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This appendix consists of three parts providing the technical details related to the model de-
scription and estimation. In the first part, we discuss determinacy restrictions of the baseline model
in the paper. In the second part, we describe the derivation of equilibrium restrictions in an al-
ternative specification with habit formation, a modified price adjustment cost function, and policy
inertia in the Taylor rule. We also provide estimation results of regime-switching models with this
alternative specification. Finally, we discuss convergence diagnostics of our MCMC output and the
computational details of log-marginal data density in our estimation of the baseline model in the
paper.

1 Determinacy Restrictions

The MSNK model is inherently nonlinear, which complicates the conditions for determinacy. Fol-
lowing Davig and Leeper(2007), we obtain the linear representation of the MSNK model and restrict
our attention to the uniqueness of bounded solutions in the linear representation. For the illustra-
tive purpose, first assume all shocks are i.i.d. and there are only two regimes. Then we can rewrite
expectations as follows:

Etπt+1 = E[πt+1

∣∣st = i,Ω−st ] = pi1E[π1t+1

∣∣Ω−st ] + pi2E[π2t+1

∣∣Ω−st ], (1)
Etyt+1 = E[yt+1

∣∣st = i,Ω−st ] = pi1E[y1t+1

∣∣Ω−st ] + pi2E[y2t+1

∣∣Ω−st ], (2)

where πit = πt(st = i, εt), yit = yt(st = i, εt), and εt =
[
ât ût êt

]′ for i = 1, 2.1 The information
set, Ω−st = st−1, . . ., excludes the current regime, so Ωt = Ω−st ∪ {st}. Distributing probability
mass across the different conditional expectations for inflation, as in (1)− (2), is the same approach
as in Gordon and St-Amour (2000) and Bansal and Zhou(2002).

Next, define the forecast errors

ηπjt+1 = πjt+1 − E[πjt+1

∣∣Ω−st ], (3)

ηxjt+1 = xjt+1 − E[xjt+1

∣∣Ω−st ], (4)

for j = 1, 2. Substituting expectations, (1)− (2), and the policy rule, (??) , into (??)− (??) yields
the stacked system

AYt = BYt−1 +Aηt + Cut, (5)

1Whether shocks are i.i.d. or serially correlated does not matter for determinacy, so is made here for convenience.
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where

Yt =


π1t

π2t

x1t

x2t

 , ηt =


ηπ1t
ηπ2t
ηx1t
ηx2t

 , ut =

 εat
εut
εet

 , (6)

and A, B and C are conforming matrices consisting of private sector parameters, policy parameters
and the transition matrix. The stacked system has constant coefficient matrices, yet captures
the impact potential regime changes in monetary policy have on expectation formation. Further,
standard methods for solving linear rational expectations systems are applicable to (5), such as
Blanchard and Kahn(1980).2

Necessary and sufficient conditions for determinacy, which is the existence of a unique bounded
solution to (5), is that all the generalized eigenvalues of (B,A) lie inside the unit circle. The
determinacy conditions are intuitive. First, the passive monetary regime cannot be too passive,
meaning the response to inflation can be less than one, but still has to be above some minimum
threshold. And second, the passive regime cannot be too persistent, meaning that the expected
duration of the regime must be below a given threshold. The determinacy conditions are joint
restrictions over both monetary regimes, so the parameters governing the active regime affect the
determinacy restrictions over the passive regime. Therefore, the more persistent or active the active
regime is, the more persistent or passive the passive regime can be.

One caveat using the linear representation to check the determinacy conditions is that there
might be non-MSV solutions of the MSNK model even if determinacy restrictions are satisfied in
the linear representation.3 However, there are no known (necessary and sufficient) determinacy
conditions for the class of bounded solutions of MSNK models. Farmer et al. (2009) and Cho
(2009) suggest to consider mean-square stable solutions rather than bounded solutions and provide
determinacy conditions within the class of mean-square stable solutions of a quasi-linear version
of MSNK models.4 While these advances are certainly interesting, restricting our attention to the
class of bounded solutions is of interest not only because of the uniqueness of equilibrium, but also
because we can justify the log-linear approximation of the original fully nonlinear model only in
the local neighborhood of the steady state by the implicit function theorem.5 For this reason, we
believe that the linear representation is useful for the analysis of MSNK models given our current
knowledge.

2 Alternative Specification

2.1 Equilibrium Conditions

In the alternative model, the represent household chooses consumption (Ct) and labor supply (Nt)
to maximize the following lifetime utility

2Mccallum (2004) proves the equivalence between MSV solutions and determinate (i.e. unique and non-explosive)
solutions from solving a system of linear expectations difference equations for purely forward looking models. Davig
and Leeper (2007) show the equivalence between the MSV solution and determinate solution of the stacked system
in regime-switching rational expectation models.

3See Farmer et al. (2010a).
4The terminology is from Davig and Leeper (2010). The quasi-linear version is based on the log-linear approxima-

tion of the original MSNK model but keep nonlinearities due to regime-switching parts unlike the linear representation.
5See Woodford (2003) for this point.
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Et

∞∑
t=0

βt


(
Ct−beλCt−1

At

)1−τ

1− τ
−Ht

 ,

where Ct−1 denotes the lagged aggregate consumption and b is a parameter determining the
degree of habit formation, and λ is the average growth rate of the log productivity (lnAt).

The marginal utility of consumption at t is given by µt = (Ct−be
λCt−1

At
)−τ 1

At
. The household’s

maximization implies that the short-term nominal interest rate should satisfy the consumption
Euler equation.

Et(β
µt+1

µt

Rt
Πt+1

) = 1. (7)

Log-linearizing this first-order condition, we obtain the following equation

ŷt =
Et(ŷt+1)

1 + b
+

b

1 + b
ŷt−1 +

(1− b+ τb)ρa − τb
τ(1 + b)

ât −
(1− b)
τ(1 + b)

(R̂t − Et(π̂t+1)). (8)

We modify the specification for price adjustment costs of intermediate goods-producing firms
to allow the internal dynamics to generate inflation persistence. Now, the cost of adjusting prices
depends on not the steady state inflation rate but a weighted average of the steady state inflation
rate and the previous period inflation rate

acjt =
ϕ

2
(
pjt
pjt−1

− (Πt−1)γ(st−1)(Π)1−γ(st−1))2Yt. (9)

While this specification looks somewhat arbitrary, it induces a similar log-linearized Phillips
curve from a Calvo (1983) type model with dynamic indexation. Since the indexation parameter
may not be invariant to different monetary policy regimes, we allow the parameter to depend on
regimes.

Each intermediate-goods production firm maximizes the expected present value of profits

Et(
∞∑
s=0

βs
µt+s
µt

[(
pjt+s
Pt+s

)1−θt+s−ψt+s(
pjt+s
Pt+s

)−θt+s−ϕ
2

(
pjt+s
pjt+s−1

−(Πt+s−1)γ(st+s−1)(Π)1−γ(st+s−1))2]Yt+s).

where ψt+s denotes the real marginal cost (Wt/Pt)/At.

We can define the price markup in the absence of price adjustment costs by ft = θt
θt−1 . The

steady state markup is f = θ
θ−1 .

The log-linearization of the first-order condition of each intermediate goods-production firm
around the steady state results in the following Phillips curve

π̂t − γt(st−1)π̂t−1 = β(Et(π̂t+1)− γt+1(st)π̂t) + κ(
ŷt − bŷt−1 + bât

1− b
+
f̂t
τ

). (10)

where κ = τ
ϕ(Π)2(f−1)

. In the estimation, we use a rescaled markup shock ût = f̂t
τ .
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We incorporate the policy rule inertia into the Taylor rule. We assume that the monetary
authority sets the short-term nominal rate using the following rule

Rt = (rΠ(
Πt

Π
)αp(st)(

Yt
Aty?

)αy(st))1−ρR(st)(Rt−1)ρR(st)(et). (11)

where r is the steady state real interest rate given by eλ

β . Conditioning on a give regime, the
monetary policy rule in terms of the log-deviation from the steady state is linear and given by

R̂t = ρR(st)R̂t−1 + (1− ρR(st))(αp(st)π̂t + αy(st)ŷt) + êt. (12)

Once we shut down habit formation (b = 0) and policy rule inertia (ρR(st) = 0) with γ(st−1) = 0
while allowing the persistence of a monetary policy shock, we are back in the baseline model.

The extended model contains the lagged endogenous variables as state variables. Since finding
MSV solutions by the expanded linear system in Davig and Leeper (2007) does not work in this
case, we use a numerical method suggested by Farmer, Waggoner, and Zha (2010b) to find a MSV
solution of the model.

2.2 Estimation Results of Regime Switching Models under the Alternative
Specification

We applied MCMC methods to generate posterior output for regime-switching models under the
alternative specification. However, after several draws, MCMC chains tend to reject every proposed
draw. We implemented tailored randomized block MCMC methods in Chib and Ramamurthy
(2010) in addition to the procedure that we used in the estimation of the baseline model in the
paper. We still faced difficulties in generating accepted draws from a tailored proposal density.
However, finding out posterior modes by using the following blockwise optimization methods worked
fine for all the models.6

• :Step 1 Divide a vector of parameters θ into several blocks using random permutation of
indexes of parameters θ1, · · · , θB.

• :Step 2 Maximize the posterior kernel with respect to θi , (i = 1, · · · , B) while parameters of
other blocks fixed by simulated annealing. Denote the solution of this maximization problem
by θ?i .

• :Step 3 Perturb θi around θ?i and use the simplex search method to see if further improvement
of the posterior kernel is possible.

• :Step 4 Repeat previous steps while parameter estimates converge.

After intensive search, we found reasonable estimates of posterior modes, which are robust to
many trials of perturbed search. Table 1 provides information on parameter estimates. Interest-
ingly, under the alternative specification, the posterior model of the model with only volatility
shifts has the highest log-likelihood value as shown in Table 2. However, this value is still lower
than the log-likelihood at the posterior mode of the baseline four regime model. Hence, at least in

6The methods apply tailored randomized blocking in Chib and Ramamurthy (2010) for finding out point estimates.
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terms of empirical fit, richer structures in the alternative specification does not necessarily provide
improvements over the baseline specification.

3 Convergence Diagnostics and Marginal Likelihood Computation

We start a MCMC chain initialized at the mode of the posterior kernel found by a numerical
optimization routine. We compute the mean (m) and the covariance (c) matrix based on 1 million
draws from the MCMC chain. Then we run three different MCMC chains initialized at widely
dispersed points around the mean (m) by using the covariance matrix (c) as the scaling matrix
in the proposal density of the Chain. We burn-in the first 100,000 draws and use the remaining
1,400,000 draws for the posterior inference in the four-regime model.7 To check the convergence
of MCMC output, we compute potential scale reduction factors (PSRFs) suggested by Brooks and
Gelman (1998). Table 3 shows PSRFs which compare between and within variances of multiple
chains. If these numbers are below 1.1 or 1.2, between chain variances are not much different from
within chain variances, indicating that MCMC output converges to the stationary distribution.
Except for the persistence of markup shock in the model with shifts in volatility only, PSRF
statistics are below 1.2 for all the other parameters.

Marginal likelihood reported in the paper can be computed by the Monte Carlo integration of
a probability density function of ϑ as follows.

p(ZT )−1 =
∫

h(ϑ)
p(ZT |ϑ)p(ϑ)

p(ϑ|ZT )dϑ −→ p̂(ZT )−1 =
1
N

∑
i=1

h(ϑi)
p(ZT |ϑi)p(ϑi)

(13)

where ϑi is a posterior draw. Geweke (1999) proposes an implementation with h(·) a Gaussian
density around the posterior mean. Sims et al. (2008) show that the Gaussian approximation for the
proposal density to compute the marginal likelihood can be misleading and numerically unstable
due to the non-Gaussian posterior distribution of parameters in models with regime-switching.
They suggest the following elliptical distribution as an alternative.

g(ϑ) =
Γ(k/2)

(2π)k/2|det(S)|
f(r)
rk−1

, r =
√

(ϑ− ϑ)′Ω−1(ϑ− ϑ) , S = c
√

Ω

where f(r) is any one-dimensional density defined on the positive reals which we can estimated
based on posterior draws. Ω is the sample covariance matrix computed by centering out posterior
draws from the posterior mode. And c is a scaling parameter. Then the weighting function can be
constructed as a truncated g(·) where the area with a very low posterior probability is truncated.

h(ϑ) =
ΞΘL

qL
g(ϑ) , ΘL = {ϑ : p(ZT |ϑ)p(ϑ) > L}

where ΞΘL is an indicator function which is 1 if ϑ belong to ΘL and 0 otherwise. While [?] provide
an example where this methods is more robust than Geweke (1999), it does not work well for our
purpose. Particularly, g(·) turns out to be very sensitive to the choice of a scaling parameter of
Ω.8 In contrast, Geweke (1999)’s method provides more reliable estimates of marginal likelihood

7We burn-in the first 100,000 draws and use the remaining 1,900,000 draws in the model with only volatility shifts
while we burn-in 500,000 draws use the remaining 500,000 draws in the model with only policy shifts.

8Sims et al. (2008) acknowledge that the choice of the scaling parameter is importatnt in the implementation of
their method.

5



in our cases. And the marginal likelihood computed by Sims et al. (2008)’s method also indicates
the the best fitting model is the four regime model with a constant inflation target as implied by
the marginal likelihood computed by Geweke (1999)’s method.
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Table 1: Posterior Modes under the Alternative Specification

Parameters Prior 90% Interval Posterior Mode
P1 P2 P3

τ [0.84,2.13] 3.76 4.63 3.999
b [0.07,0.97] 0.08 0.11 0.105
κ [0.18,0.81] 0.21 0.11 0.163
β [0.997,0.999] 0.999 0.999 0.999
γ [0.180, 0.828] 0.029
γ1 [0.001,0.589] 0.007 0.007
γ2 [0.414,0.999] 0.50 0.50
αp [1.075, 1.884] 1.378
αp,1 [1.570,2.404] 2.093 1.992
αp,2 [0.917,1.080] 0.973 0.980
αy [0.027, 0.176] 0.083
αy,1 [0.022,0.172] 0.121 0.088
αy,2 [0.023,0.173] 0.083 0.088
ρa [0.001,0.593] 0.50 0.373 0.428
ρu [0.413,0.999] 0.947 0.933 0.910
ρR [0.179,0.839] 0.849
ρR,1 [0.001,0.588] 0.806 0.861
ρR,2 [0.408,0.998] 0.804 0.773
σa [0.0002,0.0008] 0.0075
σa,1 [0.0033,0.0119] 0.0139 0.0134
σa,2 [0.0011,0.0040] 0.0069 0.0067
σu [0.0016,0.0059] 0.0056
σu,1 [0.0021,0.0080] 0.0079 0.0081
σu,2 [0.0010,0.0039] 0.0041 0.005
σe [0.0016,0.0060] 0.0023
σe,1 [0.0022,0.0080] 0.0034 0.0039
σe,2 [0.0010,0.0040] 0.0011 0.0012

lnA0 [9.387,9.711] 9.525 9.527 9.529
y? [-0.0839,-0.0510] -0.0672 -0.0673 -0.0695
π? [0.007, 0.0102] 0.0075 0.0083 0.0072
λ [0.0034, 0.0067] 0.0043 0.0045 0.0046
p11 [0.82,0.98] 0.993 0.99
p22 [0.81,0.98] 0.954 0.92
q11 [0.82,0.98] 0.91 0.87
q22 [0.82,0.98] 0.96 0.96

Notes: P1 allows switching only in monetary policy coefficients while P2 allows switching coefficients only
in variance parameters of shocks. P3 allows switching for both policy coefficients and variances.

Table 2: Log Likelihood at the Posterior Mode of Each Model

P1 P2 P3
Baseline Specification 2,743.3 2,770.8 2,785.4

Alternative Specification 2,702.3 2,784.6 2,779.8
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Table 3: Potential Scale Reduction Factors for MCMC Output

Parameter P1 P 2 P3
α 1.026
α1 1.002 1.017
α2 1.004 1.009
γ 1.008
γ1 1.001 1.001
γ2 1.004 1.003
κ 1.000 1.002 1.012
β 1.00 1.010 1.000
τ 1.002 1.010 1.048
λ 1.000 1.041 1.005
Π 1.003 1.092 1.002
ρa 1.000 1.001 1.002
ρu 1.001 1.270 1.006
ρi 1.000 1.004 1.025
σa 1.001
σa,1 1.002 1.004
σa,2 1.004 1.001
σu 1.005
σu,1 1.017 1.006
σu,2 1.023 1.002
σe 1.001
σe,1 1.002 1.001
σe,2 1.004 1.011

lnA0 1.005 1.045 1.000
y∗ 1.008 1.099 1.000
p11 1.005 1.001
p22 1.001 1.001
q11 1.001 1.001
q22 1.002 1.000

Notes: P1 allows switching only in monetary policy coefficients while P2 allows switching coefficients
only in variance parameters of shocks. P3 allows switching for both policy coefficients and variances.

8


