localization) For � 2 [0;1], �0(�) = �n(�) satis�es the following. For
some ~�(�) 2 C1(Z) that does not depend on n and for z 2 Z

@�n(z)

@z02
= n�� � @

~�(z)

@z02
+ op(n

��).

Assumption L is equivalent to

�n(z) = n
�� � ~�(z) + c+ op(n��) (4.4)

for some constant vector c by the di¤erentiability of �(�). Assumption L is a representation of
a theoretical device called �local nesting�(Stock and Wright (2000)). Note that the sequence

�n(�) in L uniformly converges to ��(�) in C0(Z).
Assumption L characterizes the relevance of instruments by embracing all categories of

non-identi�cation, weak identi�cation and strong identi�cation with corresponding values of

�. Given Assumption L, the categories are summarized in Table 1; see Andrews and Cheng

(2010, p. 4) for related discussions.

Category Sequence n�� Identi�cation

Strong IV � = 0 Strong ID of g

Weak IV � 2 (0;1) Weak ID of g

Irrelevant IV � =1 Lack of ID of g

Table 1: Identi�cation Categories.

The parameter � measures the strength of identi�cation; the larger � is, the weaker the

instruments; when � = 0 we have the case of strong instruments.

The second category (weak instruments case) needs more discussion. In this category,

Assumption L satis�es De�nition 4.2. Given the discussion of weak identi�cation above,
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the assumption provides a reasonable de�nition of nonparametric weak instruments. When

� 2 (0;1), Assumption L implies (4.3) localization that the reduced form becomes �atter at

the n� rate.9

The nonparametric version of weak instruments is harder to characterize than the �linear

weak instruments.�With a linear reduced form, weak instruments are speci�ed simply with

the coe¢ cients of instruments, and the derivation of a local asymptotic theory is rather

straightforward. With a nonparametric reduced form, on the other hand, we need to control

the complete behavior of the reduced-form function and the derivation of local asymptotic

theory seems to be more demanding. Nevertheless, Assumption L makes the weak instrument

asymptotic theory straightforward, while it embraces the most interesting local alternatives

(against the non-identi�cation).

Moreover, with � = 1=2, the nonparametric weak instrument assumptions of Assumption L

nest the linear weak instrument assumption in Staiger and Stock (1997). In linear case where

�(z) = z02�, we have @�(z)=@z
0
2 = �. By letting @ ~�(z)=@z

0
2 = � for some �xed constant �

and � = 1=2, Assumption L coincides with the weak instrument speci�cation (� = �=
p
n) of

Assumption L� in Staiger and Stock (1997, p. 560). Therefore, Assumption L for � 2 (0;1)
can be seen as the nonparametric generalization of the weak instruments (or, local to zero

modeling) in linear simultaneous equations models in the literature.

5 Estimation

Before we develop the main estimation procedure of this paper, we revisit the existing series

estimation procedure in the literature which uses the control function approach. Then we

characterize the problem of weak instruments in the procedure as a multicollinearity problem,

and also relate it to the ill-posed inverse problem. This relationship motivates the introduc-

tion of penalization as a regularization method for weak instruments in the series estimation

procedure, which leads to penalized series estimation.

5.1 Control Function Approach and Existing Estimation Method

In this subsection, with model (2.1), we review the standard series estimator established in

NPV. Henceforth, in order to keep our presentation succinct, we focus on the case where the

included exogenous variables z1 is dropped from model (2.1). With z1 included, the estimation

analysis follows along similar lines. Then, equation (2.2) becomes

E[yjx; z] = g0(x) + �0(v). (2.20)

9 It would be interesting to have di¤erent rates across columns or rows of @ ~�(�)
@z02

. One can also consider
di¤erent rates for di¤erent elements of the matrix. The analyses in these cases can analogously be done by
slight moti�cations of the arguments.
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Note that equation (2.20) can be rewritten as

y = g0(x) + �0(v) + � = h0(w) + � (5.1)

where w = (x; v) and � = y�E[yjx; z] so that E[�jx; z] = 0 by de�nition. Once the endogeneity
is controlled by the control function, the problem becomes one of estimating the additive

nonparametric regression function h0(w). Since the reduced-form error v is unobserved, the

procedure takes two steps. In the �rst stage, we estimate the reduced form �0(�) and obtain
the residual v̂. In the second stage, we estimate structural function h0(�) with ŵ = (x; v̂) as
regressors, where v̂ is a generated regressor. We consider series estimation for both �0(�) and
h0(�). With this method, it is easy to impose the additivity of h0(�) and also to characterize
the problem of weak instruments. The main conclusions of this paper, however, do not depend

on the choice of estimation method; see Section 7 for a related discussion.

Let f(yi; xi; zi)gni=1 be the data with n observations, and let rL(zi) = (r1(zi); :::; rL(zi))
0

be a vector of approximating functions (e.g. polynomials or splines) of order L for the �rst

stage.10 De�ne a matrix R
n�L

= (rL(z1); :::; r
L(zn))

0. Then regressing xi on rL(zi) gives

�̂(�) = rL(�)0
̂, 
̂ = (R0R)�1R0(x1; :::; xn)
0. (5.2)

Now, we use the residuals, v̂i = xi � �̂(zi), as a control function in the second stage. De�ne
a vector of approximating functions of orders K = K1 +K2 � 1 for the second stage, where
K1 � 2 and K2 � 2,

pK(w) = (1; p2(x); :::; pK1(x); p2(v); :::; pK2(v))
0 =

�
1
... pK1

� (x)0
... pK2

� (v)0
�0
.

Note that the subvectors pK1
� (x) and pK2

� (v) are vectors of approximating functions for g0(�)
and �0(�) of orders K1 � 1 and K2 � 1, respectively, where the �rst elements of pK1(x) and

pK2(v), i.e., p1(x) = p1(v) = 1 (both in the polynomial and spline cases), are dropped. Since

g0(�) and �0(�) can only be separately identi�ed up to a constant, when estimating h0(�), we
include only one constant function. Also, to re�ect the additive structure of (2.20), there are

no interaction terms in the vector. Consider a matrix of approximating functions:

P̂
n�K

= (pK(ŵ1); :::; p
K(ŵn))

0

=

2664
1 p2(x1) � � � pK1(x1) p2(v̂1) � � � pK2(v̂1)
...

...

1 p2(xn) � � � pK1(xn) p2(v̂n) � � � pK2(v̂n)

3775 . (5.3)

Then, the series estimator is obtained by regressing yi on pK(ŵi):

ĥ(�) = pK(�)0�̂, �̂ = (P̂ 0P̂ )�1P̂ 0Y , (5.4)

10For detailed descriptions of power series and regression splines for rL(z) and pK(w), see pp. 572-573 in
NPV.
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where Y = (y1; :::; yn)0. In fact, �̂ and 
̂ are classical least square estimators if their dimensions

K and L, respectively, are �xed. Here, however, it is important to notice that L = L(n),

K1 = K1(n) and K2 = K2(n) (hence K = K(n)) grow with the sample size n, which implies

that the size of the matrix P̂ as well as R also grows with n. It is important to account

for this aspect in deriving asymptotics results. The standard asymptotics results of series

estimators (without the consideration of weak instruments) can be found in Andrews (1991),

Newey (1997), and NPV.

Given the estimator ĥ(�), with the normalization that �(�v) = ��, we have

ĝ(x) = ĥ(x; �v)� ��. (5.5)

5.2 Weak Instruments, Multicollinearity, and the Ill-Posed Inverse Prob-
lem

In a weak instrument environment, we face a nonstandard problem in estimating h0(w) =

g0(x) + �0(v) using the procedure discussed above. To facilitate the discussion, we consider a

series representation of the nonparametric regression equation (5.1):

y = g0(x) + �0(v) + � =

1X
j=1

�
�1jpj(x) + �2jpj(v)

	
+ �, (5.6)

where the pj(�)�s are the approximating functions (or basis functions). Note that under the
weak instrument speci�cation (4.4) of Assumption L in Section 4.2, as n ! 1, E[xjz] =
�n(z)! c. If c = 0, then

v = x��n(z)! x a.s.

(or more precisely, jx� vj = Op(n��)) and pj(v)! pj(x) a.s., for all 2 � j � K(n). That is,
weak instruments result in the problem where the two regressors are nearly identical in (5.6).

If c 6= 0, then x and v just di¤er by a �xed constant.11

This feature is manifested in the series estimation as a multicollinearity problem. Given

that v̂ and v are �close�to each other, two columns of the regressor matrix P̂ in (5.3) become

nearly identical. This problem corresponds to so called near multicollinearity.12

11Jiang, Fan and Fan (2010) precisely consider this instance of correlated regressors in a simple nonparametric
additive model, where the correlation is caused by the nature of dataset they concern; see Section 7 of the
present paper for more discussion.
12See Hastie and Tibshirani (1990) for the discussion of concurvity, a nonlinear/nonparametric analogue of

multicollinearity.
In fact, the same argument can also be made in a linear simultaneous equations model analogous to the

present triangular model once we apply a similar control function approach there. First note that the control
function estimator is equivalent to the usual two stage least squares (TSLS) estimator in linear models. There-
fore, the problem of weak instruments with the TSLS estimator analyzed in the literature such as Staiger and
Stock (1997) can be seen as the multicollinearity problem with the control function estimator. In such linear
settings, however, introduction of a regularization method discussed in this paper is not well-justi�ed; refer to
further discussion in the current subsection.
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De�ne a K �K sample second moment matrix

Q̂ =
P̂ 0P̂

n
=

Pn
i=1 p

K(ŵi)p
K(ŵi)

0

n
.

Under Assumption L, matrix Q̂ becomes nearly singular or �local to singular� due to the

multicollinearity in P̂ , which is problematic when inverting the matrix to calculate �̂ in (5.4).

Consequently, under the weak instrument assumption the performance of ĥ(�) deteriorates
severely. In Section 6.3 below, we introduce a regularization method for estimating h0(�) to
improve the performance of the resulting estimator, which is done by controlling the singularity

problem of the sample second moment matrix.

To motivate such a regularization scheme, for the remainder of this subsection, we compare

and also contrast the problem of weak instruments with the ill-posed inverse problem in the

literature with illustrative examples. In doing so, we justify which of the regularization

methods in the literature properly works in the problem of weak instruments.

The ill-posed inverse problem is a function space inversion problem that typically occurs

in a standard NPIV approach. Consider the model

y = g0(x) + ", E["jz] = 0

which implies

E[yjz] = E[g0(x)jz] =
Z
g0(x)dF (xjz). (5.7)

Equation (5.7) is an Fredholm integral equation of the �rst kind, where the inverse problem of

recovering g0(�) is ill-posed because the estimated observable (the reduced form E[yjz]) has a
discontinuous e¤ect on the object we recover. An illustration of the ill-posed inverse problem

in this NPIV approach can be found, e.g., in Horowitz (2011).

Example 5.1� The Ill-Posed Inverse Problem in the NPIV Approach: Following
the example of Horowitz (2011), let f(x; z) =

P1
j=1 �

1=2
j �j(x)�j(z), where �j�s are eigenvalues

of an integral operator produced from (5.7). Also let x and z be uniformly distributed on

[0; 1]. Then, with ~� = y � E[yjz] and the generalized Fourier coe¢ cient 
j

y = E[g0(x)jz] + ~� =
1X
j=1


jE[�j(x)jz] + ~� =
1X
j=1


j�
1=2
j �j(z) + ~�, (5.8)

where the last equality is due to E[�j(x)jz] =
R 1
0 �j(x)fxjz(xjz)dx =

R 1
0 �j(x)fx;z(x; z)dx =

�
1=2
j �j(z). Here, the ill-posed inverse problem arises because the E[�j(x)jz]�s do not have much
variation even though the basis functions �j(x)�s do (Newey and Powell (2003, p. 1568)), or

because �1=2j �j(�)! 0 by the fact that �j ! 0 as j ! 1. This problem can alternatively

be seen by letting cj = 
j�
1=2
j be the coe¢ cient of the regressor �j(x) and ĉj the resulting

estimator. Then the estimator of 
j is ĉj=�
1=2
j , where the denominator converges to zero as

j ! 1. This implies instability of estimators of 
j , which prevents the accurate estimation
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of g0(�).
In order to tackle the ill-posed inverse problem, two approaches are taken in the NPIV

literature: the truncation method and the penalization method.13 Using the example above,

the truncation method is to regularize the problem by replacing (5.8) with a �nite-dimensional

approximation. This is done by truncating the in�nite sum, that is, by considering j � Jn for
some Jn <1 for all n. In this way, one prevents the �j�s from converging to zero as j !1.
The penalization method is to directly control the behavior of coe¢ cients 
j�s for all j < 1
by penalizing them, while maintaining the original in�nite-dimensional approximation. For

more discussion, see Chen and Pouzo (2009). �

The weak instrument problem in the triangular model of the present paper has a simi-

lar feature to the ill-posed inverse problem above. It is, however, important to notice that

the nature of the problem is slightly di¤erent and penalization but not truncation works in

regularizing the weak instrument problem. To see this, we consider an example where the

reduced-form equation is simpli�ed for ease of exposition.

Example 5.2� The Weak instrument Problem in the Control Function Ap-
proach: Let x = �nz+ v be the reduced-form equation with univariate x and z and but oth-

erwise the model is the same as in (2.1). Note that the instrument is weak because �n ! 0 as

n!1. By using the mean value expansion, it follows pj(v) = pj(x��nz) = pj(x)��nzp0j(~x)
where ~x is an intermediate value. Then, by plugging this in the expression in (5.6) and rear-

ranging terms, it follows that

y =

1X
j=1

�
(�1j + �2j)pj(x)� �2j�nz@pj(~x)=@x

	
+ �. (5.40)

Here, the weak instrument problem arises because, for all j, the �nz@pj(~x)=@x terms converge

to zero and hence their variation shrinks, as n ! 1. Alternatively, let dj = �2j�n be the

coe¢ cient on the regressor z@pj(~x)=@x and d̂j the resulting estimator. Then the estimator

of �2j is d̂j=�n, where the denominator converges to zero as n ! 1. This implies that the
estimator of �2j is unstable, and so is the estimator of �1j which is recovered from the estimator

of �1j + �2j . As a regularization method to tackle the weak instrument (or multicollinearity)

problem, the truncation method does not work properly. Unlike (5.8) in the ill-posed inverse

problem, the estimator of �2j can still be unstable even after truncating the series since, for

j � J <1, we still have �2j = dj=�n !1 as n!1. On the other hand, the penalization
directly controls the behavior of �2j�s, and hence successfully regularizes the weak instrument

problem. �

The discussion of this subsection is summarized for convenience in Figure 3. The number-

ing in the diagram corresponds to the numbering in the remarks below. The three concepts

13 In Chen and Pouzo (2009), closely related concepts are considered with di¤erent terminologies: minimizing
a criterion over �nite sieve space and minimizing a criterion over in�nite sieve space with Tikhonov-type penalty,
respectively.
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Figure 3: Weak instruments, multicollinearity, and the ill-posed inverse problem.

of the problem of weak instruments, ill-posed inverse problem, and multicollinearity are inter-

related:

1. The ill-posed inverse problem can be seen as a multicollinearity problem. �[T]he ill-

posed inverse problem is a functional analogue to the problem of multicollinearity in a classical

linear regression model, where large di¤erences in regression coe¢ cients can correspond to

small di¤erences in �tted values of the regression function.� (Blundell and Powell (2006, p.

321))

2. We �nd that the weak instrument problem can be viewed as a multicollinearity problem

in the control function framework.

3. The weak instrument and ill-posed inverse problems are also related to each other,

which is implied by the connections of 1 and 2. Examples 5.1-5.2 above also show their

similarities, while drawing clear distinctions between the two.

Given the discussion, strategies that can tackle those problems must also be interrelated:

4. In the NPIV literature, regularization methods are introduced to deal with the ill-

posed inverse problem in estimation; see, e.g., Newey and Powell (2003), Ai and Chen (2003),

Blundell, Chen and Kristensen (2007), Hall and Horowitz (2005), Horowitz and Lee (2007),

and Chen and Pouzo (2009). Among others, Chen and Pouzo (2009) introduce the penalized

sieve minimum distance estimator, which essentially incorporates both the truncation and

penalization methods.

5. The standard regularization approach for multicollinearity is a biased estimation

method called the ridge regression; see Hoerl and Kennard (1970). The method can be

seen as a penalization method.

6. Given the connections of 1-3, regularization methods used in the realm of research con-

cerning inverse problems as in 4 and 5 are suitable for use with weak instruments. Among the

two regularization methods, the penalization scheme is introduced in this paper. As discussed

in Examples 5.1-5.2, unlike the truncation method, the penalization method alleviates the

multicollinearity problem induced by weak instruments. It is not surprising that the resulting

penalized series estimator has a ridge regression form of 5; see below.
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5.3 Penalized Series Estimation

Given the discussion in the previous subsection, we introduce a penalization scheme to alle-

viate the weak instrument e¤ect in the original series estimator of h0(�) de�ned in (5.2)-(5.5).
We de�ne a penalized series estimator :

ĥ� (w) = p
K(w)0�̂� , (5.9)

where the �interim�estimator �̂� optimizes a penalizing criterion function,

�̂� = argmin
�

�
y � P̂ �

�0 �
y � P̂ �

�
=n+ �n�

0�, (5.10)

where �n � 0 is the penalization parameter that satis�es �n ! 0 as n ! 1 and P̂ is

de�ned in (5.3). The penalty term �n�
0� penalizes the objective function more when k�k

is large, which e¤ectively imposes restrictions on h0(�) by imposing k�k � B for some �xed

constant B < 1. In fact, the method of penalization incorporates prior information on the
true structural function such as smoothness properties (Chen and Pouzo (2009)). In most

cases of econometric modeling, the structural function derived from economic models cannot

be too �wiggly.� This is also the rationale of imposing smoothness assumptions in various

nonparametric estimators. The smoothness assumptions are also related to the regularization

methods discussed in the previous section. As previously discussed, however, incorporating the

smoothness assumption speci�cally through the penalization alleviates the weak instrument

e¤ect. Let �� = (�2; �3; :::; �K)
0. Then, k�k � B above implies that



��

 � B and j�1j � B,
which are related to the smoothness and bounded intercept of h0(�), respectively. To only
ensure smoothness, we can penalize the higher terms of �, i.e., �� and similar arguments go

through.

We have a closed form solution for the optimization problem (5.10):

�̂� = (P̂
0P̂ + n�nI)

�1P̂ 0y = (Q̂+ �nI)
�1P̂ 0y=n.

As with the ridge regression estimator, the term �nI mitigates the singularity of the matrix

Q̂ caused by weak instruments or multicollinearity.

This penalized estimation method is appealing in the present nonparametric settings. Un-

like the biased estimator of ridge regression in a linear model, we do not interpret �̂� here,

since it is only an interim estimator used to obtain ĥ� (�). Moreover, the overall bias of ĥ� (�)
is unlikely to be worsened in the sense that the additional bias introduced by penalization

can be dominated by the existing series estimation bias. Indeed, the penalized series estima-

tor is shown to be consistent provided that the instruments are not severely weak and the

penalization parameter shrinks fast enough; see below.
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5.4 Weak Instrument E¤ect and Penalization E¤ect

This subsection outlines key technical steps of this paper that are useful in deriving the local

asymptotic properties (i.e., the convergence rate and asymptotic normality) of the penalized

series estimator ĥ� (�). The steps are only theoretical procedures. The performance of ĥ� (�)
under the weak instrument environment can be previewed along the way. Let �max(A) and

�min(A) denote the maximum and minimum eigenvalues of a symmetric matrix A, respectively.

In �̂� = (Q̂+�nI)
�1P̂ 0y=n, Q̂ is nearly singular and �nI is the additional penalization term

controlling it. Let Q̂� = Q̂ + �nI. Note that the �degree of singularity�of Q̂� is important

in the asymptotic performance of ĥ� (�), and it is determined by the relative e¤ect of weak
instruments and penalization. We establish this claim by calculating the minimum eigenvalue

of Q̂� , or equivalently, maximum eigenvalue of Q̂�1� .
14 First, note that, for �n > 0 and using

�min(Q̂)
�1 = �max(Q̂�1), we have

�max(Q̂
�1
� ) =

1

�min(Q̂+ �nI)
� 1

�min(Q̂) + �min(�nI)
� min

n
�max(Q̂

�1); ��1n

o
. (5.11)

For the �rst inequality, see Lemma 11.4 in the Appendix. Note that each term inside the

minimum function goes to in�nity at a particular rate as n ! 1. We bound �max(Q̂�1) by
a quantity that depends on the n� rate of Assumption L by linearizing the approximating

functions in Q̂. As the population version of Q̂ has the same feature as Q̂, by de�ning the

population second moment matrix

Q = E[pK(wi)p
K(wi)

0], (5.12)

for ease of exposition, we calculate the order of magnitude of �max(Q�1) instead. The Ap-

pendix gives bounds for both matrices. Under Assumption L, due to the singularity discussed

above, we do not have a standard condition such as Assumption A1 in NPV (p.593) that

�min (Q) is bounded away from zero uniformly over K(n), i.e., �min (Q) � c > 0, or equiv-

alently �max
�
Q�1

�
� C < 1, for some constants c and C that do not depend on n and

uniformly for all K(n). Deriving the rate at which �max
�
Q�1

�
diverges provides insight into

the extent to which the condition �min (Q) � c is violated.
For the rest of this subsection, we consider univariate x for simplicity.15 Note that z is

still a vector, and as above we omit z1 in the structural function. Impose Assumption L,

then �n(�) = n�� ~�(�) by (4.4) after applying a normalization that c = 0 and suppressing

op(n
��) for simplicity. Omitting op(n��) does not a¤ect the asymptotic results developed in

the paper. Assume that the approximating function pj(xi) is twice di¤erentiable for all j, and

for r 2 f1; 2g, de�ne its rth derivative as @rpj(x) = drpj(x)=dxr.
14We consider singularity or invertibility of the matrix in terms of its eigenvalues as the order K(n)�K(n)

of this matrix is growing with n. This approach is standard in the series estimation literature (e.g., Andrews
(1991), Newey (1997), and NPV) or sieve estimation literature (e.g., Blundell, Chen and Kristensen (2007)
and Chen and Pouzo (2009)) to impose conditions on second moment matrices for asymptotic theory.
15The analysis can also be generalized to the case of a vector x by using multivariate mean value expansion.

See the Appendix for discussion of this generalization.
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By mean value expanding each element of pK1(xi) around vi, we have, for 2 � j � K1,

pj(xi) = pj(n
�� ~�(zi) + vi) = pj(vi) + n

�� ~�(zi)@pj(~vi), (5.13)

where ~vi is a value between xi and vi. De�ne @rp
K1
� (x) = [@rp2(x); @

rp3(x); :::; @
rpK1(x)]

0.

Then by (5.13) the vector of regressors pK(wi) for estimating h(�) can be written as

pK(wi)
0 =

�
1
... pK1

� (xi)
0 ... pK2

� (vi)
0
�
=

�
1
... pK1

� (vi)
0 + n�� ~�(zi)@p

K1
� (~vi)

0 ... pK2
� (vi)

0
�
. (5.14)

For expositional convenience, we assume the vectors of regressors for g0(�) and �0(�) have the
same orders �, i.e., � = �(n) = K1 = K2 = (K + 1)=2. The discussion for the general case

can be found in the Appendix.

Now we choose a transformation matrix Tn to be

Tn =

264 1 01�� 01��

0��1 n�I� 0���

0��1 �n�I� I�

375 .
so that after multiplying both sides of (5.14) by Tn, the weak instrument factor is removed

from pK(wi)
0. That is, we have

pK(wi)
0Tn = [1

... p��(vi)
0 + n�� ~�(zi)@p

�
�(~vi)

0 ... p��(vi)
0] � Tn

= [1
... ~�(zi)@p��(~vi)

0 ... p��(vi)
0]

= [1
... ~�(zi)@p��(vi)

0 ... p��(vi)
0] + [0

... ~�(zi)
�
@p��(~vi)

0 � @p��(vi)
0� ... (0��1)0]

= p�K(ui)
0 +mK0

i (5.15)

where ui = (zi; vi) and p�K(ui) and mK
i are de�ned implicitly. To illustrate the role of this

linear transformation, rewrite the original vector of regressors in (5.14) as

pK(wi)
0 = pK(wi)

0TnT
�1
n =

�
p�K(ui) +m

K
i

	0
T�1n .

Ignoring the remainder vectormK
i which is shown to be asymptotically negligible in the proof,

the original vector pK(wi) is separated into two components, namely, p�K(ui) and T�1n . Note

that p�K(ui) = [1
... ~�(zi)@p��(vi)

0 ... p��(vi)
0]0 is not a¤ected by the weak instruments and can

be seen as a new set of regressors.16 Also note that some calculations in the Appendix show

that �min(T�1n ) = O(n��), which captures the weak instrument e¤ect of Assumption L.

By equations (5.12) and (5.15), it follows

T 0nQTn = E[T 0np
K(wi)p

K(wi)
0Tn]

= Q� + E
�
mK
i p

�K(ui)
0�+ E �p�K(ui)mK0

i

�
+ E

�
mK
i m

K0
i

�
(5.16)

16For the justi�cation that p�K(ui) can be seen as a vector of regressors, see Assumption B in Section 6.1
and Assumption B.1 in Section 11.2 of Appendix.
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where the newly de�ned Q� = E
�
p�K(ui)p�K(ui)0

�
is the population second moment matrix

of the new regressors. Since Q� is not a¤ected by the weak instruments, we can safely assume

that �min (Q�) � c > 0, or equivalently, �max
�
Q��1

�
� C < 1, both uniformly in K(n)

(Assumption B.1 in the Appendix). Since the remaining three terms in equation (5.16) can

be shown to be asymptotically negligible, this implies that �max((T 0nQTn)
�1) � C < 1

uniformly in K(n). Therefore, it follows that

�max(Q
�1) = �max(Tn(T

0
nQTn)

�1T 0n) � �max((T 0nQTn)�1)�max(TnT 0n) � O(1)O(n2�),

and the order of magnitude of �max(Q�1) is found to be n2�. This shows the degree of

singularity of Q in terms of the weak instrument rate speci�ed in Assumption L. Note that

when the instruments are strong (i.e., � = 0), Q�1 is bounded (i.e., �max(Q�1) = O(1))

and the usual condition in the literature can be imposed. The rigorous derivation of this

conclusion, as well as a similar derivation with Q̂ can be found in the Appendix. Using these

results and (5.11), we obtain

�max(Q̂
�1
� ) � min

n
�max(Q̂

�1); ��1n

o
= Op

�
min

n
n2�; ��1n

o�
. (5.17)

The degree of singularity of Q̂� depends on the relative e¤ect of weak instruments and penal-

ization, namely, min
�
n2�; ��1n

	
. With (5.17), we can now derive the rate of convergence and

asymptotic normality of ĥ� (�).

6 Rate of Convergence

6.1 Assumptions

First we state regularity conditions under which we �nd the rate of convergence of the penal-

ized series estimator introduced in the previous section. Recall that, throughout the paper,

the orders of approximating functions for the structural function g0(�), control function �0(�),
and reduced-form function �0(�) depend on n so that K1 = K1(n), and K2 = K2(n), and

L = L(n), respectively. And also K = K1 +K2 � 1 = K(n). We consider the general case

of K1 6= K2, although we assume that K1 and K2 grow at the same rate, i.e., K1 � K2,

where an � bn implies an=bn is bounded below and above by constants that are independent
of n. Then we have K � K1 � K2. This setting can be justi�ed by the assumption that the
functions g0(�) and �0(�) have the same smoothness, which is in fact imposed in Assumption
C below. Also let X = (x; z), and fu and fw be the density functions of u = (z; v) and

w = (x; v), respectively.

Assumption A (Random sample) f(yi; xi; zi) : i = 1; 2; :::g, are i.i.d. and var(xjz) and
var(yjX) are bounded functions of z and X, respectively.

As Newey (1997) points out, the bounded conditional variance assumption is di¢ cult to

relax without a¤ecting the convergence rates.
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Assumption B u = (z; v) is continuously distributed and the density of u is bounded and

bounded away from zero on Z � V, where the support Z of z is a Cartesian product of

compact, connected intervals and the support V of v is compact.

The assumption is useful to bound below and above the eigenvalues of the transformed

second moment matrix of approximating functions (i.e., Q�). This condition is worth a dis-

cussion in the context of identi�cation and weak instruments. An identi�cation condition

like Assumption ID20 in Section 3.2 is embodied in this assumption. To see this, note that

fu being bounded away from zero means that there is no functional relationship between z

and v, which in turn implies Assumption ID20(a)(iii).17 On the other hand, an assumption

written in terms of fw like Assumption 2 in NPV (p.574) cannot be imposed here. Observe

that w = (�(z) + v; v) depends on the behavior of �(�), and hence fw is not bounded away
from zero uniformly over n under Assumption L; in fact, it approaches a singular density.

Making use of the transformation matrix, we make an assumption in terms of fu and the

e¤ect of the weak instruments is handled separately.

The assumption for the Cartesian products of supports, namely Z � V and X �V (below),
and the compactness of V in Assumption B can be replaced by introducing a trimming function
as in NPV which ensures bounded rectangular supports. Lastly, similar to NPV, Assumption

B can be weakened to hold only for some component of the distribution of z. And, one could

allow some components of z to be discrete, as long as they have �nite supports.

Next, Assumption C is a smoothness assumption on the structural and reduced-form

functions. Let W = X � V be the support of w = (x; v).

Assumption C g0(x) and �0(v) are in L2(Fx) and L2(Fv), respectively, and are Lipschitz

and continuously di¤erentiable of order s on W. �0(z) is in C(Z) and is Lipschitz and
continuously di¤erentiable of order s1 on Z.

This assumption ensures that the series approximation error shrinks as the number of

approximating functions increases. It also motivates the introduction of penalization as well.

Note that the same smoothness for g0(�) and �0(�) is assumed because there is no systematic
reason that one is particularly smoother than the other.

The next regularity condition restricts the rate of the growth of the number, K and L, of

approximating functions.

Assumption DWhen the approximating functions are power series, n2�K7=2[
p
L=n+L�s1=dz ]

! 0, n��K11=2 ! 0, and L3=n! 0. When the approximating functions are regression splines,

n2�K2[
p
L=n+ L�s1=dz ]! 0, n��K3 ! 0, and L2=n! 0.

This condition is stronger than the corresponding assumption in NPV (Assumption 4, p.

575) where weak instruments are not considered.

17For the de�nition of a functional relationship, see NPV (p.568).
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6.2 Consistency and Rate of Convergence

First, we provide results for the rate of convergence in probability of the penalized series

estimator ĥ� (w) for the true h0(w) = g0(x) + �0(v), in terms of L2 and uniform distance.

Then, we give conditions for consistency. The convergence rate for ĝ� (x) is also derived.

The rate of convergence of ĥ� (w) is of interest because the estimator of �0(v) gives useful

information about the model; see the Conclusion section for related discussion. Recall that

dx is the dimension of x and dz of z. Let Fw(w) = F (w) be the distribution function of w.

Theorem 6.1 Suppose Assumptions A-D, and L are satis�ed. Let Rn = minfn�; ��1=2n g if
�n > 0, and Rn = n� if �n = 0. Then,�Z h

ĥ� (w)� h0(w)
i2
dF (w)

� 1
2

= Op

�
Rn(

p
K=n+K� s

dx + �n �Rn +
p
L=n+ L�

s1
dz )
�
.

Also, with q = 1=2 for splines, and q = 1 for power series,

sup
w2W

���ĥ� (w)� h0(w)��� = Op �Rn �Kq(
p
K=n+K� s

dx + �n �Rn +
p
L=n+ L�

s1
dz )
�
.

The proofs of the theorems are in the Appendix.

Remarks: 1. Suppose �n = 0, which is the case with no penalization. Then, with

Rn = n
�, Theorem 6.1 gives the rates of convergence of the unpenalized series estimator ĥ(�)

de�ned in (5.4). For example, with k�kL2 denoting the L2 norm above,


ĥ� h0



L2
= Op

�
n�(
p
K=n+K�s=dx +

p
L=n+ L�s1=dz)

�
.

Recall that � measures the strength of instruments. When � = 0, i.e., in a strong instrument

case, the rate coincides with that of NPV (p.575, Lemma 4.1).

2. Suppose �n = 0 and � 6= 0. The rate deteriorates compared to the strong instrument
case by n�, the weak instrument rate. Note that the terms

p
K=n and K�s=dx correspond

to the variance and bias of the second stage estimator, respectively, and
p
L=n and L�s1=dz

are those of the �rst stage estimator. The way that n� enters in the rates of Theorem 6.1

implies that the e¤ect of weak instruments (hence multicollinearity) not only exacerbates the

variance but also the bias. This is di¤erent from a parametric case where multicollinearity

only results in imprecise estimates but does not introduce bias.

3. The symmetric e¤ect of weak instruments on bias and variance featured in Remark 2

implies that the problem of weak instruments cannot be resolved by the choice of number of

terms in the series estimator. This is also related to the discussion of Section 5.2 that the

truncation method does not work as a regularization method for weak instruments.

4. More importantly, in the case where �n > 0, the way that Rn enters in the convergence

rates implies that penalization can reduce both bias and variance by the same mechanism

working in an opposite direction to the e¤ect of weak instruments. Note that �n � Rn is the
penalty bias term, namely, the additional bias term introduced by penalization. It is, however,
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not a serious issue since the additional bias can possibly be dominated by the existence

of the series approximation bias terms, K�s=dx and L�s1=dz . Therefore, the penalization

method used in nonparametric settings as in the present paper is fundamentally di¤erent

from using ridge regression in linear model which produces a biased estimator (with smaller

variance). In Monte Carlo simulations below, we simulate the �nite sample performance of

the penalized series estimator and show that variance as well as bias are reduced compared

to the unpenalized estimator when instruments are weak.

5. When implementing the penalized series estimator in practice, there is a remaining

issue of choosing tuning parameters, namely the penalization parameter �n and the order K

and L of the series. In the simulations, we try out a few �xed values � and choose the one that

appears most reasonable. We also try di¤erent values of K and L. A data-driven procedure

such as the cross-validation method can also be used (Arlot and Celisse (2010)). This method

is used for choosing � in the empirical section below. There is, however, no optimal way

of choosing the tuning parameters that is developed in the literature (Blundell, Chen and

Kristensen (2007, pp. 1636-1637)). It is interesting to further investigate the sensitivity of the

penalized estimator to the choice of � . Recall that ĥ� (�) = pK(�)0�̂� = pK(�)0(Q̂+ �I)�1P̂ 0y=n
is a function of � . To determine the sensitivity of ĥ� (�) to � , we consider the sharp bound
on �max((Q̂ + �I)�1) that appears in (5.11), namely, [�min(Q̂) + � ]�1. As a measure of the

sensitivity, we calculate the absolute value of the �rst derivative of the bound:�����@[�min(Q̂) + � ]�1@�

����� = h�min(Q̂) + �i�2 . (6.1)

Note that the sensitivity is a decreasing function of �min(Q̂). That is, as the instruments

become weaker (i.e., �min(Q̂) becomes smaller due to increased singularity), the performance

of ĥ� (�) becomes more sensitive to a change in � . This can have certain implications in practice.
6. As NPV point out, the dimension of the explanatory variables involved in the theorem

is smaller than the dimension of w. This feature is by exploiting the additive structure of the

model so that we can eliminate the interaction terms. Additional relevant discussion can be

found in Assumption A.2 and p.472 of Andrews and Whang (1990), or Theorem 3.2 of Powell

(1981, p. 26).

7. The nonparametric rate
p
L=n+L�s1=dz which appears in the convergence rates is due

to generated regressors as the residuals v̂i are obtained from the �rst stage nonparametric

estimation.

8. Suppose �n > 0. The convergence rate can be analyzed in two di¤erent cases according

to the relative e¤ect of weak instruments and penalization: (1) Weak instrument dominating

case where minfn�; ��1=2n g = n�: In this case, the L2 convergence rate becomes


ĥ� � h0



L2
= Op

�
n�(
p
K=n+K�s=dx +

p
L=n+ L�s1=dz)

�
+Op(n

2��n),

where Op(n2��n) = op(1) since n�=�
�1=2
n = n��

1=2
n ! 0 (considering only a strict case of the

minimum function). Here, the rate is similar to the rate with unpenalized ĥ, and consistency
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can be achieved for a certain range of values of �. Intuitively, in Q̂� = Q̂+�nI, the penalization

parameter is su¢ ciently �small�relative to nearly singular matrix Q̂ that the resulting penalty

bias term is op(1); (2) Penalization dominating case where minfn�; ��1=2n g = �
�1=2
n : In this

case the rate becomes


ĥ� � h0



L2
= Op

�
��1=2n (

p
K=n+K�s=dx +

p
L=n+ L�s1=dz)

�
+Op(1).

Here, the overall rate seems to be improved since the multiplying rate ��1=2n is faster than the

multiplying rate n� of the �rst case (or the rate with ĥ). Note that the penalty bias term is

at worst of order Op(1). Without further restricting the model, however, we are not able to

guarantee that the penalty bias shrinks to zero. It may be worth looking at the behavior of

the penalty bias when more assumptions are imposed on the model or when di¤erent penalty

functions other than the current L2 penalty are considered. This topic, however, is beyond

the scope of this paper. Case (2) is ruled out in the following analysis of consistency.

For a more concrete comparison between the rates n� and ��1=2n , let �n = n�2�� , where

�� > 0. The larger �� is, the faster the penalization parameter converges to zero, and hence

presumably the smaller is the additional bias. Then, (1) the weak instrument dominating

case is when �� > �, and (2) the penalization dominating case is when 0 < �� < �. As

discussed above, in case (1), there is possible room for consistency, and hence it is necessary

for consistency that � satis�es � < �� .

Next, we �nd the optimal L2 convergence rate. WithK = n1=(1+2s=dx) and L = n1=(1+2s1=dz),

the optimal convergence rate is n�q where q = min
n

s
1+2s=dx

; s1
1+2s1=dz

o
� �, since Rn = n�.

Note that, without weak instruments (� = 0), n�s=(1+2s=dx) and n�s1=(1+2s1=dz) are optimal

rates of Stone (1982) for the second and �rst step estimation, respectively. With weak in-

struments (� 6= 0), optimal rates in the sense of Stone (1982) are not attainable.18 Since

n�q = o(1) implies consistency, condition � < min
n

s
1+2s=dx

; s1
1+2s1=dz

o
is required for consis-

tency.

The results are summarized and consistency is achieved in the following corollary to The-

orem 6.1.

Corollary 6.2 (Consistency) Suppose the Assumptions of Theorem 6.1 are satis�ed. Let

K = O(n1=(1+2s=dx)) and L = O(n1=(1+2s1=dz)). If

� < min

�
�� ;

s

1 + 2s=dx
;

s1
1 + 2s1=dz

�
(6.2)

then



ĥ� � h0




L2
= op(1).

9. For consistency of the penalized series estimator, the penalization parameter needs to

shrink faster than the weak instrument e¤ect, i.e., � < �� . This result implies that when

18The uniform convergence rate does not attain Stone�s (1982) bound even without the weak instrument
factor (Newey (1997, p.151)).
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instruments are weak (large �), there is less room to choose �� for consistency than the case

when they are strong. This is related to the sensitivity issue of choosing the penalization

parameter value, which is discussed above.

10. For consistency, if the structural function is �wiggly�(small s, hence small s
1+2s=dx

),

the instrument should not be too weak at a given penalization parameter value. This is

a trade-o¤ between the smoothness of the structural function and the required strength of

instruments. This, in turn, implies that the weak instrument problem can be mitigated with

some smoothness restrictions, which is actually one of our justi�cations for introducing the

penalization method. Conversely, if the true structural function of interest is less smooth,

then stronger instruments are required for desirable performance of the estimator. Also, if

the function is wiggly, there is more room to choose the penalization parameter value while

consistency is guaranteed for given instruments.

11. In general, condition (6.2) implies that consistency is achieved when the instruments

are only mildly weak.19

Theorem 6.1 leads to a subsequent theorem which focuses on the rate of convergence of the

structural estimator ĝ� (�) of g0(�) after subtracting the constant term which is not identi�ed.

Theorem 6.3 Suppose Assumptions A-D and L are satis�ed. Let Rn = minfn�; ��1=2n g if
�n > 0, and Rn = n� if �n = 0. For �̂(x) = ĝ� (x)� g0(x),(Z �

�̂(x)�
Z
�̂(x)dF (w)

�2
dF (w)

) 1
2

= Op

 
Rn

"r
K

n
+K� s

dx + �n �Rn +
r
L

n
+ L�

s1
dz

#!
.

Also, if ĝ� (x) = ĥ� (x; �v) � �� and �� = �0(�v), then, with q = 1=2 for splines, and q = 1 for

power series,

sup
x2X

jĝ� (x)� g0(x)j = Op
�
RnK

q
hp
K=n+K� s

dx + �n �Rn +
p
L=n+ L�

s1
dz

i�
.

The consistency result for ĝ� (�) can be derived analogously, which we omit here. The
convergence rate is net of the constant term. We can further assume E["] = 0 to identify the

constant.

The convergence rate results of this section (and also the asymptotic normality results

below) can be applied in a special case of model (2.1), where the reduced-form equation is

19We can proceed further to derive an �e¤ective� bound on � for consistency. Suppose �� = 0, dx =
dz = 1. Note that Assumption D(a) implies � < 1

4
� 7

4(1+2s)
� 1

4(1+2s1)
, since n2�K7=2[L1=2n�1=2 + L�s1 ] =

n2�n7=2(1+2s)n1=2(1+2s1)n�1=2 by K = O(n1=(1+2s)) and L = O(n1=(1+2s1)). Therefore the e¤ective bound on
� is

� < min

�
s

1 + 2s
;

s1
1 + 2s1

;
1

4

�
1� 7

1 + 2s
� 1

1 + 2s1

��
.

Let s = s1 for simplicity, then we have consistency if � < min
n

s
1+2s

; 1
4

�
1� 8

1+2s

�o
, which is the case of mildly

weak instruments. Note that, when s = 4 (worst case), � < 1=36, and when s ! 1 (best case), s
1+2s

! 1=2
so � < 1=4.
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linear with vector z where its coe¢ cients have di¤erent (or the same) drifting rates. In this

case, asymptotic results can be obtained in a straightforward fashion. Consider a penalized

series estimator ĥ� (�) that is de�ned as in Section 5.3, but with linear least squares residuals.
Then, regarding the convergence rate of the estimator, the nonparametric rate of the �rst

stage (
p
L=n+L�s1=dz) disappears from the rates in Theorem 6.1 or 6.3, since the parametric

rate (1=
p
n) is dominated by the second stage nonparametric rate. The weak instrument and

penalization components (Rn) still remain.

6.3 Linear versus Nonparametric Reduced Form

Here, we discuss one of the practical implications of the identi�cation and asymptotic results

of this paper, which concerns the speci�cation of the reduced form in nonparametric triangular

models. In applied research that uses nonparametric triangular models, a linear speci�cation

of the reduced form is largely prevalent; see the Introduction. The linear speci�cation might be

introduced either to avoid the curse of dimensionality with many covariates at hand, because

the nonparametric structural equation is of primary interest, or simply, for the ad hoc reason

that it is easy to implement. A linear speci�cation of the reduced form, however, may be

less desirable, if not more harmful, than is generally expected when one nonparametrically

estimates the structural function in the outcome equation.

The rank condition derived in the identi�cation analysis, i.e., Pr[@�0(z)=@z 6= 0] > 0 in the
univariate x and z case, suggests that a small region where x and z are relevant contributes

to the identi�cation of g(�; �). This implies that identi�cation power can be enhanced by
exploiting the entire nonlinear relationship between x and z. When the reduced form is

linearly speci�ed, any true nonlinear relationship is ��attened out�and the situation is more

likely to have the problem of weak instruments.[TECHNICAL DETAILS WILL BE ADDED

HERE.]

As an illustration, consider a situation where a nonparametric reduced form results in

strong identi�cation while a linear speci�cation produces weak instruments. By Theorem 6.1

with an unpenalized estimator (�n = 0) and univariate x and z for ease of exposition, with

the nonparametric reduced form, the convergence rate is


ĥ� h0



L2
= Op

�p
K=n+K�s +

p
L=n+ L�s1

�
. (6.3)

On the other hand, with the linear reduced form, the rate is (even with pseudo-true h(�))


ĥ� hpseudo



L2
= Op

�
n�[
p
K=n+K�s]

�
, (6.4)

where the �rst-stage rate disappears as previously discussed.

Note that in (6.3), the rate
p
L=n + L�s1 from the nonparametric �rst stage estimation

is not likely to worsen the rate since the rate
p
K=n +K�s from the nonparametric second

stage is already present. This argument becomes even more obvious when we assume s = s1
(i.e., the reduced form �0(�) and outcome function h0(�) are equally smooth) and K = L (i.e.,
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we use the same number of approximating functions to estimate them), and those two rates

coincide.

In sum, a nonparametric speci�cation of the reduced form has advantages. When the true

association of x and z is nonlinear, a linear speci�cation is subject to weak instruments more

than the nonparametric speci�cation is, let alone the problem of misspeci�cation. Hence it is

more likely to exacerbate the bias and variance performance of the resulting estimators. On

the other hand, one can achieve a signi�cant gain in the performance by nonparametrically

estimating the relationship between x and z without signi�cant loss. Meanwhile, when the true

relationship of x and z is linear, which often seems implausible in most empirical examples,

both nonparametric and linear speci�cations of the reduced form will result in a similar rate.

Therefore, if there are no economic or any theoretical reasonings for specifying the reduced

form in one way or another, we recommend having a nonparametric reduced form. Note

that the dimensionality problem can be dealt with by a single-index model or semiparametric

model of the reduced form. If one has a theory or economic justi�cation about the true

relationship between x and z and if it is linear, then one needs to be more cautious about

weak instruments than when the truth is believed to be nonlinear.

A nonparametric reduced form exploits the nonlinear relationship between x and z, and

hence enhances identi�cation power. This phenomenon might be interpreted in terms of the

�optimal instruments�in GMM settings of Amemiya (1977); see also Newey (1990) and Jun

and Pinkse (2007). For a rigorous analysis, however, we may need di¤erent frameworks (cf.

Newey and Powell (2003), Ai and Chen (2003)), and this topic is beyond the scope of this

paper.

7 Asymptotic Distributions

In this section we establish the asymptotic normality of linear functionals of the penalized se-

ries estimator ĥ� (�). We consider two types of linear functionals of h0(�), namely, h0(�) at a cer-
tain value (i.e., h0( �w)) and the weighted average derivative of h0(�) (i.e.,

R
�(w)[@h0(w)=@x]dw).

The linear functionals of h(�) are denoted as a(h). Then, the estimator �̂� = a(ĥ� ) of

�0 = a(h0) is the natural �plug-in� estimator. Let A = (a(p1K); a(p2K); ::; a(pKK)), where

pjK(�) is an element of pK(�). Then

�̂� = a(ĥ� ) = a(p
K(x)0�̂� ) = A�̂� ,
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which implies that �̂� is a linear combination of the two-step least squares estimators �̂� .

Then, the following variance estimator of a(ĥ� ) can be naturally de�ned:

V̂� = AQ̂�1�

�
�̂� + Ĥ� Q̂

�1
1 �̂1Q̂

�1
1 Ĥ

0
�

�
Q̂�1� A

0,

�̂� =

nX
i=1

pK(ŵi)p
K(ŵi)

0[yi � ĥ� (ŵi)]2=n, �̂1 =
nX
i=1

v̂2i r
L(zi)r

L(zi)
0=n,

Ĥ� =

nX
i=1

pK(ŵi)

�h
@ĥ� (ŵi)=@w

i0
@w(Xi; �̂(zi))=@�

�
rL(zi)

0=n, Q̂1 = R
0R=n,

where X is a vector of variables that includes x and z, and w(X;�) is a vector of functions of

X and �, where � is a possible value of �(z).

The following are additional regularity conditions for the asymptotic normality of a(ĥ� ).

Assumption E �2(X) = var(yjX) is bounded away from zero, E[�4jX] is bounded, and
E[v4jX] is bounded. Also, h0(w) is twice continuously di¤erentiable in v with bounded �rst
and second derivatives, where w = (x; v).

This assumption strengthens the boundedness of conditional second moments in As-

sumption A. For the next assumption, let dw = 2dx, j�j =
Pdw
j=1 �j for a dw-vector �,

and, for a nonnegative integer r, let jhjr = maxj�j�r supw2W j@�h(w)j, where @�h(w) =
@j�jh(w)=(@w

�1
1 @w

�2
2 � � � @w�dwdw

).

Assumption F Either (a) or (b) holds. (a) There exists �(w) and �K such that E[k�(w)k2]
< 1, a(h0) = E[�(w)h0(w)], a(pj) = E[�(w)pj(w)], E[



�(w)� pK(w)0�K

2] ! 0 and

K ! 1; (b) a(h) is a scalar, ja(h)j � jhjr for some r � 0, and there exists �K such

that as K !1, a(pK0�K) is bounded away from zero while E[
�
pK(w)0�K

	2
]! 0.

Note that Assumption F(a) includes the case of the weighted average derivative of h(�), and
F(b) the case of h(�) at a certain value. Under Assumption F(a),

p
n-consistency is achieved

for the estimator �̂. Let �(z) = E[�(w)@h0(w)=@v0jz]. Then, the asymptotic variance of �̂ in
this case can be expressed as

�V = E
�
�(w)�(w)0var(yjX)

�
+ E

�
�(z)var(xjz)�(z)0

�
.

The next condition restricts the rate of growth of K and L.

Assumption G As n ! 1, it holds that
p
nK�s=dx ! 0,

p
nL�s1=dz ! 0, and

n�+
1
2 �n ! 0; also, for power series, n3(��

1
6
)K4L1=2 ! 0, n��

1
2 fK3L3=2 + K4L1=2(K +

L)1=2g ! 0, and n4(��
1
4
)fK3+L3g ! 0, and, for splines, n3(��

1
6
)K5=2L1=2 ! 0, n��

1
2 fK3=2L3=2

+K2L1=2(K + L)1=2g ! 0, and n4(��
1
4
)fK2 + L2g ! 0.

The �rst two conditions
p
nK�s=dx ! 0 and

p
nL�s1=dz ! 0 in Assumption G implies

�over�tting� in that the bias (K��) shrinks faster than 1=
p
n, the usual rate of standard

deviation of the estimator. As in NPV, we introduce over�tting for inference. This assumption
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is stronger than that in NPV (Assumption 8, p. 582). The value of � which satis�es G needs to

be small, implying that the instruments are at most �mildly�weak to obtain the asymptotic

normality of �̂� . Also, �n needs to converge fast enough to satisfy n�+
1
2 �n ! 0 in G. Given

these assumptions, we establish the asymptotic normality for the functionals of the penalized

series estimator. Let �vr(K) = maxj�j�r supv2V


@�pK(v)

.

Theorem 7.1 If Assumptions A-G and L are satis�ed, then �̂� = �0+Op(n2(��
1
4
)�vr(K)) and

p
nV̂ �1=2� (�̂� � �0)!d N(0; 1).

Furthermore, if Assumption F(a) is satis�ed,

p
n(�̂� � �0)!d N(0; �V )

and V̂� !p
�V .

Besides asymptotic normality, the results also provide the bound on the convergence rate

of �̂� as well as
p
n-consistency. Note that

p
n-consistency is achieved for the weighted average

derivative estimator. The results of this theorem are similar to those of NPV, except that the

bound on the rate achieved here is slower. The fact that the rate is slower (i.e., the multiplier

of (�̂� � �0) is of smaller order) in the case of weak instruments can be seen as if the e¤ective
sample size is small. One can give similar discussions as in the convergence rate part that

there are certain ranges of the strength of instruments and value of the penalization parameter

that guarantee the asymptotic normality of �̂� .

There still remain issues when the results of Theorem 7.1 are used for inference, e.g., by

constructing pointwise asymptotic con�dence intervals. As long as nuisance parameters are

present, such an inferential procedure may depend on the strength of instruments or on the

choice of penalization parameter. Robust inference against weak instruments in nonparametric

models can be an interesting future research topic.

Lastly, one closely related paper to the asymptotic results of the present paper is Jiang,

Fan and Fan (2010). In an additive nonparametric regression model where the regressors

are highly correlated, they establish pointwise asymptotic normality for local linear and in-

tegral estimators. Their results show the way that the correlated regressors a¤ect bias and

variance. Once our problem is transformed to an additive nonparametric regression with mul-

ticollinearity (Section 5.2), we can develop weak instrument asymptotic theory for local linear

and integral estimators of functionals of h0(�). The results of Jiang, Fan and Fan (2010),
however, cannot be automatically applied since generated regressors (v̂i) are involved in our

problem.

8 Monte Carlo Simulations

Before we apply the estimation strategies developed in this paper to a real world example,

in this simulation section, we investigate the problems of weak instruments in nonparametric
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estimation and demonstrate the �nite sample performance of the penalized estimator.

We are particularly interested in the �nite sample distribution and bias and variance of the

usual IV estimator obtained by the control function approach, that is, the two step estimation

procedure of Section 5.1. For bias and variance performance, at a wide range of strength of

instruments, we compare the IV estimators with least squares (LS) estimators which ignore

the endogeneity. We are also interested in the �nite sample gain in terms of bias and variance

of IV estimators obtained by penalization (�penalized IV estimators�) discussed in Section

5.3 compared to the unpenalized estimators.

The simulation results can be summarized as follows. Even with a strong instrument in a

conventional sense, the �nite sample distribution of the unpenalized IV estimator is far from

normal. Also in this case, unpenalized IV estimators do poorly in terms of mean squared

errors (MSE) compared to LS estimators. Variance seems to be the bigger problem but bias

is also worrisome. Penalization alleviates much of the variance problem induced by the weak

instrument, and also surprisingly works well on bias for a range of the weak instrument. Even

when the instrument is strong, the bias of the penalized IV estimator is no larger than that

of the unpenalized one.

8.1 Simulation Design

We consider the following data generation process (DGP): With the true functional form of

g(x) being g0(x) = �(
x��x
�x

),

y = �(
x� �x
�x

) + ", x = �1 + z� + v,

where y, x, and z are univariate, z � N(�z; �2z) with �z = 0 and �2z = 1, and ("; v)0 � N(0;�)

with � =

"
1 �

� 1

#
. Note that j�j measures the degree of endogeneity, and we consider

� 2 f0:2; 0:5; 0:95g. Due to the bivariate normal assumption for ("; v)0, we are implicitly
imposing linearity in the function E["jv] = �(v). The sample fzi; "i; vig is i.i.d. with size
n = 1000. The number of simulation repetitions is s 2 f500; 1000; 5000g.

We consider di¤erent strengths of the instrument by considering di¤erent values of �. Let

the intercept �1 = �x � ��z with �x = 2, so that E[x] = �x does not depend on the di¤erent
choice of �. Note that �2x = �2�2z + 1 still depends on �, which is reasonable as the signal

contributed to the total variation of x is a function of �. More speci�cally, to measure the

strength of the instrument, we de�ne the concentration parameter (Stock and Yogo (2005)):

�2 =
�2
Pn
i=1 z

2
i

�2v

Note that, since the dimension of z is one, the concentration parameter value and the �rst stage

F -statistic are similar to each other.20 The candidate values of �2 are f4; 8; 16; 32; 64; 128; 256g,
20For example, in Staiger and Stock (1997), for F = 30:53 (strong instrument) a 97:5% con�dence interval

for �2 is [17:3; 45:8] and for F = 4:747 (weak instrument) a con�dence interval for �2 is [2:26; 5:64].
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which range from a weak to strong instrument in the conventional sense. As for the penaliza-

tion parameter � , we consider candidate values of f0:001; 0:005; 0:01; 0:05:; 0:1g.
The approximating functions used for g0(x) and �0(v) are polynomials and p-spline with

di¤erent choices of (K1;K2), where K1 is the number of terms for g0(�) and K2 for �0(�).
Since g0(�) and �0(�) are separately identi�ed only up to an additive constant, we introduce
normalization �0(1) = �, where � is chosen because of the joint normality of ("; v). Then,

g0(x) = h0(x; 1)� �.

8.2 Simulation Results

In the �rst part of the simulation, we calculate ĝ� (�) and ĝ0(�), the penalized series estimates
and unpenalized series estimates, respectively, and compare their performances. For di¤erent

strengths of the instrument, we compute estimates with di¤erent values of the penalization

parameter. We choose K1 = K2 = 6 for polynomials as approximating functions, and � = 0:5.

As one might expect, the choice of orders of the series is not signi�cant as long as we are only

interested in comparing ĝ� (�) and ĝ(�).
Figures 4-7 present some representative results. Other results are similar and hence are

omitted to save space. In Figure 4 we plot mean of ĝ� (�) and ĝ(�) with concentration parameter
�2 = 16 and penalization parameter � = 0:001. The (blue) dotted-dash line is the true g0(�).
The (black) solid line is the (simulated) mean of ĝ(�) with the dotted band representing the
0:025-0:975 quantile ranges. Note that the di¤erence between g0(�) and the mean of ĝ(�) is
the (simulated) bias. The (red) solid line is the mean of ĝ� (�) with the dashed 0:025-0:975
quantile ranges. The plots for the unpenalized estimator indicate that with the given strength

of the instrument, the variance is very large, which implies that functions with any trends

can �t within the band; it indicates that the bias is also large.

The plots for the penalized estimator imply that the penalization signi�cantly reduces

the variance so that at least the upward trend of the true g0(�) is now ensured. Note that
the penalization corrects the bias in this case. Although �2 = 16 is considered to be strong

according to the conventional criterion, this range of the concentration parameter value can

be seen as the case where the instrument is �nonparametrically� weak in the sense that

the penalization induces a signi�cant di¤erence between ĝ� (�) and ĝ(�). Figure 5 is with

�2 = 256, while other things are the same. In this case, the penalization induces no signi�cant

di¤erence between ĝ� (�) and ĝ(�). This can be seen as the case where the instrument is

�nonparametrically� strong. It is noteworthy that the bias of the penalized estimator is no

larger than the unpenalized one even in this case.

Figures 6-7 present the same plots but with penalization parameter � = 0:005. The

patterns are similar to those of the previous case. Also, the comparison between Figures

4-5 and Figures 6-7 shows that the results are more sensitive to the change of � in the weak

instrument case than in the strong instrument case. This provides evidence for the theoretical

discussion on sensitivity; see (6.1) in Section 6.2.

The fact that the penalized and unpenalized estimates signi�cantly di¤er when the in-
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strument is weak has a practical implication. That is, practitioners can be informed about

whether the instrument they are using is worryingly weak by comparing penalized series esti-

mates with unpenalized estimates. Similar approach can be found in linear weak instruments

literature; for example, the biased TSLS estimates and the approximately median-unbiased

LIML estimates of Staiger and Stock (1997) can be compared to detect weak instruments.

In Figures 8-9, we calculate a functional of the unpenalized series estimates, namely �̂ =

a(ĝ) = ĝ(�x). With polynomials as the approximating functions, we use K1 = K2 = 5, and

� = 0:5. Figures 8-9 compare the simulated distributions of �̂ with two normal distributions,

centered at E�̂ (�normal_1�) and �0 = a(g0) (�normal_2�), respectively, where the di¤erence

of the two normal distributions thus indicates bias. When the instrument is nonparametrically

weak (Figure 8), the shape of the �nite sample distribution of �̂ is far from its asymptotic

normal distribution (normal_2), which implies that standard inference based on the normal

critical values will result in size distortions. Also note that bias is present here. When the

instrument is nonparametrically strong (Figure 9), the shape almost coincides with that of a

normal distribution and bias is negligible.

Tables 2 reports the integrated squared bias, integrated variance and integrated MSE

(Blundell, Chen and Kristensen (2007, p. 1638)) of penalized and unpenalized IV estimators

and LS estimators of g0(�). The LS estimates are calculated by series estimation of the outcome
equation (with orders K1) ignoring the endogeneity. We also calculate relative integrated

squared bias (Staiger and Stock (1997)) and relative integrated MSE for better comparisons.

Here, we use K1 = 6 and K2 = 3 in order to better re�ect the fact that �0(�) is smoother than
g0(�) due to the joint normality of ("; v). The approximating functions are polynomials and
� = 0:5. Results with di¤erent choices of orders K1 and K2 and degree of endogeneity � show

similar patterns; results with splines as approximating functions also show similar patterns;

hence they are omitted here. Note that the usual bias and variance trade-o¤s are present as

the order of the series changes.

The �rst three rows of entries in Table 2 are for the unpenalized IV estimator ĝ(�). As the
instrument becomes weaker, the bias and variance of the IV estimator increase with greater

proportion in variance. Next, the ratios of integrated bias and integrated MSE between the

IV and LS estimators (Bias2IV =Bias
2
LS andMSEIV =MSELS in Table 2) indicate the relative

performance of the IV estimator compared to LS estimator. A ratio bigger than unity implies

that the IV estimator performs worse than LS. In the table, the IV estimator does poorly in

terms of MSE even when �2 = 16, which is in the range of conventionally strong instruments;

therefore, this can be considered as the case where the instrument is nonparametrically weak.

The following three rows in Table 2 are results for the penalized IV (PIV) estimator

ĝ� (�). Overall, the bias and variance are reduced and the decrease is signi�cant for the

variance. Obviously, the penalized IV estimator performs better than the LS estimator.

More importantly, the last two rows (Bias2PIV =Bias
2
IV and MSE

2
PIV =MSE

2
IV ) suggest that,

overall, the penalized IV estimator outperforms the unpenalized IV estimator in terms of bias

and MSE. For example, when �2 = 8, the bias of the penalized estimator is only about 0:4%
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of the bias of the unpenalized ones, and the MSE of the penalized estimator is only about

1:4% of the MSE of the unpenalized one. Note that even in the situation of a fairly strong

instrument (e.g., �2 = 256), the bias of the penalized estimator does not exceed the bias of

the unpenalized one. This provides evidence for the theoretical discussion that the penalty

bias can be dominated by the existing series estimation bias; see Remark 4 in Section 6.2.

9 Application: E¤ect of Class Size

To illustrate our approach and apply the theoretical �ndings, we nonparametrically estimate

the e¤ect of class size on students� test scores. Among school inputs that a¤ect students�

performance, class size is thought to be easier to manipulate, and estimating its e¤ect has

been an interesting topic in the schooling literature. Angrist and Lavy (1999) analyze the

e¤ect of class size on students� reading and math scores in Israeli primary schools. With

linear models, they �nd that the estimated e¤ect is negative in most of the speci�cations they

consider.

Here, we want to see whether the results of Angrist and Lavy (1999) are driven by their

parametric assumptions. It is reasonable to consider a nonlinear e¤ect of class size, since it

is unlikely that the marginal e¤ect is constant across class-size levels. Therefore, we consider

nonparametrically extending their linear model: for school s and class c,

scoresc = g(classizesc; disadvsc) + �s + "sc.

where scoresc is the average test score within class, classizesc is the class size, disadvsc is the

fraction of disadvantaged students, and �s is an unobserved school-speci�c e¤ect. Note that

this model allows for di¤erent patterns for di¤erent subgroups of school/class characteristics

(here, disadvsc).

Class size is endogenous because it results from choices made by parents, schooling providers

or legislatures, and hence is correlated with other determinants of student achievement. An-

grist and Lavy (1999) use Maimonides�rule on maximum class size in Israeli schools to con-

struct an IV. According to the rule, class size increases one-for-one with enrollment until 40

students are enrolled, but when 41 students are enrolled, the class size is dropped to an average

of 20.5 students. Similarly, classes are split when the enrollment reaches 80, 120, 160, and so

on, so that each size does not exceed 40. This rule can be expressed by the following nonlinear

function of enrollment, which produces the IV (denoted as fsc following their notation):

fsc =
es

int((es � 1)=40) + 1

where es is beginning-of-the-year enrollment count. This rule generates discontinuity in the

enrollment / class-size relationship, which serves as exogenous variation. Figure 10 (Figure 1

in Angrist and Lavy (1999, p. 541)) depicts this relationship, where the class size induced by

Maimonides�rule (fsc) and the actual class size (classizesc) are plotted by initial enrollment
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count (es). Note that with the sample plus and minus 7 students around the discontinuity

points, IV exogeneity is more credible in addressing the endogeneity issue. Angrist and Lavy

(1999) consider a linear reduced form:

classizesc = �0 + �1 � fsc + �2 � disadvsc + ~vsc.

The dataset we use is from Angrist and Lavy (1999), which is the 1991 Israel Central

Bureau of Statistics survey of Israeli public schools. We only consider the 4th graders. The

sample size is n = 2019 for the full sample and 650 for the discontinuity sample. Given a linear

reduced form, �rst stage tests have F = 191:66 with the discontinuity sample (�7 students
around the discontinuity points) and F = 2150:4 with the full sample. Lessons from the

theoretical analyses above suggest that a strong instrument (F = 191:66) in a conventional

sense can be weak in nonparametric estimation of the class-size e¤ect, and a nonparametric

reduced form can enhance the identi�cation power. Therefore, we consider a nonparametric

reduced form,

classizesc = �(fsc; disadvsc) + vsc.

The sample is clustered, an aspect which is re�ected in �s of the outcome equation. Hence

we use the block bootstrap when computing standard errors and take schools as bootstrap

sampling units to preserve within-cluster (school) correlation. This produces cluster-robust

standard errors. We use b = 500 bootstrap repetitions.

With the same example and dataset (full sample), Horowitz (2011, Section 5.2) uses the

model and assumptions of the NPIV approach to nonparametrically estimate the e¤ect of

class size. To solve the ill�posed inverse problem, he conducts regularization by replacing

the operator with a �nite-dimensional approximation. First, we compare the NPIV estimate

of Horowitz (2011) with the IV estimate obtained by the control function approach of this

paper. Figure 11 (Figure 3 in Horowitz (2011, p. 375)) is the NPIV estimate of the function

of class size (g(�; �)) for disadv = 1:5(%) with the full sample. The solid line is the estimate of
g and the dots show the cluster-robust 95% con�dence band. As is noted in his paper, �the

result suggests that the data and the instrumental variable assumption, by themselves, are

uninformative about the form of any dependence of test scores on class size.�

Figure 12 is the (unpenalized) IV estimate calculated using the triangular model (2.1)

and the control function approach. Note that to facilitate the comparison with the NPIV

estimate, we consider a nonparametric reduced form. Since NPIV approach does not specify

any reduced-form relationship, it is reasonable to consider a �exible reduced form in the

control function approach. The sample, the orders of the series and the value of disadv are

the same as those for the NPIV estimate. The dashed lines in the �gure are also the cluster-

robust 95% con�dence band. The result clearly presents a nonlinear shape of the e¤ect of

class size and suggests that the marginal e¤ect diminishes as class size increases. Also the

overall trend seems to be negative, which is consistent with the results of Angrist and Lavy

(1999). The control function and NPIV approaches maintain di¤erent sets of assumptions

(e.g., di¤erent orthogonality conditions for the IV), hence this comparison does not imply
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that one estimate performs better than the other. It does, however, imply that if the control

function assumptions are reasonable, then they lead the data to be informative about the

relationship of interest. Note that the assumption E["scjvsc; fsc] = E["scjvsc] is satis�ed if
("sc; vsc) are jointly independent of fsc. Here, "sc captures factors that determine the average

test scores of a class other than the class size and the fraction of disadvantaged students, and

vsc captures other factors that are correlated with enrolment.

Also, since the NPIV approach su¤ers from the ill-posed inverse problem even without

the problem of weak instruments, the control function approach may be a more appealing

framework than the NPIV approach in the presence of weak instruments.

We proceed by calculating penalized IV estimates by the estimation method of this paper.

For all cases below, we �nd estimates for disadv = 1:5(%) as before. We use the discon-

tinuity sample, where the instrument is possibly weak in this nonparametric setting. For

comparison, however, we also calculate penalized IV estimates with the full sample, which

has a much stronger instrument. We randomly select a subsample of the full sample to

match the sample size with the discontinuity sample (n = 650). For the penalization para-

meter � , we use cross-validation, which is a data-driven procedure, to choose values among

f0:005; 0:01; 0:015; 0:02; 0:05g.21 The following results of cross-validation (Table 3) suggest

that � = 0:015 is the MSE-minimizing value. We penalize �� = (�2; �3; :::; �K) to e¤ectively

incorporate the smoothness.

Figure 13 depicts the penalized and unpenalized IV estimates with the discontinuity sam-

ple. There is a certain di¤erence in the estimates, but the amount is small. It is possible

that either the instrument is not very weak in this example or that cross-validation chooses a

smaller value of � .

Lastly, in Figures 14-15 we plot IV estimates calculated using nonparametric and linear

reduced forms with di¤erent choices for the number of terms in the series in di¤erent sub-

�gures. Note thatK1,K2, andK3 are the number of terms for g(�), �(�), and �(�), respectively.
Penalization is not considered in this analysis. Figure 14 depicts the case where the instrument

is �nonparametrically�weak (with the discontinuity sample), and Figure 15 depicts where it is

strong (with the full sample). With the weak instrument, the estimates with nonparametric

reduced form are notably di¤erent from those with linear reduced form, presenting a �atter

trend. This feature is true across di¤erent choices of the orders. On the other hand, with the

strong instrument, there is no notable di¤erence between the two. These results may indicate

that the �exible reduced form exploits the nonlinear relationship of the instrument and the

class size, strengthens the instrument, and hence results in more accurate estimates. When

the instrument is strong, this exploitation does not result in a signi�cant di¤erence because a

strong relationship is already captured by the linear speci�cation.

21Speci�cally, we use 10-fold CV. See Arlot and Celisse (2010) for details.
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10 Conclusions

This paper analyzes identi�cation, estimation, and inference in a nonparametric triangular

model in the presence of weak instruments. With a mild support condition, we derive a nec-

essary and su¢ cient rank condition for identi�cation, based on which we de�ne the concept

of nonparametric weak instruments. In estimation, we relate the weak instrument problem

with the ill-posed inverse problem in the literature, and introduce penalization as a regular-

ization scheme to alleviate the e¤ects of weak instruments. We derive local asymptotics of the

resulting penalized series estimator for the full range of strengths of instruments. The paper

also provides lessons for applied researchers: IV can do �more harm than good� (Bound,

Jaeger and Becker (1995)) to a greater extent in nonparametric models than it does in linear

models, and hence further attention needs to be paid to the relevance condition of IV in non-

parametric settings; penalized estimators can help solve the weak instrument problem; and

nonparametric speci�cation of the reduced form can be helpful when the structural function

is nonparametric.

The �ndings and implications of this paper are not restricted to the present additively sep-

arable triangular models. The results can be adapted to the nonparametric limited-dependent-

variable framework of Das, Newey and Vella (2003) and Blundell and Powell (2004). Weak

instruments can also be studied in other nonparametric models with endogeneity, such as the

IV quantile regression model of Chernozhukov and Hansen (2005) and Lee (2007).

Also, the results of this paper are directly applicable in several semiparametric speci�ca-

tions of the model of the present paper. With a large number of covariates, one can consider

a semiparametric outcome equation or reduced form that is additively nonparametric in some

components and parametric in others. One can also consider a single-index model for one

equation or the other. As more structure is imposed on the model, the identi�cation condi-

tion of Section 3.2 and the regularity condition of Section 6.1 can be weakened. Note that

when the reduced form is of a single-index structure as �(z0
), the strength of instruments

is determined by the combination of @�(�)=@(z0
) and 
. Another example is where the

structural function is parametric, while the control function remains nonparametric. A non-

parametric reduced form is still appealing in that case by similar arguments to those made in

Section 6.3.

Other subsequent research can be done concerning two speci�cation tests: a test for rele-

vance of the instruments and a test for endogeneity. These tests can be conducted by adapting

the existing literature on speci�cation tests where the test statistics can be constructed us-

ing the series estimators of this paper; see, e.g., Hong and White (1995). Testing whether

instruments are relevant can be conducted with the nonparametric reduced-form estimate

�̂(�). A possible null hypothesis is H0 : Pr f�(z) = const:g = 1, which is motivated by our

rank condition for identi�cation. Testing whether the model su¤ers endogeneity problems

can be conducted with the control function estimate �̂(�) obtained from ĥ(w) = ĝ(x) + �̂(v).

A possible null hypothesis is H0 : Pr f�(v) = const:g = 1. Note that in this case, there is

an additional di¢ culty of using existing results on speci�cation test, as we have generated
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regressors v̂.

Constructing a test of whether instruments are weak is an interesting topic but a more

demanding one than above-mentioned tests. An inferential procedure that is robust to arbi-

trarily weak instruments also can be investigated.

11 Appendix

11.1 Proofs in Identi�cation Analysis (Section 3.2)

In order to prove the su¢ ciency of Assumption ID20 for ID2, we �rst introduce a preliminary

lemma. For nonempty sets A and B, de�ne the following set

A+B = fa+ b : (a; b) 2 A�Bg . (11.1)

Then, the following rules that are useful in proving the lemma. For nonempty sets A, B and

C,

A+B = B +A (commutative) (Rule 1)

A+ (B [ C) = (A+B) [ (A+ C) (distributive 1) (Rule 2)

A+ (B \ C) = (A+B) \ (A+ C) (distributive 2) (Rule 3)

(A+B)c � A+Bc, (Rule 4)

where the last rule is less obvious than the others can be shown to hold. The distributive rules

of Rule 2 and 3 do not hold when the operators are switched. For example, A [ (B + C) 6=
(A [B) + (A [ C).

Recall that Zr =
n
z 2 Z : rank

�
@�(z)
@z02

�
= dx

o
, and Z0 = ZnZr. We suppress the sub-

script �0�for the true functions for notational simplicity. Let �Leb denotes a Lebesque measure

on Rdx , and @V and int(V) denote the boundary and interior of V, respectively.

Lemma 11.1 Suppose Assumptions ID1 and ID20(a)(i) and (ii) hold. Suppose Zr 6= � and
Z0 6= �. Then, (a) f�(z) + v : z 2 Z0, and v 2 int(V)g � Xr, and (b) �Leb(�(Z0)) = 0 and
@V is countable.

We prove this lemma after stating and proving the main lemma. The following lemma

proves the su¢ ciency of Assumption ID20:

Lemma 11.2 Suppose Assumption ID1 holds. Then, Assumption ID20 implies Assumption
ID2.

In the following proofs, we distinguish the r.v.�s with their realization. Let �, �, and �

denote the realizations of x, z, and v, respectively. Also, for expositional simplicity, we assume

z = z2 for the proofs of Lemmas 11.2 and 11.3.
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Proof of Lemma 11.2: When Zr = � or Zr = Z we trivially have Xr = X . Suppose
Zr 6= � and Z0 6= �. First, under Assumption ID20(b) that V = Rdx , we have the conclusion
by

Xr =
n
�(z) + v : z 2 Zr and v 2 Rdx

o
= Rdx =

n
�(z) + v : x 2 Z and v 2 Rdx

o
= X .

Now suppose Assumption ID20(a) holds. By Assumption ID20(a)(iii), for z 2 Z0, the joint
support of (z; v) is Z0 � V. Hence

f�(z) + v : z 2 Z0, and v 2 int(V)g = f�(z) + v : (z; v) 2 Z0 � int(V)g = �(Z0) + int(V).

But by Lemma 11.1(a), �(Z0) + int(V) � Xr or contrapositively, X cr � (�(Z0) + int(V))c,
and by (Rule 4), (�(Z0) + int(V))c � �(Z0) + @V. Therefore,

XnXr = X cr � �(Z0) + @V. (11.2)

Let @V = f�1; �2; :::; �k; :::g = [1k=1f�kg by Lemma 11.1(b). Then

�Leb(�(Z0) + @V) = �Leb(�(Z0) + ([1k=1f�kg)) = �Leb([1k=1(�(Z0) + f�kg))

�
1X
k=1

�Leb(�(Z0) + f�kg) =
1X
k=1

�Leb(�(Z0)) = 0,

where the second equality is from (Rule 2) and the third equality by the property of Lebesgue

measure. The last equality is by Lemma 11.1(b) that �Leb(�(Z0)) = 0. Note that x is a

continuous r.v., and hence, by (11.2), Pr[x 2 XnXr] � Pr[x 2 (�(Z0)) + @V] = 0. �

Proof of Lemma 11.1(a): First, we claim that for any � 2 �(Z0) there exists [1n=1f�ng �
�(Z1) such that limn!1 �n = �.

By Proposition 4.21(a) of Lee (2011, p. 92), for any space S, the path components of
S form a partition of S. Note that a path component of S is a maximal nonempty path
connected subset of S. Then, for Z0 � Rdz , we have Z0 = [�2IZ0�, where partitions Z0� are
path components. Note that, since Z0� is path connected, for any � and ~� in Z0�, there exists
a path in Z0�, namely, a piecewise continuously di¤erentiable function 
 : [0; 1] ! Z0� such
that 
(0) = � and 
(1) = ~�. Note that f
(t) : t 2 [0; 1]g � Z0�. Consider a composite function
� � 
 : [0; 1]! �(Z0�) � Rdx , then �(
(�)) is di¤erentiable, and by the mean value theorem,
there exists t� 2 [0; 1] such that

�(
(1))��(
(0)) = @�(
(t�))

@t
(1� 0) = @�(
(t�))

@� 0
@
(t�)

@t
.

Note that @�(
(t
�))

@�02
= 0dx�dx since 
(t

�) 2 Z0� � Z0 and dx = 1. This implies that �(
(1)) =
�(
(0)), or �(�) = �(~�). Therefore for any � 2 Z0�,

�(�) = c� (11.3)
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for some constant c� that depends on �.

Also, since Z0 is closed (see below), Z0� is closed for any �. That is, Z0 is partitioned
to a closed disjoint union of Z0��s. But Assumption ID20(a)(ii) says Z is a connected set in

Euclidean space (i.e., Rdz). Therefore, for any � 2 I, Z0� must contain accumulation points
of Zr (Taylor (1985, p. 76)).

Now, for any � = �(�) 2 �(Z0), it satis�es that � 2 Z0� for some � 2 I. Let �c 2 Z0� be
an accumulation point of Zr, that is, there exists [1n=1f�ng � Zr such that limn!1 �n = �c.
Then it follows that

� = �(�) = c� = �(�c) = �( limn!1
�n) = lim

n!1
�(�n) � �n,

where the second and third equalities are from (11.3) and the fourth by continuity of �(�).
Note that �n 2 �(Zr) for all n � 1. Therefore, we can conclude that for � 2 �(Z0), there
exists [1n=1f�ng � �(Zr) such that limn!1 �n = �.

Now we prove that if � 2 f�(z) + v : z 2 Z0, and v 2 int(V)g then � 2 Xr. Suppose

� 2 f�(z) + v : z 2 Z0, and v 2 int(V)g, i.e., � = � + � for � 2 �(Z0) and � 2 int(V). Then,
by the result above, there exists [1n=1f�ng � �(Zr) such that limn!1 �n = �. Consider a

sequence �n � � � �n for all n � 1. Notice that �n is not necessarily in V. But,

�n = (� + �)� �n = � + (� � �n),

hence limn!1 �n = �. Since � 2 int(V) there exists an open neighborhood of �, i.e., B"(�)
for some ", such that B"(�) � int(V). And, by the fact that limn �n = �, there exists N" such
that for all n � N", �n 2 B"(�). Therefore, by conveniently taking n = N", it follows that

� = �N" + �N" ,

where �N" 2 �(Zr) and �N" 2 B"(�) 2 int(V) � V. That is � 2 Xr. �

Proof that Z0 is closed in Z: Consider any [1n=1 f�ng � Z0 � Z such that lim �n = ��.
Then @�(�n)=@�

0 = (0; 0; :::; 0) = 0 by the de�nition of Z0, and

@�(��)=@� 0 = @�( lim
n!1

�n)=@�
0 = lim

n!1
@�(�n)=@�

0 = 0,

where the second equality is by continuity of @�(�)=@� 0. Therefore rank(@�k(��)=@� 0) < dx

and �� 2 Z0, and hence Z0 is closed. �

Proof of Lemma 11.1(b): Recall dx = 1. Note that V � R can be expressed by a

union of disjoint intervals. Since we are able to choose a rational number in each interval, the

union is a countable union. But note that each interval has at most two end points which are

the boundary of it. Therefore @V is countable. To prove that �Leb(�(Z0)) = 0, we use the

following proposition:

Proposition 11.3 (Lusin-Saks, Corollary 6.1.3 in Garg (1998, p.92)) Let X be a
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normed vector space. Let f : X ! R and E � X. If at each point of E at least one unilateral

derivative of f is zero, then �Leb(f(E)) = 0.

Note that Z0 is the support where @�(z)=@zk = 0 for any k � dz. Therefore, its bilateral
(directional) derivative D��(z) in the direction � = (�1; �2; :::; �dz)

0 satis�es D��(z) =Pdz
k=1 �k � @�(z)=@zk = 0. Since the bilateral derivative is zero, each unilateral derivative is

also zero; see, e.g., Giorgi, et al. (2004, p. 94) for the de�nitions of various derivatives. Then

by Proposition 11.3, �Leb(�(Z0)) = 0. �

Proof of Necessity Part of Theorem 3.5: Suppose Pr(z 2 Z1) = 0. This implies

Pr(z 2 Z0) = 1, but since Z0 is closed Z0 = Z. Therefore, for any z 2 Z = Z0, the system
of equations (3) either has multiple solutions or no solution. Therefore g(�(z) + v; z1) is not

identi�ed. �

11.2 Technical Assumptions and Proofs for Su¢ ciency (Section 6.1)

Assumptions B, C, D and L of Section 6.1 serve as su¢ cient conditions for more relevant

technical assumptions that are directly used in the proofs for the convergence rate. In this

section, we state Assumptions B.1, C.1 and D.1, and prove that these technical assumptions

are implied by Assumptions B, C, D and L of the main body.

Let � = �(n) = min fK1 � 1;K2 � 1g. Then � � K. Recall Q = E[pK(wi)p
K(wi)

0],

where pK(wi) = [pK1�1
� (xi)

0 ... pK2(vi)
0]0 with wi = (xi; vi). As discussed in the main body,

the transformation of the vector of regressors pK(wi) produces the vector of new regressors

p�2�+1(ui) = [1
... ~�(zi)@p��(vi)

0 ... p��(vi)
0]0 where ~�(�) 2 C1(Z) and ui = (zi; vi), and Q� =

E[p�2�+1(ui)p�2�+1(ui)0]. Furthermore, since ~�(�) 2 C1(Z) can have nonempty Z0 as a subset
of its domain, we de�ne

Q�z1 = E[p�2�+1(ui)p
�2�+1(ui)

0jzi 2 Zr],

Q�z0 = E[p�2�+1(ui)p
�2�+1(ui)

0jzi 2 Z0].

Also de�ne the second moment matrix for the �rst stage estimation as Q1 = E[rL(zi)rL(zi)0].

These matrices all depend on n. Also, for any matrix A, let the matrix norm be the Euclidean

norm kAk =
p
tr(A0A). And, for a symmetric matrix B, let �min(B) and �max(B) denote the

minimum and maximum eigenvalues of B, respectively.

Assumption B.1 (Bounds on second moment matrices) (i) �min(Q�z1) is bounded away
from zero for all �(n), and �min(Q1) is bounded away from zero for all L(n), and

(ii) �max(Q�) and �max(Q) are bounded by a �xed constant, for all �(n), and �max(Q1)

bounded by a �xed constant, for all L(n).

Proof that B and L imply B.1: Suppose Pr[z 2 Zr(~�)] = 1, and it su¢ ces to prove
after replacing Q�z1 with Q

� in Assumption B.1(i). Then ~�(�) is piecewise one-to-one. Here, we
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prove the case where ~�(�) is one-to-one, and the general case can be followed by conditioning
on z in each subset of Z where ~�(�) is one-to-one.

Consider the change of variables of u = (z; v) into ~u = (~z; ~v) where ~z = ~�(z) and ~v = v.

Then, it follows that p�2�+1(ui) = [1
... ~zip��(vi)

0 ... p��(vi)
0]0 = p2�+1(~ui) where p2�+1(~ui) is one

particular form of a vector of approximating functions as speci�ed as in NPV (pp.572-573).

Moreover, the joint density of ~u is

f~u(~z; ~v) = fu(~�
�1(~z); ~v) �

����� @ ~��1(~z)
@~z 0

0 1

����� = fu(~��1(~z); ~v) �
�����@ ~��1(~z)@~z

����� .
Since

���@ ~��1(~z)@~z

��� 6= 0 by ~� 2 C1(Z) (bounded derivative) and fu is bounded away from zero

and the support of u is compact by Assumption B, the support of ~u is also compact and f~u
is also bounded away from zero. Then, by the proof of Theorem 4 in Newey (1997, p. 167),

�min(Ep
2�+1(~ui)p

2�+1(~ui)
0) is bounded away from zero. Therefore �min(Q�) is bounded away

from zero for all �.

As for Q1 that does not depend on the e¤ect of weak instruments, the density of z being

bounded away from zero implies that �min(Q1) is bounded away from zero for all L by Newey

(1997, p. 167) as above. The maximum eigenvalues of Q�, Q and Q1 are bounded by �xed

constants by the fact that the polynomials or splines are de�ned on bounded sets. �

Assumption C.1 (Series approximation error) There exists �; �1 > 0, � ~K and 
 ~L such

that supw2W
���h0(w)� p ~K(w)0� ~K��� � C ~K�� as ~K ! 1, and supz2Z




�0(z)� p~L(z)0
 ~L


 �
C ~L��1 as ~L!1.

This regulates the uniform approximation error of the series estimators ĥ(�) and �̂(�). As
the orders of approximating functions grow, the errors shrink at the rates ~K�� and ~L��1 .

Note that this is not a¤ected by the weak instrument assumption.

Proof that C implies C.1: Take � = s=dx. Then, by Theorem 8 of Lorentz (1986, p.

90) for power series and by Theorem 12.8 of Schumaker (1981) for splines, di¤erentiability of

order s guarantees Assumption C.1. Same applies to �1 = s1=dz. �

For the next assumption let �vr(�) and �
v
r(L) satisfy

sup
v2V

k@rp�(v)k � �vr(�), max
j�j�r

sup
z2Z



@�rL(z)

 � �r(L),
which impose nonstochastic uniform bounds on the vectors of approximating functions. Let

�� =
p
L=n+ L��1 .

Assumption D.1 (Rate of growth) For � = �(n) and L = L(n), the following conver-

gence holds as n ! 1: (i) n2��1=2�v1(�)�� ! 0, and (ii) n���v2(�)�
1=2 ! 0. Also, (iii)

�0(L)
2L=n! 0.
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Proof that D implies D.1: It follows from Newey (1997, p. 157 and p. 160) that in

the polynomial case

�vr(K) = K
1+2r (11.4)

and in the spline case that

�vr(K) = K
1=2+r. (11.5)

These are well-known properties of orthogonal polynomials and B-splines. The same results

holds for �r(L). Therefore, Assumption D implies D.1. �

11.3 Key Lemmas for Proof of Rate of Convergence (Section 5.4)

To obtain the rate of convergence, a preliminary step is required to separate out the weak

instrument factor as discussed in the main body. Lemmas 11.6 of this subsection describes

that step and obtain the order of magnitudes of eigenvalues of the second moment matrices

in term of the weak instrument rate. For ease of exposition, the proof the lemma will be

given based on the case of K1 = K2 and univariate x. The general case of K1 6= K2 and

multivariate x is discussed in Section 11.4 below. Recall K = K1 + K2 � 1 and we have
� = �(n) = K1 = K2 = (K + 1)=2. Again, K1,K2, L, K, and � all depends on n.

From the main body, we have

pK(wi)
0Tn = p

�K(ui)
0 +mK0

i ,

where p�K(ui)0 = [1
... ~�(zi)@p��(vi)

0 ... p��(vi)
0] andmK0

i = [0
... ~�(zi)

�
@p��(~vi)

0 � @p��(vi)
0� ... (0��1)0].

De�ne
~Q =

P 0P

n
,

where

P
n�K

= (pK(w1); :::; p
K(wn))

0 (11.6)

which is similar to (5.3) but with unobservable v instead of residual v̂. Note the distinction

between ~Q and Q̂; recall Q̂ = P̂ 0P̂
n . Then, similar to (5.16)

T 0n ~QTn =
T 0nP

0PTn
n

=
P �0P �

n
+
M 0P �

n
+
P �0M

n
+
M 0M

n
(11.7)

where P � and M are matrices of p�K(ui) and mK
i , respectively, correspondingly de�ned as

(11.6). Lastly, de�ne the �rst term of (11.7) as

~Q� =
P �0P �

n
.

Also, recall Q = E[pK(wi)pK(wi)0] and Q� = E[p�K(ui)p�K(ui)0].

In terms of the notations, it is useful to note that ��� for matrix P , Q, or vector pK(�)
which is free from the weak instrument e¤ect due to the transformation. Also, ���is for P or
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Q with vi�s in the arguments of approximating functions, and �^�is for the ones with v̂i�s in

it. Before proceeding, we introduce two mathematical lemmas (Lemmas 11.4 and 11.5) that

are useful in proving the main lemmas and theorem.

Lemma 11.4 For symmetric k � k matrices A and B, let �j(A) and �j(B) denote their jth
eigenvalues such that �1 � �2 � � � � � �k. Then the following inequality holds: for 1 � j � k,

j�j(A)� �j(B)j � j�1(A�B)j � kA�Bk .

By having i = 1 and n, note that Lemma 11.4 implies j�max(A)� �max(B)j � kA�Bk
and j�min(A)� �min(B)j � kA�Bk, respectively, which will be useful in several proofs below.

Proof of Lemma 11.4: We provide slightly more general results. Firstly, by Weyl (1912),
for symmetric k � k matrices C and D

�i+j�1(C +D) � �i(C) + �j(D), (11.8)

where i+ j � 1 � k. As for the second inequality, we prove

j�j(D)j � kDk , (11.9)

for 1 � j � k. Note that, for any k � 1 vector a such that kak = 1,

(a0Da)2 = tr(a0Daa0Da) = tr(DDaa0aa0) = tr(DDaa0) � tr(DD)tr(aa0) = tr(DD).

Since �j(D) = a0Da for some a with kak = 1, taking square root on both sides of the

inequality gives the desired result. Now, in inequalities (11.8) and (11.9), take j = 1, C = B,

and D = A�B and we have the conclusions. �

Lemma 11.5 If K(n)�K(n) symmetric random sequence of matrices An satis�es �max(An) =
Op(n

�), then kBnAnk � kBnkOp(n�) for a given sequence of matrices Bn.

Another useful corollary of this lemma is that, for �max(An) = Op(n
�) and sequence of

vectors bn and cn, we have b0nAncn � Op(n�)b0ncn.

Proof of Lemma 11.5: Let An have eigenvalue decomposition An = UDU�1. Then

kBnAnk2 = tr
�
BnAnAnB

0
n

�
= tr

�
BnUDU

�1UDU�1B0n
�

= tr
�
BnUD

2U�1B0n
�
� tr

�
BnUU

�1B0n
�
� �max(An)2

= kBnk2Op(n�)2.

�

The following lemma is the main result of this subsection.
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Lemma 11.6 Suppose Assumptions ID, A, B.1, D.1, and L are satis�ed. Then, (a)

�max(Q
�1) = O(n2�),

(b)

�max(Q̂
�1) = Op(n

2�).

In all proofs, let C denote a generic positive constant that may be di¤erent in di¤erent use.

TR, CS, MK are triangular inequality, Cauchy-Schwartz inequality and Markov inequality,

respectively. Also, �w:p:! 1�stands for �with probability approaching one.�

Preliminary derivations for the proofs of Lemmas 11.6-7 and Theorem 6.1: Be-
fore proving the lemmas and theorems below, it is useful to list the implications of Assumption

D.1(i) that are used in the proofs. De�ne

�� =
p
L=n+ L��1 , �Q̂ = �

v
1(�)

2�2� + �
1=2�v1(�)��, � ~Q =

p
�v1(�)

2�=n.

Note that � ~Q = �
v
1(�)

p
�=n! 0 by

n2��1=2�v1(�)�� ! 0 (11.10)

of Assumption D.1(i). Also

n2��Q̂ = n
2�
n
�v1(�)

2�2� + �
1=2�v1(�)��

o
! 0

n2�� ~Q = n
2�
p
�v1(�)

2�=n � Cn2��1=2�v1(�)=
p
n! 0

and

n2��v1(�)
2�2�=n! 0 (11.11)

by n��1=2�v1(�)�� ! 0 and n2��v1(�)�� ! 0 which are implied by (11.10).

Proof of Lemma 11.6(a): Let p�i = p�K(ui) and mi = mK
i for brevity. Recall (5.16)

that T 0nQTn = Q
� + E [mip

�0
i ] + E [p

�
im

0
i] + E [mim

0
i]. Then



T 0snQTsn �Q�

 � 2E kmik kp�i k+ E kmik2 � 2
�
E kmik2

�1=2 �
E kp�i k

2
�1=2

+ E kmik2

by Cauchy-Schwartz inequality. But mi = mK
i = [0

... ~�(zi)
�
@p��(~vi)

0 � @p��(vi)
0� ... (0��1)0]0

where ~v is the intermediate value between x and v. Then, by mean value expanding @p�(~vi)

around vi and j~vi � vij � jxi � vij, we have

kmik2 =



~�(zi)@2p��(�vi) (~vi � vi)


2 � ���~�(zi)���2 �v2(�)2 jxi � vij2

= n�2�
���~�(zi)���4 �v2(�)2 � Cn�2��v2(�)2, (11.12)

where �v is the intermediate value between v and ~v, and by Assumption L that supz
���~�(zi)��� <
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1. Therefore
E kmik2 � Cn�2��v2(�)2. (11.13)

Then, by Assumption B.1(ii),

E
�
p�0i p

�
i

�
= tr(Q�) � tr(I2�)�max(Q�) � C � �. (11.14)

Therefore, by combining (11.13) and (11.14) it follows



T 0nQTn �Q�

 � O(�1=2n�2��v2(�)) +O(n�2��v2(�)2) = o(1) (11.15)

by Assumption D.1(ii), which shows that all the remainder terms are negligible.

Now, by Lemma 11.4, we have

���min(T 0nQTn)� �min(Q�)�� � 

T 0nQTn �Q�

 (11.16)

Combine the results (11.15) and (11.16) to have �min(T 0nQTn) = �min(Q
�) + o(1). But note

that, with simpler notations pz1 = Pr[z 2 Zr] and pz0 = Pr[z 2 Z0], we can write Q� =
pz1Q

�
z1+pz0Q

�
z0. Then, by a variant of Lemma 11.4 (with the fact that �1(�B) = ��k(B) for

any symmetric matrix B), it follows that �min(Q�) � pz1 � �min(Q�z1) + pz0 � �min(Q�z0) = pz1 �
�min(Q

�
z1), as �min(Q

�
z0) = 0. Then, since pz1 > 0, it holds that �min(Q

�) � pz1 � �min(Q�z1) �
c > 0 for all �(n) by Assumption B.1(i). Therefore,

�min(T
0
nQTn) � c > 0. (11.17)

Let

T0n =

"
n� 0

�n� 1

#

 I�, so that Tn =

"
1 01�2�

02��1 T0n

#
.

Then, by solving

����� n� � ~� 0

�n� 1� ~�

����� = 0, we have ~� = n� or 1 for eigenvalues of T0n, and since
�max(I�) = 1, it follows

�max(Tn) = �max(T0n) = O(n
�). (11.18)

Note that �max(TnT 0n) = O(n
2�) by Lemma 11.5. Since (11.17) implies �max((T 0nQTn)

�1) =

O(1), it follows

�max(Q
�1) = �max(Tn(T

0
nQTn)

�1T 0n) � O(1)�max(TnT 0n) = O(n2�)

by applying Lemma 11.5 again. �

Proof of Lemma 11.6(b): For notational simplicity let pi = pK(wi) whose element is
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denoted as pk(wi) for k = 1; :::;K. Consider

E



 ~Q�Q


2 = E

8<:X
j

X
k

 �P
i pip

0
i

n
� E

�
pip

0
i

��
jk

!29=;
=

X
j

X
k

E

(�P
i pk(wi)pj(wi)

n
� E [pk(wi)pj(wi)]

�2)

�
X
j

X
k

1

n
E
�
pk(wi)

2pj(wi)
2
�
=
1

n
E
�
p0ipip

0
ipi
�

by Assumptions A (�rst ineq.). Then, we bound the forth moment with the bounds of a

second moment and the following bound. With w = (x; v),

max
j�j�r

sup
w2W



@�pK(w)

2 � sup
x2X

k@rp�(x)k2 + sup
v2V

k@rp�(v)k2 � �vr(�)2 + �vr(�)2 = 2�vr(�)2.

By Assumption B.1(ii), the second moment E [p0ipi] = tr(Q) � tr(I2�)�max(Q) � C ��. Hence

E



 ~Q�Q


2 � 1

n
E
�
p0ipip

0
ipi
�
� O(�v1(�)2�=n).

Therefore, by MK,



 ~Q�Q


2 = Op(�v1(�)2�=n) = Op(�2~Q). Now


T 0n ~QTn � T 0nQTn


 = 


T 0n( ~Q�Q)Tn


 � �max(Tn)2 


 ~Q�Q


 � O(n2�1)Op(� ~Q) = op(1)

(11.19)

by Assumption D.1(i) and (11.18).

Let p̂i = pK(ŵi) = [1
... p��(xi)

... p��(v̂i)] and by mean value expansion

p̂i = [1
... p��(xi)

... p��(vi) + @p
�
�(�vi) (v̂i � vi)],

where �v is the intermediate value. Since

1

n

X
i

jv̂i � vj2 =
1

n

X
i

����(zi)� �̂(zi)���2 = Op(�2�), (11.20)

we have

kp̂i � pik2 =


p��(xi)� p��(xi)

2 + 


~�(zi)@p��(�vi) (v̂i � vi)


2

� C�v1(�)
2 1

n

X
i

jv̂i � vij2 � Op(�v1(�)2�2�). (11.21)

Also, by MK,

Pr[kpik2 > "] �
E kpik2

"
= C � tr(Q) � C � tr(I2�)�max(Q) = O(�), (11.22)
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hence
Pn
i=1 kpik

2 =n = Op(�). Then, by TR, CS and by combining (11.21) and (11.22)




Q̂� ~Q



 =






 1n
nX
i=1

�
p̂ip̂

0
i � pip0i

�





� 1

n

nX
i=1



(p̂i � pi) (p̂i � pi)0 + pi(p̂i � pi)0 + (p̂i � pi)p0i


� 1

n

nX
i=1

kp̂i � pik2 + 2
1

n

nX
i=1

kpik kp̂i � pik

� 1

n

nX
i=1

kp̂i � pik2 + 2
 
1

n

nX
i=1

kpik2
!1=2 

1

n

nX
i=1

kp̂i � pik2
!1=2

= Op(�
v
1(�)

2�2�) +Op(�
1=2)Op(�

v
1(�)��) = Op(�Q̂).

Thus, by Lemma 11.5,


T 0nQ̂Tn � T 0n ~QTn


 = 


T 0n(Q̂� ~Q)Tn




 � O(n2�)Op(�Q̂) = op(1) (11.23)

by Assumption D.1(i) and (11.18). Therefore, by combining (11.19) and (11.23) and by TR,


T 0nQ̂Tn � T 0nQTn


 � 


T 0nQ̂Tn � T 0n ~QTn


+ 


T 0n ~QTn � T 0nQTn


 = op(1). (11.24)

Now by TR, (11.24) and (11.15) give



T 0nQ̂Tn �Q�


 � 


T 0nQ̂Tn � T 0nQTn


+kT 0nQTn �Q�k

= op(1). Also, by Lemma 11.4, we have
����min(T 0nQ̂Tn)� �min(Q�)��� � 


T 0nQ̂Tn �Q�


. Com-

bine the results to have �min(T 0nQ̂Tn) = �min(Q
�) + op(1). But, by Assumption B.1(i), we

have

�min(T
0
nQ̂Tn) � c > 0, (11.25)

w:p! 1 as n!1. Then, similarly to the proof of Lemma 11.6(a), we have

�max(Q̂
�1) = �max(Tn(T

0
nQ̂Tn)

�1T 0n) � Op(1)�max(TnT 0n) = Op(n2�).

�

11.4 Generalization

The general case of K1 6= K2 for Section 11.3 can be incorporated by the following argument.
Recall that K = K1 + K2 � 1 and � = min fK1 � 1;K2 � 1g. We assume K1 � K2 then
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K � �. Suppose K1 � K2, then we can rewrite pK(w) as

pK(w) = (1; p2(x); :::; pK1(x); p2(v); :::; pK2(v))
0

= (1; p2(x); :::; pK1(x); p2(v); :::; pK1(v); pK1+1(v); :::; pK2(v))
0

=

�
1
... pK1

� (x)0
... pK1

� (v)0
... (pK1+1(v); :::; pK2(v))

0
�0

=

�
p2K1�1(w)0

... dK2�K1(v)0
�0
.

where a vector dK2�K1(v) = (pK1+1(v); :::; pK2(v))
0. Let p2��1(wi) = ~pi and dK2�K1(vi) = di.

Then

Q = E[pK(w)pK(w)0] =

"
E[~pi~p

0
i] E[~pid

0
i]

E[di~p
0
i] E[did

0
i]

#
Note that E[did0i] is the usual second moment matrix free from the weak instruments. There-

fore, the singularity of Q is determined by the remaining three matrices. Note that ~pi is

subject to the weak instruments as before and after mean value expanding it, the usual trans-

formation matrix can be applied. Then by applying the inverse of partitioned matrix, the

maximum eigenvalue of Q�1 can eventually be expressed in term of the n� rate of Assumption

L. A similar argument holds for K1 � K2.

We can also have a more general case of multivariate x for the proof of Lemma 11.6 in

Section 11.3 and the derivation in Section 5.4 of the main body. De�ne

@�pj(x) =
@j�jpj(x)

@x
�1
1 @x

�2
2 � � � @x

�dx
dx

where j�j =
Pdx
t=1 �t, and @

�pK(x) = [@�p1(x); :::; @
�pK2(x)]

0. Then, multivariate mean value

expansion can be applied using the derivative @�pj(x). Whether instruments that are as-

sociated with x have di¤erent strengths (hence di¤erent rates) or not does not change the

strategy. It will become similar to a proof with a linear reduced form with di¤erent strength

of instruments.

One can also have a simpler proof by considering mean value expansion of just one element

of x and the similar proof follows as the univariate case. That is, pj(v) = pj(x � �n(z)) =
pj(x)��m;n(z)@pj(~x)=@xm where ~x is an intermediate value and �m;n(�) is m-th element of
�n(�).

11.5 Proofs of Rate of Convergence (Section 6.2)

Given the results of the lemmas above, we prove the rate of convergence. We �rst prove a

lemma with the unpenalized series estimator ĥ(�) de�ned in Section 5.1, and then prove the
main theorem with the penalized estimator ĥ� (�) de�ned in Section 5.3.
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Lemma 11.7 Suppose Assumptions A-D, and L are satis�ed. Then,


ĥ� h0



L2
= Op

�
n�(
p
K=n+K�s=dx +

p
L=n+ L�s1=dz)

�
.

Proof of Lemma 11.7: Let � be such that supW
��h0(w)� pK(w)0��� = O(K��) (by

Assumption C.1). Then, by TR of L2 norm (�rst ineq.),




ĥ� h0



L2

=

�Z h
ĥ(w)� h0(w)

i2
dF (w)

�1=2
�

�Z h
pK(w)0(�̂ � �)

i2
dF (w)

�1=2
+

�Z �
pK(w)0� � h0(w)

�2
dF (w)

�1=2
=

��
�̂ � �

�0
EpK(w)pK(w)0

�
�̂ � �

��1=2
+O(K��)

� C



�̂ � �


+O(K��)

by Assumption B.1(ii) and Lemma 11.5 (last eq.). As �̂ � � = (P̂ 0P̂ )�1P̂ 0(y� P̂ �), it follows
that 


�̂ � �


2 = (�̂ � �)0(�̂ � �)

= (y � P̂ �)0P̂ (P̂ 0P̂ )�1(P̂ 0P̂ )�1P̂ 0(y � P̂ �)

= (y � P̂ �)0P̂ Q̂�1Q̂�1P̂ 0(y � P̂ �)=n2

= (y � P̂ �)0P̂ Q̂�1=2Q̂�1Q̂�1=2P̂ 0(y � P̂ �)=n2

� Op(n
2�)(y � P̂ �)0P̂

�
P̂ 0P̂

��1
P̂ 0(y � P̂ �)=n

by Lemma 11.5 and Lemma 11.6(b) (last ineq.).

Let h = (h(w1); :::; h(wn))
0 and ~h = (h(ŵ1); :::; h(ŵn))

0. Also let �i = yi � h0(wi) and
� = (�1; :::; �n)

0. Let W = (w1; ::; wn)
0, then E[yijW ] = h0(wi) which implies E[�ijW ] = 0.

Also similar to the proof of Lemma A1 in NPV (p.594), by Assumption A, we have E[�2i jW ]
being bounded and E[�i�j jW ] = 0 for i 6= j. (Here, the expectation is taken for y.) Then,

given that y � P̂ � = (y � h) + (h� ~h) + (~h� P̂ �), we have, by TR,


�̂ � �


 = Op(n
�)



Q̂�1=2P̂ 0(y � P̂ �)=n




� Op(n
�)f



Q̂�1=2P̂ 0�=n


+ 


Q̂�1=2P̂ 0(h� ~h)=n




+



Q̂�1=2P̂ 0(~h� P̂ �)=n


g. (11.26)

For the �rst term of equation (11.26), consider

E
h

(PTn � P �)0 �=n

2���Wi = E

h

M 0�=n


2���Wi � C 1

n2

X
i

kmik2

= Op(n
�2��1�v2(�)

2) = op(1)
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by (11.12) and op(1) is implied by Assumption D.1(ii). Therefore, by MK,

(PTn � P �)0 �=n

 = op(1). (11.27)

Also,

E

"



�P̂ Tn � PTn�0 �=n



2
�����W
#
� C

1

n2

X
i



(p̂i � pi)0Tn

2 � C 1

n2

X
i

�max(Tn)
2 kp̂i � pik2

� 1

n
O(n2�)Op(�

v
1(�)

2�2�) = Op(n
2��v1(�)

2�2�=n) (11.28)

by (11.18) and (11.21), and hence



�P̂ Tn � PTn�0 �=n



 = op(1) (11.29)

by Assumption D.1(i) (or (11.11)) and MK. Also

E


P �0�=n

2 = E

h
E[


P �0�=n

2 jW ]i = E "X

i

p�0i p
�
iE[�

2
i jW ]=n2

#

� C
1

n2

X
i

E
�
p�0i p

�
i

�
= Ctr(Q�)=n = O(�=n)

by Assumptions A (�rst ineq.), and equation (11.14) (last eq.). By MK, this implies



P �0�=n

 � Op(p�=n). (11.30)

Hence by TR with (11.27), (11.29), and (11.30),


T 0nP̂ 0�=n


 � 



�P̂ Tn � PTn�0 �=n



+ 

(PTn � P �)0 �=n

+ 

P �0�=n

 � Op(p�=n).
Therefore, the �rst term of (11.26) becomes




Q̂�1=2P̂ 0�=n


2 =  �0P̂ Tn
n

!
(T 0nQ̂Tn)

�1

 
T 0nP̂

0�

n

!
� Op(1)




T 0nP̂ 0�=n


2 = Op(�=n)
(11.31)

by Lemma 11.5 and (11.25).

Due to the fact that I � P̂
�
P̂ 0P̂

��1
P̂ 0 is a projection matrix, hence is p.s.d, the second

term of (11.26) becomes


Q̂�1=2P̂ 0(h� ~h)=n


2 = (h� ~h)0P̂
�
P̂ 0P̂

��1
P̂ 0(h� ~h)=n � (h� ~h)0(h� ~h)=n

=
X
i

(h(wi)� h(ŵi))2 =n =
X
i

(�(vi)� �(v̂i))2 =n

� C
X
i

jvi � v̂ij2 =n = Op(�2�) (11.32)
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by (11.20) (last eq.) and Assumption C (Lipschitz continuity of �(v)) (last ineq.). This term

is due to the generated regressors v̂ from the �rst stage estimation, and hence follows the rate

of the �rst stage series estimation (�2�). Similarly, the last term is


Q̂�1=2P̂ 0(~h� P̂ �)=n


2 = (~h� P̂ �)0P̂
�
P̂ 0P̂

��1
P̂ 0(~h� P̂ �)=n

� (~h� P̂ �)0(~h� P̂ �)=n

=
X
i

�
h(ŵi)� pK(ŵi)0�

�2
=n = Op(K

�2�) (11.33)

by Assumption C.1. Therefore, by combining (11.31), (11.32), and (11.33)


�̂ � �


 � Op(n�) hOp(p�=n) +Op(��) +O(K��)
i
.

Consequently, since � � K,


ĥ� h0



L2
� Op(n�)

h
Op(

p
K=n) +O(K��) +Op(��)

i
+O(K��)

and we have the conclusion of the lemma. �

Proof of Theorem 6.1: Now we derive convergence rate of the penalized series estimator
ĥ� (�). Recall Q̂� = (P̂ 0P̂ + n�nI)=n = Q̂ + �nI. De�ne P̂# = P̂ + n�nP̂ (P̂ 0P̂ )�1. Note that
the penalty bias emerges as P̂# 6= P̂ . Consider


�̂� � �


2 = (�̂� � �)0(�̂� � �)

= (y � P̂#�)0P̂ (P̂ 0P̂ + n�nI)�1(P̂ 0P̂ + n�nI)�1P̂ 0(y � P̂#�)

= (y � P̂#�)0P̂ Q̂�1=2� Q̂�1� Q̂
�1=2
� P̂ 0(y � P̂#�)=n2

� �max(Q̂
�1
� )




Q̂�1=2� P̂ 0(y � P̂#�)=n



2

Then, �rst note that, by (5.11) and Lemma 11.6(b),

�max(Q̂
�1
� ) = Op(min

n
n2�; ��1n

o
). (11.34)

Hence



�̂� � �


 � Op(minfn�; ��1=2n g)




Q̂�1=2� P̂ 0(y � P̂#�)=n



. But, by TR,




Q̂�1=2� P̂ 0(y � P̂#�)=n





�



Q̂�1=2� P̂ 0(y � h)=n




+ 


Q̂�1=2� P̂ 0(h� P̂#�)=n





=



Q̂�1=2� P̂ 0(y � h)=n




+ 


Q̂�1=2� P̂ 0(h� P̂ � � n�nP̂ (P̂ 0P̂ )�1�)=n





�



Q̂�1=2� P̂ 0(y � h)=n




+ 


Q̂�1=2� P̂ 0(h� P̂ �)=n



+ 


�nQ̂�1=2� �




 .
The �rst and second terms, note that c0P̂ 0Q̂�1� P̂ c � c0P̂ 0Q̂�1P̂ c for any vector c, since

(Q̂�1 � Q̂�1� ) is p.s.d. Therefore, by (11.31), (11.32), and (11.33) in Lemma 11.7, we have
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Q̂�1=2� P̂ 0(y � h)=n



 = Op(pK=n) and 


Q̂�1=2� P̂ 0(h� P̂ �)=n




 = Op(K�� +��). The third

term (squared) is


�nQ̂�1=2� �



2 = �2n�0Q̂�1� � � �2n�max(Q̂�1� ) k�k2 � �2n�max(Q̂�1� )B � �2nOp(minnn2�; ��1n o),

by �0� � B and (11.34) (last ineq.). Therefore,



�nQ̂�1=2� �




 = �nOp(minfn�; ��1=2n g). Con-
sequently, analogous to the proof of Lemma 11.7,




ĥ� � h0



L2
= Op

 
minfn�; ��1=2n g

 r
K

n
+K�s=dx + �n �minfn�; ��1=2n g+

r
L

n
+ L�s1=dz

!!
.

This proves the �rst part of the theorem. The conclusion of the second part follows from

sup
w

���ĥ� (w)� h0(w)��� � sup
w

��pK(w)0� � h0(w)��+ sup
w

���pK(w)0(�̂� � �)���
� O(K�s) + �v0(K)




�̂� � �


 .
�

Proof of Theorem 6.3: The proof follows directly from the proofs of Theorems 4.2

and 4.3 of NPV (p.602). As for notations, we use v instead of u of NPV, and the remaining

notations are identical. �

11.6 Proof of Asymptotic Normality (Section 7)

Assumption G in Section 7 implies the following technical assumption. Recall that �vr(K)

satis�es supv2V


@rpK(v)

 � �vr(K) and, with maxj�j�r supw2W



@�pK(w)

 � �r(K), we

have �r(K) � �vr(K).

Assumption G.1 The following converge to zero as n!1:
p
nK��,

p
nL��1,

p
n�nn

�,

�v0(K)L=
p
n, n�L1=2

�
L�v1(�) +K

1=2�(L)
	
=
p
n, n3�K�v1(K)L

1=2=
p
n,

n4�
�
�v0(K)

2K + �(L)2L
	
=n, and n��v0(K)L

1=2�v1(K)(K + L)1=2=
p
n.

Proof that Assumption G implies Assumption G.1: By (11.4) and (11.5), �vr(K) =
K1+2r and �(L) = L for power series and �vr(K) = K1=2+r and �(L) = L1=2 for splines.

Therefore, for power series

�v0(K)L=
p
n = n�1=2KL

n�L1=2
n
L�v1(�) +K

1=2�(L)
o
=
p
n = n��

1
2L1=2

n
LK3 +K1=2L

o
= n��

1
2L3=2

n
K3 +K1=2

o
� Cn��

1
2K3L3=2

n3�K�v1(K)L
1=2=

p
n = n3(��

1
6
)K4L1=2

n4�
�
�v0(K)

2K + �(L)2L
	
=n = n4(��

1
4
)
�
K3 + L3

	
n��v0(K)L

1=2�v1(K)(K + L)1=2=
p
n � n��

1
2K4L1=2(K + L)1=2,
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and for splines

�v0(K)L=
p
n = n�1=2K1=2L

n�L1=2
n
L�v1(�) +K

1=2�(L)
o
=
p
n = n��

1
2L
n
K3=2L1=2 +K1=2

o
� n��

1
2K3=2L

n
L1=2 + 1

o
� Cn��

1
2K3=2L3=2

n3�K�v1(K)L
1=2=

p
n = n3(��

1
6
)K5=2L1=2

n4�
�
�v0(K)

2K + �(L)2L
	
=n = n4(��

1
4
)
�
K2 + L2

	
n��v0(K)L

1=2�v1(K)(K + L)1=2=
p
n � n��

1
2K2L1=2(K + L)1=2.

Then the results of Assumption G.1 follow. �

Preliminary derivations for the proof of Theorem 7.1 : Recall �� =
p
L=n+L��1 ,

�Q̂ = �
v
1(�)

2�2� + �
1=2�v1(�)��, � ~Q =

p
f�v1(�)2 + �v0(�)2gK=n, and Rn = min

n
n�; �

�1=2
n

o
,

and de�ne

�Q = �Q̂ +� ~Q, �Q� = �Q + �n
p
K, �Q1 = �(L)L

1=2=
p
n

�H = L1=2�v1(�)�� +K
1=2�(L)=

p
n, �h = Rn(

p
K=n+K�� +��).

First, n3�K1=2�Q ! 0 implies n2��Q ! 0. Also note that, by
p
nK�� ! 0 and

p
nL��1 ! 0,

we have �� = (L1=2=
p
n)(1 +L�1=2

p
nL��1) = O(L1=2=

p
n) and �h = Rn(

p
K=n+

p
L=n).

Therefore, Assumption G.1 implies
p
n�v0(K)�

2
� = O(�

v
0(K)L=

p
n) = o(1). Also

n�L1=2�H = n�L1=2
n
L1=2�v1(�)�� +K

1=2�(L)=
p
n
o

= O(n�L1=2
n
L1=2�v1(�)L

1=2=
p
n+K1=2�(L)=

p
n
o
) = o(1)

n3���v1(�)�� = Op(n
3�K�v1(K)L

1=2=
p
n) = op(1)

by G.1. These results imply n��v1(K)
2�2� = O(n

��v1(K)
2L=n) = o(1) and also

n3��1=2�Q̂ = n3��1=2
n
�v1(�)

2�2� + �
1=2�v1(�)��

o
! 0

n3��1=2� ~Q = n3��1=2
p
f�v1(�)2 + �v0(�)2gK=n � Cn3���v1(�)=

p
n! 0

since n3��1=2�v1(�)
2�2� ! 0 and n3���v1(�)�� ! 0. Also, since

p
n�nn

� ! 0 and n�K=
p
n! 0

imply n2�K�n =
p
n�nn

� � n�K=
p
n ! 0, consequently, n2��1=2�Q� ! 0. Also G.1 assumes

O(n4��1
�
�v0(K)

2K + �(L)2L
	
) = o(1). And L1=2�Q1 ! 0 is also implied by G.1. Also, since

p
n�nn

� = o(1) implies Rn = n�,

�v0(K)L
1=2�v1(K)�h = n

��v0(K)L
1=2�v1(K)(K + L)1=2=

p
n! 0

by G.1, which in turn gives �v0(K)�h ! 0. Then with the results above, we also have

n2�
�
�Q + �

v
0(K)

2K=n
	
! 0. Lastly,

p
n�nn

� ! 0 implies n2��n ! 0 since n�=
p
n! 0, and

hence Rn = n�.
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Proof of Theorem 7.1 : Given the convergence rate proof above, the proof here is a

mild modi�cation of the proof of Theorem 5.1 in NPV (with their trimming function being

an identity function). The components established in the convergence rate proof which are

distinct from NPV, are used here. The rest of the notations are the same as those of NPV.

We prove the theorem under each case of Assumption F(a) and (b). Let �MVE�abbreviate

mean value expansion.

Let X is a vector of variables that includes x and z, and w(X;�) a vector of functions of

X and �. Note that w(�; �) is a vector of transformation functions of regressors and, trivially,
w(X;�) = (x; x��(z)). Recall

V̂� = AQ̂�1�

�
�̂ + ĤQ̂�11 �̂1Q̂

�1
1 Ĥ

0
�
Q̂�1� A

0,

Ĥ� =
X

p̂i

�h
@ĥ� (ŵi)=@w

i0
@w(Xi; �̂i)=@�

�
r0i=n,

and Q̂ = P̂ 0P̂ =n, Q̂� = Q̂+ �nI, Q = E[pip0i], Q̂1 = R
0R=n, �̂� =

P
p̂ip̂

0
i[yi� ĥ� (ŵi)]2=n, and

�̂1 =
P
v̂2i rir

0
i=n, where ri = r

L(zi). Then de�ne

V = AQ�1
�
�+HQ�11 �1Q

�1
1 H

0�Q�1A0,
� = E[pip

0
ivar(yijXi)], H = E

�
pi
�
[@h(wi)=@w]

0 @w(Xi;�i)=@�
	
r0i
�
,

where V does not depend on � . Note that H is a channel through which the �rst stage

estimation error kicks into the variance of the estimator of h(�) in the outcome equation.
We �rst prove

p
nV �1=2(�̂� � �0)!d N(0; 1).

For notational simplicity, let F = V �1=2. Let h = (h(w1); :::; h(wn))
0 and ~h = (h(ŵ1); :::; h(ŵn))

0.

Also let �i = yi � h0(wi) and � = (�1; :::; �n)
0. Let � = (�1; :::;�n)

0, vi = xi � �i, and
U = (v1; :::; vn)

0.

As an overview of the proof, note that we prove that


FAQ�1

 = O(n�), pnF [a(pK0~�)�

a(h0)] = op(1),
p
nFA(P̂ 0P̂+n�nI)�1P̂ 0(~h�P̂#~�) = op(1), FAQ̂�1� P̂ 0(h�~h)=

p
n = FAQ�1�

HR0U=
p
n+ op(1), and FAQ̂�1� P̂

0�=
p
n = FAQ�1P̂ 0�=

p
n+ op(1) below. If they hold, then

we will have, by letting ~� be such that
���pK(�)0~� � h0(�)���

�
= O(K��),

p
nV �1=2

�
�̂� � �0

�
=

p
nF
�
a(ĥ� )� a(h0)

�
=

p
nF
�
a(pK0�̂� )� a(pK0~�) + a(pK0~�)� a(h0)

�
=

p
nFA�̂� �

p
nFA~� + op(1)

=
p
nFA(P̂ 0P̂ + n�nI)

�1P̂ 0(h+ �)�
p
nFA(P̂ 0P̂ + n�nI)

�1P̂ 0~h

+
p
nFA(P̂ 0P̂ + n�nI)

�1P̂ 0(~h� P̂#~�) + op(1)

= FAQ̂�1� P̂
0�=
p
n� FAQ̂�1� P̂ 0(h� ~h)=

p
n+ op(1)

= FAQ�1(P 0�=
p
n+HR0U=

p
n) + op(1). (11.35)
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Then, for any vector � with k�k = 1, let Zin = �0FAQ�1[pi�i+Hriui]=
p
n. Note Zin is i.i.d.

for each n. Also EZin = 0, var(Zin) = 1=n (recall � = E[pip
0
ivar(yijXi)]). Furthermore,

FAQ�1

 = O(n�) and 

FAQ�1H

 � C 

FAQ�1

 = O(n�) by CI�HH 0 p.s.d, so that, for

any " > 0,

nE
�
1 fjZinj > "gZ2in

�
= n"2E

�
1 fjZin="j > 1g (Zin=")2

�
� n"2E

�
(Zin=")

4
�

� n"2

n2"4
k�k4



FAQ�1

4 fkpik2E hkpik2E[�4i jXi]i
+ krik2E

h
krik2E[u4i jzi]

i
g

� CO(n4�)
n
�v0(K)

2E kpik2 + �(L)2E krik2
o
=n

� CO(n4�)
�
�v0(K)

2tr(Q) + �(L)2tr(Q1)
	
=n

� O(n4��1
�
�v0(K)

2K + �(L)2L
	
) = o(1)

by G.1. Then,
p
nF (�̂� � �0)!d N(0; 1) by Lindbergh-Feller theorem and (11.35).

Now, we proceed with detailed proofs. For simplicity as before, the remainder of the

proof will be given for the scalar �(z) case. In the �rst part, we prove under Assumption

F(b) and then F(a). First, suppose Assumption F(b) is satis�ed. By CS, ja(h)j = jA�j �
kAk k�k = kAk

�
Eh(x)2

�1=2 so kAk ! 1. Since �min(Q�1) is bounded away from zero,

CI = �min(Q
�1)I � Q�1. And also since �2(X) = var(yjX) is bounded away from zero by

Assumption E, we have � � CQ. Hence

V � AQ�1�Q�1A0 � CAQ�1QQ�1A0 � CAQ�1A0 � ~C kAk2 , (11.36)

Therefore, it follows that F is bounded.

Now, instead, suppose Assumption F(a) is satis�ed. Then A
1�K

= a(pK) = E[�(xi)p
K(wi)

0].

Let �K = �K(w) = AQ�1pK(w) = E[�(xi)p
K(wi)

0]E[pK(wi)pK(wi)0]�1pK(wi), which is

(transpose of) mean square projection of �(�) on approximating functions (pK(�)). Then,
E k� � �Kk2 � E



� � �0KpK

2 ! 0. Let d(X) = [@h(wi)=@w]
0 @w(Xi;�i)=@�, bKL(z) =

E[d(X)�K(w)r
L(z)0]rL(z) and bL(z) = E[d(X)�(w)rL(z)0]rL(z). Then

E[kbKL(z)� bL(z)k2] � E[d(X)2 k�K(w)� �(w)k2] � CE[k�K(w)� �(w)k2]! 0

as K ! 1. Furthermore by Assumption E, E[kbL(z)� �(z)k2] ! 0 as L ! 1, where �(z)
is a matrix of projections of elements of �(w)d(X) on L which is the set of limit points of
rL(z)0
L. Then (as in (A.10) of NPV), by Assumption E

V = E[�K(w)�K(w)
0�2(X)] + E[bKL(z)var(xjz)bKL(z)0]! �V ,

where �V = E[�(w)�(w)0�2(X)] + E[�(z)var(xjz)�(z)0]. This shows F is bounded.
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Next, by the previous proofs on the convergence rate,


Q̂� �Q


 �



Q̂�Q+ �nI


 � 


Q̂� ~Q




+ 


 ~Q�Q


+ k�nIk
� Op(�Q̂) +Op(� ~Q) +O(�n

p
K) = Op(�Q� )

and, by letting Q1 = I,



Q̂1 � I


 = Op(�(L)L

1=2=
p
n) = Op(�Q1). Furthermore, with

�H =
P
p̂id(Xi)r

0
i=n, similarly to the proofs above



 �H �H


 = Op(�H) = op(1), where

�H =
�
L1=2�1(K) + �0(K)�(L)

2
�
�� +K

1=2�(L)=
p
n as in NPV. Now, by (11.36)


FAQ�1=2


2 = tr(FAQ�1A0F ) � tr(CFV F ) = C.

By Assumption G.1, Rn = n� and hence by (11.34) and Lemma 11.7(a), �max(Q̂�1� ) = Op(n
2�)

and �max(Q�1) = O(n2�), respectively. And then,

FAQ�1

 = 


FAQ�1=2Q�1=2


 � �max(Q�1)1=2 


FAQ�1=2


 � CO(n�).
Note that for any matrix B,




BQ̂�1� 


 � 


BQ̂�1


, since (Q̂�1 � Q̂�1� ) is p.s.d. Hence


FA0Q̂�1� 


 �



FA0Q̂�1


 � 

FAQ�1

+ 


FAQ�1 �Q̂�Q� Q̂�1




� CO(n�) + CO(n�)Op(n
2�)



Q̂�Q




= O(n�) +Op(n
3��Q) = O(n

�) + op(1) = Op(n
�)

by Assumption G.1. Also


FAQ̂�1=2�




2 �



FA0Q̂�1=2


2 � 


FAQ�1=2


2 + tr(FAQ�1 �Q̂�Q� Q̂�1A0F )

� C +


FA0Q�1




Q̂�Q





FA0Q̂�1




� O(n�)Op(�Q)O(n
�) = op(1).

Firstly, as ~� is de�ned such that
���pK(�)0~� � h0(�)���

�
= O(K��),




pnF ha(pK0~�)� a(h0)i


 =



pnF ha(pK0~� � h0)i


 � pn jF j ���pK(�)0~� � h0(�)���

�

� C
p
nK�� = op(1)

by G.1. Secondly,


FAQ̂�1� P̂ 0(~h� P̂#~�)=pn


 �



FAQ̂�1� P̂ 0=pn


pn sup

W

���pK(w)0~� � h0(w)���
+



n�nFAQ̂�1� �=pn




�



FAQ̂�1=2�




pnO(K��) +
p
n�n




FAQ̂�1� 


 k�k
� op(1)O(

p
nK��) +Op(

p
n�nn
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by G.1. Thirdly, let 
 be such that supZ
���0(z)� rL(z)0
�� = O(L��1), and di = d(Xi). By a

second order MVE of each h(ŵi) around wi

FAQ̂�1� P̂
0(h� ~h)=

p
n = FAQ̂�1�

X
i

p̂idi[�̂i ��i]=
p
n+ �̂

= FAQ̂�1� �HQ̂�11 R
0U=
p
n+ FAQ̂�1� �HQ̂�11 R

0(��R0
)=
p
n

+FAQ̂�1�
X
i

p̂idi[r
0
i
 ��i]=

p
n+ �̂.

But k�̂k � C
p
n



FAQ̂�1=2�




 �v0(K)Pi




�̂i ��i


2 =n = op(1)Op(pn�v0(K)�2�) = op(1). Also,
by di being bounded and n �HQ̂�11 �H 0 being equal to the matrix sum of squares from the

multivariate regression of p̂idi on ri, �HQ̂�11 �H 0 �
P
i p̂ip̂

0
id
2
i =n � CQ̂ � CQ̂� . Therefore,


FAQ̂�1� �HQ̂�11 R

0(��R0
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p
n





�
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p
n



pn sup
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O(pnL��1) = op(1)Op(pnL��1) = op(1)
by G.1. Similarly,
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p̂idi[r
0
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p
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O(pnL��1) = op(1)Op(pnL��1) = op(1).
Next, we consider the term FAQ̂�1� �HQ̂�11 R

0U=
p
n. Note that E kR0U=

p
nk2 = tr(�1) �

Ctr(IL) � L by E[u2jz] bounded, so by MR, kR0U=
p
nk = Op(L1=2). Also, we have


FAQ̂�1� �HQ̂�11




 � Op(1)
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 = op(1).
Therefore
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by G.1. Similarly,
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p
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R0U=pn



= Op(n
�)Op(�H)Op(L
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by G.1. Note that HH 0 is the population matrix mean-square of the regression of pidi on

ri so that HH 0 � C, it follows that E kHR0U=
p
nk2 = tr(H�1H

0) � CK and therefore,
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kHR0U=
p
nk = Op(K1=2). And then,
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Combining the results above and by TR, FAQ̂�1� P̂
0(h� ~h)=

p
n = FAQ�1HR0U=

p
n+ op(1).

Lastly, similar to (11.28) in the convergence rate part,


Q̂�1=2� (P � P̂ )0�=
p
n



 = Op(n��v1(K)2�2�) = op(1)

by G.1 (and by (A.6) of NPV), which implies
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Also, by E[�jX] = 0,
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by G.1. Combining all of the previous results and by TR,

p
nF
h
a(ĥ� )� a(h0)

i
= FAQ�1(P 0�=

p
n+HR0U=

p
n) + op(1).

Next, recall V = AQ�1
�
�+HQ�11 �1Q

�1
1 H

0�Q�1A0. Note CI � H�1H 0 is p.s.d (that

is H�1H 0 � CI using Q1 = I) and since var(yjX) is bounded by Assumption E, � � CQ.

Therefore,

V = AQ�1
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2 + C 

AQ�1

2 .
Note that it is reasonable that the �rst stage estimation error is not cancelled out with

Q�1, since the �rst stage regressors does not su¤er multicollinearity. Recall a(pK0�) = A�

so a(pK0A0) = AA0 (A is row vector). And kAk2 �
��a(pK0A0)�� � ��ApK��

r
� �r(K) kAk

so kAk � �r(K). Hence


AQ�1=2

2 � O(n2�) kAk2 = O(n��r(K))

2 by CS. Thus, V =
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O(n��r(K))
2 +O(n2��r(K))

2. Therefore,

�̂� � �0 = Op(V 1=2=
p
n) = Op(n

2��r(K)=
p
n) = Op(n

2(�� 1
4
)�r(K)) � Op(n2(��

1
4
)�vr(K)).

This result for scalar a(h) covers the case of Assumption F(b). In the case of F(a), it follows

from V ! �V that �̂� � �0 = Op(V 1=2=
p
n) = Op(1=

p
n).

Now we can prove
p
nV̂ �1=2� (�̂� � �0)!d N(0; 1)

by showing
���FV̂�F � 1���!p 0. Then, in the case of F(b), V �1V̂� !p 1, so that

p
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�0) =
p
nV �1=2(�̂��0)=(V �1V̂� )1=2 !d N(0; 1). In other case, the conclusion follows similarly

from F ! �V 1=2.

For the rest part of the proof can directly be followed by the relevant part of the proof

of NPV (p.600-601), except that in our case Q 6= I due to weak instrument. Therefore

the following replaces the corresponding part in the proof: For any matrix B, we have

kB�k � C kBQk by � � CQ. Therefore,
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by Assumption G.1. Also note that in our proof, Q� is introduced by penalization but the

treatment is the same as above. Speci�cally, one can apply



BQ̂�1� CQ̂�1� B


 � 


BQ̂�1CQ̂�1B




for any matrix B and C of corresponding orders. Also, recall �r(K) � �vr(K) and �h
and �Q are rede�ned in this paper. That is, by �v0(K)�h, n

2�
�
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v
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, and

�v0(K)L
1=2�v1(K)�h converging to zero, we can prove the following:
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The rest of the proof thus follows. �
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< SUMMARY >

Figures 4-5: PIV versus IV estimators (ĝ� (�) vs. ĝ(�))
Figures 6-7: PIV versus IV estimators (ĝ� (�) vs. ĝ(�)), di¤erent �
Figures 8-9: Distributions of �̂ = a(ĝ)

Table 2: Integrated squared bias, integrated variance and integrated MSE of ĝ� (�) and ĝ(�)
Figure 10: Maimonides�rule

Figures 11-12: Control function versus NPIV estimates of class-size e¤ect

Table 3: Cross-validation criterion

Figure 13: PIV estimates of class-size e¤ect

Figures 14-15: Linear versus nonparametric reduced form for IV estimates of class-size e¤ect

Figure 4: Penalized versus unpenalized estimators (ĝ� (�) vs. ĝ(�)) with a weak instrument,
� = 0:001.

Figure 5: Penalized versus unpenalized estimators (ĝ� (�) vs. ĝ(�)) with a strong instrument,
� = 0:001.
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Figure 6: Penalized versus unpenalized estimators (ĝ� (�) vs. ĝ(�)) with a weak instrument,
� = 0:005.

Figure 7: Penalized versus unpenalized estimators (ĝ� (�) vs. ĝ(�)) with a strong instrument,
� = 0:005.
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Figure 8: Distribution of �̂ when the instrument is �nonparametrically�weak.

Figure 9: Distribution of �̂ when the instrument is �nonparametrically�strong.
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Figure 10: Class size by enrollment count (Angrist and Lavy (1999)).

� = 0.5 �2

4 8 16 32 64 128 256

Bias2 0.0343 0.0463 0.0032 0.0006 0.0002 0.0001 0.0000

IV V ar 830.0765 20.7368 0.3220 0.0971 0.0450 0.0273 0.0188

MSE 830.1108 20.7831 0.3252 0.0977 0.0451 0.0274 0.0188

Bias2IV =Bias
2
LS 0.1399 0.1733 0.0138 0.0025 0.0007 0.0005 0.0000

MSEIV =MSELS 3138.0 75.6541 1.3755 0.3700 0.1923 0.1181 0.0925

Bias2 0.0075 0.0002 0.0002 0.0002 0.0001 0.0001 0.0000

PIV V ar 0.4155 0.2869 0.1567 0.0871 0.0429 0.0267 0.0184

MSE 0.4229 0.2871 0.1570 0.0872 0.0430 0.0268 0.0184

Bias2PIV =Bias
2
LS 0.0306 0.0007 0.0013 0.0007 0.0003 0.0003 0.0000

MSEPIV =MSELS 1.5988 1.0450 0.6641 0.3304 0.1831 0.1153 0.0908

Bias2PIV =Bias
2
IV 0.2185 0.0038 0.0927 0.2667 0.3438 0.5435 0.4745

MSEPIV =MSEIV 0.0005 0.0138 0.4828 0.8929 0.9520 0.9756 0.9824

Table 2: Integrated squared bias, integrated variance, and integrated MSE of the penalized

and unpenalized IV estimators (ĝ� (�) and ĝ(�)).

� CV Value

0.015 37.267

0.05 37.246

0.1 37.286

0.15 37.330

0.2 37.373

Table 3: Cross-validation values for the choice of � .
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Figure 11: NPIV estimates from Horowitz (2011), full sample (n = 2019), 95% con�dence
band

Figure 12: Unpenalized IV estimates with nonparametric �rst-stage equations, full sample
(n = 2019), 95% con�dence band

73



Figure 13: Penalized IV estimates with the discontinuity sample (F = 191:66).

Figure 14: IV estimates with linear vs. nonparametric reduced form (F = 191:66).

Figure 15: IV estimates with linear vs. nonparametric reduced form (F � 691).
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