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1 Introduction

2 Model economy

The purpose of the model economy is to parsimoniously summarize and quantitatively

assess the effects of some of the features of national mortgage markets on decisions to invest

in residential and nonresidential capital over the business cycle. We take the market/home

production model of Gomme, Kydland and Rupert (2001) as a benchmark and augment it

to include an approximation of mortgage contracts and a stochastic process for mortgage

and inflation rates.

Before getting into details, it is worth pointing out three aspects of the model. First,

mortgage and inflation rates are exogenous—they follow a joint VAR(n) process with

TFP. The model is thus essentially a partial equilibrium model, even though there is a

government budget constraint ensuring that the aggregate resource constraint is satisfied.

Modeling mortgage and inflation rates as a joint exogenous stochastic process with TFP

is motivated by practical considerations: Given our question, it is crucial to reproduce

the lead-lag relationship between output (or TFP) and mortgage and inflation rates.

Unfortunately, existing literature does not provide a mechanism that would generate the

observed lead-lag patterns endogenously.1

Second, we do not model the underlying frictions that give rise to mortgages (and to

their different types). In the model mortgages are imposed on households by requiring

that a fraction of residential investment is financed by debt. Thus, as with cash-in-advance

models of money, we use the model to answer a question without explicitly modeling the

frictions leading to the very existence of the key asset. The reason for this modeling choice

1The difficulty of existing models to generate realistic dynamics of interest rates over the business
cycle has been highlighted by, among others, Canzoneri, Cumby and Diba (2007) and Atkeson and
Kehoe (2008). ? shows that reproducing the observed lead-lag patterns of interest and inflation rates
in models that endogenize these variables through Taylor-type monetary policy rules requires a time-
varying ‘wedge’ in an Euler equation for bonds that cyclically co-moves with TFP in a particular way.
In contrast, standard models account well for the cyclical behavior of the real return on nonresidential
capital (Gomme, Ravikumar and Rupert, 2011).
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is related to the previous one: endogenizing mortgages through household heterogeneity

and borrowing and lending would also endogenize the mortgage rate (to ensure that

the market for loanable funds clears). This would, however, lead to the aforementioned

problem of generating realistic dynamics of the mortgage rate.

Third, we consider one mortgage market structure at a time. In particular, agents are

faced with either FRM (in the case of Belgium, Canada, France, and the United States)

or ARM (in the case of Australia and the United Kingdom).

We think of the following exercise as a useful first step towards a more complete

analysis of the interaction among mortgage finance, short- and long-term interest rates,

and the business cycle. It is worthwhile to explore how well we can account for the cross-

country differences in the dynamics of investment data when mortgages and mortgage

rates are exogenous, before attempting to endogenize them in a data-consistent way.

2.1 Preferences and technology

There is an infinitely lived representative household and a perfectly competitive represen-

tative firm, which operates an aggregate production function. The household has prefer-

ences over consumption of a market good produced by the firm cMt, a good produced at

home cHt, and leisure. Leisure is given as 1− hMt − hHt, where hMt is hours supplied to

the firm and hHt is hours spent in ‘home production’. Preferences are summarized by the

utility function

E0

∞∑
t=0

βtu (ct, 1− hMt − hHt) , β ∈ (0, 1), (1)

where u(., .) satisfies all standard assumptions and ct is a composite good, given by a

constant-returns-to-scale aggregator c(cMt, cHt).

As in GKR, home hours are combined with a stock of home capital kHt to produce

the home good

cHt = AHG(kHt, hHt), (2)
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where the production function G(., .) satisfies all standard assumptions. In contrast to

GKR’s notion of the home good, which includes output of any economic activity carried

out at home, as opposed to in the market, we think of the home good as including only

services derived from the use of owner-occupied dwellings. Home capital is thus equivalent

to residential structures, and we will refer to it as ‘residential capital’. In this context, we

think of home hours as time spent on home maintenance and improvements and leisure

enjoyed at home, as opposed to in bars and parks, which is 1− hMt − hHt.

Output of the market good yt is determined by the aggregate production function

yt = AMtF (kMt, hMt), (3)

where AMt is market TFP and kMt is market capital, which we will refer to as ‘nonresi-

dential capital’.2 The firm buys market hours and capital services from the household at

a wage rate wt and a capital rental rate rt, respectively. The market good can be used for

consumption, investment in residential capital, xHt, and investment in nonresidential cap-

ital, xMt. As in Huffman and Wynne (1999) the economy’s production possibility frontier

(PPF) is nonlinear: for a given yt, the transformation rate between cMt and xMt on one

hand and xHt on the other is qt = q(xHt), where q(.) is strictly increasing and convex and

q(xH) = 1 (i.e., in steady state q = 1). Under these assumptions the opportunity cost,

in terms of cMt or xMt, of increasing xHt by one unit increases with xHt. The reason for

introducing this nonlinearity into the model is technical: as in portfolio-choice models,

at realistic levels of leverage the household’s decision to invest in one or the other type

of capital becomes very sensitive to small changes in relative rates of return. Making the

frontier nonlinear reduces this volatility. On substantive grounds, Huffman and Wynne

2Notice that in contrast to AMt, which is time varying due to shocks, AH is constant. GKR show
that under enough separability in utility and production functions (described in the next section) shocks
to AH do not affect market variables (i.e., hours supplied to firms, consumption of the market good, and
accumulation of the two types of capital). This is convenient for calibration as, in contrast to market
TFP, home TFP is unobservable.
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(1999) argue that a nonlinear PPF reflects some underlying intratemporal costs of moving

resources across industries (in our case in and out of residential construction).

Accumulation of nonresidential capital is characterized by a J-period time-to-build

(Kydland and Prescott, 1982), where J is an integer greater than one. Specifically, an

investment project started in period t becomes a part of productive capital only in period

t+ J . However, the project requires resources throughout the construction period from t

to t+ J − 1. In particular, it requires φj ∈ [0, 1] units of investment in period t+ J − j,

where j ∈ {1, ..., J} denotes the number of periods from completion and
∑J

j=1 φj = 1.

Let sjt be the number of projects that in period t are j periods from completion. Total

nonresidential investment in period t is thus

xMt =
J∑
j=1

φjsjt (4)

and the projects and nonresidential capital evolve as

sj−1,t+1 = sjt, j = 2, . . . , J, (5)

kM,t+1 = (1− δM)kMt + s1t, (6)

where δM ∈ (0, 1). Residential capital, in contrast, has only one-period time-to-build,

which implies a law of motion

kH,t+1 = (1− δH)kHt + xHt, (7)

where δH ∈ (0, 1). Although in actual economies residential construction may also be

subject to time-to-build, the lead times are generally shorter than for nonresidential con-

struction (see references in Gomme et al., 2001, for empirical evidence). For our purposes,

the difference is more important than the actual lengths.
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2.2 Mortgages

When a household takes a mortgage, it has to make regular mortgage payments through-

out the life of the mortgage. The household’s budget constraint is thus

cMt + xMt + qtxHt = (1− τr)rtkMt + (1− τw)wthMt + δMτrkMt +
lt
pt
− mt

pt
+ τt, (8)

where τr is a tax on income from nonresidential capital, τw is a tax on labor income,

lt is the nominal value of new mortgage loans, mt are nominal mortgage payments on

outstanding debt, pt is the aggregate price level (the price of goods in dollars), and τt is

a lump-sum transfer.3

Mortgage payments are determined as

mt = (Rt + δDt)dt, (9)

where dt is nominal mortgage debt outstanding, Rt is (as explained below) an effective net

nominal interest rate on the outstanding debt, and δDt ∈ (0, 1) is an effective amortization

rate. The variables dt, Rt, and δDt are state variables that evolve recursively as

dt+1 = (1− δDt)dt + lt, (10)

δD,t+1 = [(1− δDt)dt/dt+1] δ
α
Dt + (lt/dt+1)κ, (11)

Rt+1 =

 [(1− δDt)dt/dt+1]Rt + (lt/dt+1)it if FRM,

it if ARM.
(12)

Here, it is the net nominal interest rate (either fixed or adjustable) on new mortgage loans

and α, κ ∈ (0, 1) are parameters controlling the evolution of the amortization rate so that

3Notice that τr and τw are constant. The reason for introducing these taxes into the model is for
calibration purposes, as described below. The lump-sum transfer is time-varying and its role is to ensure
that the economy’s resource constraint holds.
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mortgage payments mt approximate mortgage payments obtained from actual mortgage

calculators. Notice that by combining equations (9) and (10) the evolution of debt can

be alternatively written in a more familiar form as dt+1 = dt +Rtdt −mt + lt. New loans

are determined as

lt = θptqtxHt, (13)

where θ ∈ [0, 1] is a loan-to-value ratio.4

It is worth pausing here to explain these laws of motion and the determination of mt.

Let us consider an individual who has no outstanding mortgage debt and takes a fixed-rate

mortgage l0 > 0 in period t = 0. The individual does not take any new mortgage debt

in later periods (i.e., l1 = l2 = ... = 0). In period t = 1, his outstanding debt is d1 = l0,

the amortization rate at which this debt is reduced is δD1 = κ, and the effective interest

rate is R1 = i0. Period-1 mortgage payments are thus m1 = (R1 + δD1)d1 = (i0 + κ)l0.

In period t = 2 the outstanding debt becomes d2 = (1 − κ)l0, and is reduced at a rate

δD2 = κα > κ. The interest rate R2 is again equal to i0 and so on.

Figure 5 provides a numerical example of the evolution of these variables. Here, l0 =

$250, 000, i0 = 9.28%, α = 0.9946, κ = 0.00162, and one period is equal to one quarter.

For comparison, the figure also plots the same variables obtained from a Yahoo mortgage

calculator for a U.S. 30-year conventional fixed-rate mortgage in the same amount and

with the same interest rate as in our example. The figure shows that the model captures

reasonably well, not only qualitatively but also quantitatively, three key features of the

conventional mortgage. First, the amortization rate is increasing during the lifetime of the

mortgage. Second, mortgage payments based on the calculator are constant; in the model

they are approximately constant for the first 70 or so periods (17.5 years). And third,

4Only residential investment is financed by debt in the model. This is an approximation supported
by the fact that residential investment is substantially more debt-finance dependent than nonresidential
investment. For instance, according to U.S. Flow of Funds for 2000, outstanding residential mortgage debt
was almost five times as large as outstanding nonresidential mortgage debt, and almost two and a half
times as large as the outstanding stock of corporate bonds (the stocks of residential and nonresidential
assets were roughly the same).
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interest payments are front-loaded: they make up most of the quarterly payments at the

beginning of the life of the mortgage and very little towards the end. The values of the

parameters α and κ were chosen so as to match the time path of the quarterly payments

as well as possible.5 The parameters α and κ can be chosen to also approximate mortgage

payments for mortgages with shorter durations than 30 years (e.g., 15 years as in the case

of France). This flexibility makes the model easy to apply across countries.

So far we have only considered the case of an individual taking a mortgage once and

for all. Of course, in response to shocks, the representative household adjusts xt, and thus

lt, every period. In this case, δDt and Rt are the effective amortization and interest rates

on the economy-wide stock of mortgage debt: δD,t+1 is the arithmetic average of δDt, the

effective amortization rate of existing debt, and κ, the initial amortization rate of new

debt; and Rt+1 is the arithmetic average of Rt, the effective interest rate on existing debt,

and it, the market interest rate on new debt. Indeed, in the case of ARM, Rt = it for

all t. The adoption of the effective amortization and interest rates considerably reduces

the state space, which, in the case of a 30-year mortgage, would (in a quarterly model)

contain 120 vintages of mortgage debt. Although with linear approximation methods

such a large state space can be handled, the use of the effective rates yields a more

transparent characterization of equilibrium conditions. Furthermore, it adds only two

(easily calibrated) parameters to the benchmark model.

2.3 Exogenous process and closing the model

As mentioned above, the inflation rate, defined as πt ≡ log pt− log pt−1, and the mortgage

rate it follow a joint VAR(n) process with market TFP

zt+1b(L) = εt+1, εt+1 ∼ N(0,Σ), (14)

5When α = 1, the share of interest payments in mt is constant and mt is declining monotonically
throughout the lifetime of the mortgage.
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where zt = [logAMt, it, πt]
>, b(L) = I − b1L− ...− bnLn (L being the lag operator), and

Σ = BB′. The choice of L is guided by the data and may differ across countries.

The model is closed by a government budget constraint. The government collects taxes

and gives transfers to the household. In addition, it operates an agency that provides

mortgage loans. The government’s consolidated budget constraint is

τt = τrrtkMt + τwwthMt − τrδMkMt +mt/pt − lt/pt, (15)

where the last two terms are the cash inflow of the mortgage-lending agency.

3 Equilibrium Effects of Mortgages

This section characterizes the equilibrium and shows how the equilibrium effects of various

features of mortgage markets can be parsimoniously summarized by a wedge in an Euler

equation for residential capital.

3.1 Equilibrium

In a dynamic competitive equilibrium the following conditions hold: (i) the representative

household solves its utility maximization problem, described below, taking all prices and

the lump-sum transfers as given; (ii) rt and wt are equal to their marginal products and

qt = q(xHt); and (iii) the government budget constraint (15) is satisfied. The aggregate

resource constraint, cMt + xMt + qtxHt = yt, then holds by Walras’ Law.6

6The equilibrium is computed by incorporating the linear-quadratic method for non-linear constraints
(?) into the linear-quadratic method for distorted economies (Kydland, 1989; Hansen and Prescott,
1995). Specifically, after transforming the model so that it is specified in terms of πt and dt/pt−1 (rather
than pt and dt), the home production function (2) and the budget constraint (8) are substituted in the
period utility function u(., .), which is then used to form a Lagrangean that has the nonlinear laws of
motion (10)-(12) as constraints. This Lagrangean then forms the return function to be quadratically
approximated.
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It is convenient to write the household’s problem as a Bellman equation

V (s1t, ..., sJ−1,t, kMt, kHt, dt, δDt, Rt) =

max {u (ct, 1− hMt − hHt) + βEtV (s1,t+1, ..., sJ−1,t+1, kM,t+1, kH,t+1, dt+1, δD,t+1, Rt+1)} .

Here, after substituting the home production function (2), the laws of motion for capital

(4)-(7), the budget constraint (8), and the laws of motion for mortgage payments (9)-

(13) in the right-hand side of the Bellman equation, the maximization is with respect to

hMt, hHt, xHt, and sJt. There is enough separability in this problem that the variables

affecting real mortgage payments (lt, dt, δDt, Rt, it, and πt) show up only in the first-order

condition for xHt
7

u1tc1t(1− θ)− θβEt
[
Ṽd,t+1 + ζDt(κ− δαDt)VδD,t+1 + ζDt(it −Rt)VR,t+1

]
= βEtVkH,t+1,

(16)

where

ζDt ≡
1−δDt

1+πt
d̃t(

1−δDt

1+πt
d̃t + θxHt

)2 , Ṽd,t+1 ≡ Vd,t+1pt, and d̃t ≡ dt/pt−1.

The last two expressions on the second line are normalizations that impose stationarity in

an environment with nonzero steady-state inflation. For θ = 0, the equilibrium is exactly

the same as in GKR as the terms containing d̃t, δDt, Rt, it, and πt drop out.

If debt was amortized at a constant rate and mortgages had an adjustable interest rate,

the last two terms in the square brackets in equation (16) would be zero. In such a case

the representative household simply equalizes the marginal benefit of additional housing

stock with the marginal cost of financing residential investment—foregone consumption of

the market good in period t, weighted by θ, and the present value of debt (i.e., foregone

7We adopt the convention of using subscripts to denote partial derivatives. Thus, for example, u2t is
the first derivative of the u function with respect to its second argument and VRt is the first derivative
of the V function with respect to Rt.
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consumption of the market good in future periods), weighted by (1 − θ).8 The terms

ζDt(κ− δαDt)VδD,t+1 and ζDt(it−Rt)VR,t+1 appear in the first-order condition because new

(i.e., marginal) debt has different amortization and interest rates (the latter only in the

case of FRM) than old debt.

The Benveniste-Scheinkman conditions for VkH,t and Ṽdt are, respectively,

VkH,t = u1tc2tAHG1t + β(1− δH)EtVkH,t+1

and

Ṽdt = −u1tc1t
(
Rt + δDt
1 + πt

)
+β

1− δDt
1 + πt

Et

[
Ṽd,t+1 + ζxt(δ

α
Dt − κ)VδD,t+1 + ζxt(Rt − it)VR,t+1

]
,

(17)

where

ζxt ≡
θxHt(

1−δDt

1+πt
d̃t + θxHt

)2 .
The Benveniste-Scheinkman conditions for VδD,t and VRt are not crucial for the following

discussion and are therefore relegated to the Appendix. Notice again that if debt was

amortized at a constant rate and mortgages had an adjustable interest rate, equation

(17) would boil down to

Ṽdt = −u1tc1t
(
Rt + δDt
1 + πt

)
+ β

(
1− δDt
1 + πt

)
EtṼd,t+1. (18)

Here, mortgage payments per additional unit of real debt are weighted by the marginal

utility of the market good and the real value of debt depreciates between periods by

(1 − δDt)/(1 + πt). Notice that if the maturity of debt was one period, this condition

would simplify further to familiar Ṽdt = −u1tc1t(1 +Rt)/(1 + πt), where Rt = it−1.

8It is straightforward to show that Vdt < 0.
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3.2 Mortgages as a wedge

It is convenient to summarize the equilibrium effects of mortgages as a wedge τH in the

first-order condition for xHt. Rearranging equation (16) gives

u1tc1t(1 + τHt) = βEtVkH,t+1,

where

τHt = −θ

1 +
β
[
EtṼd,t+1 + ζt(κ− δαDt)EtVδD,t+1 + ζt(it −Rt)EtVR,t+1

]
u1tc1t

 .

Notice that the wedge acts like an ad-valorem tax on residential investment (it can,

however, be both positive and negative, depending on parameter values and exogenous

processes). It depends on (i) the loan-to-value ratio θ, (ii) the amortization period (gov-

erned by α and κ), (iii) whether mortgages have a fixed or adjustable interest rate, and

(iv) the joint dynamics of AMt, it and πt (through EtṼd,t+1, EtVδD,t+1, and EtVR,t+1).

Consider again the simple example of an individual who has no outstanding mortgage

debt and makes a once-and-for-all investment decision in period t = 0. In this case,

ζD0 = 0, as d̃0 = 0, and ζxt = 0 for t = 1, 2, ..., as xHt = 0 in t = 1, 2, .... The wedge thus

simplifies to

τHt = −θ
[
1 + βEtṼd,t+1/(u1tc1t)

]
and Ṽdt is governed by the simplified Benveniste-Scheinkman condition (18). From these

two expressions it is easy to see that the wedge depends on the interaction between real

mortgage payments and the pricing kernel β(u1,t+ic1,t+i)/(u1tc1t).
9

9Notice that the length of the amortization period affects the wedge even in this simplified expression,
as δDt is still governed by equation (11), and thus depends on α and κ. Notice also that if new mortgages

were priced at par using the model’s pricing kernel, βEtṼd,t+1/(u1tc1t) would be equal to −1 and the
wedge would be equal to zero.
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4 Calibration

One period corresponds to one quarter and the functional forms are as follows: the period

utility function is u(., .) = ω log c+ (1−ω) log(1−hM −hH); the consumption aggregator

is c(., .) = cψMc
1−ψ
H ; the home production function is G(., .) = kηHh

1−η
H ; and the market

production function is F (., .) = kλMh
1−λ
M . These choices ensure that shocks to TFP in the

home production function do not affect market variables and can be ignored (Gomme

et al., 2001). AH is thus set identically equal to 1. The function q(.) controlling the

curvature of PPF is exp(σ(xtH − xH)), where xH is steady-state residential investment.

The nature of our experiments is such that the parameters of preferences and technol-

ogy are kept fixed across countries. Calibration of these parameters is based on the United

States, for which most of the required information is available for long enough period (in

most cases 1958-2006; see the Appendix for data availability). The values of these param-

eters are reported in Table 1, panel A. Parameters that vary across countries are those

characterizing mortgage markets (θ, α, and κ), steady-state i and π, and the parameters

of the VAR process. These parameters are calibrated on a country-by-country basis and

the values are summarized in panel B. (the VAR processes are, however, relegated to the

Appendix).

As in Gomme et al. (2001), J = 4 and φj = 0.25 for all j. The share in GDP of

nonresidential capital income, λ, and the labor income tax, τw, can be measured from

the National Income and Product Accounts (NIPA). Based on their average values, λ is

set equal to 0.283 and τw to 0.243 (Gomme et al., 2011). The depreciation rate δM is

given by the average ratio of residential investment to residential capital stock and the

depreciation rate δH by the average ratio of nonresidential structures and equipment &

software to the corresponding stock. This yields δH = 0.0115 and δM = 0.0248, which

are higher than the average depreciation rates from the Bureau of Economic Analysis

(BEA) tables (see Gomme and Rupert, 2007). This is because our model abstracts from
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population and TFP growth. Once the average population and per-capita GDP growth

rates (0.0037 and 0.0044, respectively) are subtracted from the values of δM and δH , the

depreciation rates are comparable to those from BEA.

As noted in the previous section, in order to have a well-defined steady state, the

model needs to be transformed so that it is expressed in terms of an inflation rate rather

than the price level. The steady-state inflation rate is set equal to 4.54% per annum, the

average inflation rate for the period 1971-2006, a period for which the mortgage interest

rate data are available.

In the model, θxH/y is the ratio of new mortgage debt to GDP. In the United States

the average of this ratio, based on the flow of home and multifamily unit mortgages,

is 0.039.10 However, as the model abstracts from consumer durable goods, we subtract

consumer durables from GDP. For GDP modified this way the above ratio is 0.043, which

implies θ equal to 0.78. For comparison, the average loan-to-value ratio based on Federal

Housing Finance Agency data is 0.76 (1963-2006, conventional single family newly built

home mortgage). As mentioned above, α = 0.9946 and κ = 0.00162. These values are

chosen so as to match as well as possible quarterly mortgage payments obtained from a

mortgage calculator for 4 × i = 9.28%, the average (1971-2006) annual interest rate for

a 30-year conventional fixed-rate mortgage (the same practice of calibrating these two

parameters is also used for other countries; more on this below). Given these values, the

law of motion (11) implies a steady-state amortization rate of 0.0144. Thus, as in the

U.S. economy, mortgage debt in the model economy is amortized at a faster rate than

at which the housing stock depreciates. The law of motion for debt (10) then implies

a steady-state debt-to-GDP ratio of 1.68. This is about 14% lower than the average of

the ratio of the stock of home and multifamily unit mortgages to GDP (adjusted for

consumer durables). This discrepancy is largely due to the fact that the model does not

fit exactly the time-profile of the amortization rate in the upper-left panel of Figure 5.

10In the mortgage data, a part of the Flow of Funds data, ‘home’ unit is defined as containing 1-4
residential units, whereas ‘multifamily’ unit is defined as containing 5+ residential units.
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Due to shorter data on mortgage flows, for countries other than the U.S. the calibration

procedure is reversed—the average debt-to-GDP ratio is used to calculate θ.

The discount factor β, the share of consumption in utility ω, the share of market good

in consumption ψ, the share of capital in home production η, and the tax rate on income

from nonresidential capital τr are calibrated jointly. They are chosen to match the average

values of hM , hH , kM/y, kH/y, and the after-tax real rate of return on nonresidential

capital. Given these targets, the values of these parameters are determined by steady-

state versions of first-order conditions for hM , hH , sJ , xH and the model equivalent to the

after-tax return on nonresidential capital, (1 − τr)(r − δM). Gomme and Rupert (2007)

report that on average U.S. households spend 25.5% of their available time working in

the market and 24% in home production. We assume that half of the home production

hours are tied to residential capital in the sense described in the previous section, thus

setting hH = 0.12. The average capital-to-GDP ratios are 4.88 for nonresidential capital,

measured as the sum of structures and equipment & software, and 4.79 for residential

capital (in both cases consumer durables are subtracted from GDP). The average (annual)

after-tax net rate of return on nonresidential capital is 5.16% (Gomme et al., 2011). These

five targets yield β = 0.988, ω = 0.47, ψ = 0.69, η = 0.30, and τr = 0.61. The tax rate is

somewhat higher than what is implied by NIPA (Gomme et al., 2011). This is common

in models with disaggregated investment (Gomme et al., 2001).

The parameterization of the exogenous stochastic process is based on point estimates of

a VAR model estimated on linearly detrended Solow residual and demeaned interest rate

for a conventional 30-year FRM and the inflation rate.11 The lag length is determined

by the multivariate AIC. The point estimates and adjusted R2s for these regressions

11Although the mortgage rate is available from 1971, the process is estimated on the sample 1984.Q1-
2006.Q4, which covers a more stable period. The series for the Solow residual is taken from data accom-
panying Gomme and Rupert (2007). The capital stock used for the construction of the residual is the sum
of structures and equipment & software (current cost deflated by the consumption deflator). As capital
stock data going far enough are less available for other countries, we follow Cooley and Prescott (1995)
and approximate the Solow residual for countries other than the U.S. as logAMt = log yt − (1− λ)hMt,
where the U.S. value of λ = 0.283 is used.
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are provided in the Appendix. The curvature parameter σ of the PPF is then chosen

by matching the ratio of the standard deviations (for HP-filtered data) of residential

investment and GDP, which in the data is 8.4.12 This yields σ = 6.4, which implies a

standard deviation of qt (relative to that of ouptut) equal to 2.69. When qt is measured

as the ratio of residential investment and GDP deflators, this standard deviation in the

data over the VAR sample period is equal to 1.1. This suggests that additional factors

than the rate of transformation (e.g., land availability, downpayment requirements), also

play a role in reducing the responsiveness of residential investment to shocks.

We close this section by noting that the above parameterization implies that in steady

state (under FRM) the wedge τH is equal to −0.465%. Essentially equal to zero. This

is an outcome of the model, not a calibration target. Thus, at least in steady-state, the

equilibrium allocations and prices are approximately the same as in the GKR model.

5 Findings

12This is for single family units, 1984.Q1-2006.Q4.
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Appendix A: Data

Data appendix

Australia. Real volumes: GDP, private GFCF, private GFCF machinery and equip-
ment total, private GFCF nondwelling construction total, private GFCF dwellings total—
chained dollars, SA, 1959.Q3-2006.Q4, Australian Bureau of Statistics, National Accounts ;
Mortgage rate: standard variable housing loans lending rate (banks)—1959.Q3-2006.Q4,
Reserve Bank of Australia; Short rate: 3-month T-bill yield—1960.Q1-2006.Q4, Global
Financial Data. Belgium. Real volumes: GDP at market prices, GFCF total, GFCF
in dwellings, GFCF by enterprises, self-employed workers and non-profit institutions—
chained 2006 euros, SA, 1980.Q1-2006.Q4, BelgoStat Online, National Accounts ; Mort-
gage rate: fixed rate on loans for house purchasing—1980.Q1-2006.Q4, Global Finan-
cial Data; Short rate: 3-month T-bill yield—1980.Q1-2006.Q4, Global Financial Data.
Canada. Real volumes: GDP, residential structures, nonresidential structures, ma-
chinery and equipment, single dwellings, multiple dwellings—chained 2002 dollars, SA,
Statistics Canada, National Accounts, 1961.Q1-2006.Q4, except for single and multiple
dwellings, which are for 1981.Q1-2006.Q4; Mortgage rate: conventional mortgage
lending rate (5-year term)—1961.Q1-2006.Q4, Statistics Canada; Short rate: 3-month
T-bill yield—1961.Q1-2006.Q4, Global Financial Data. France. Real volumes: GDP,
total GFCF, GFCF of non financial enterprises (including uninc. entrep.), GFCF of
households (excluding uninc. entrep.)—chained euros, SA, 1971.Q1-2006.Q4, INSEE,
National Accounts ; Mortgage rate: mortgage lending rate—1978.Q1-2006.Q4, Global
Financial Data; Short rate: money market rate—1971.Q1-2006.Q4, International Fi-
nancial Statistics and Datastream. United Kingdom. Real volumes: GDP at market
prices, GFCF total, GFCF dwellings, GFCF other new buildings and structures, GFCF
transport equipment and other machinery and equipment—chained 2002 pounds, SA,
1965.Q1-2006.Q4, Office for National Statistics, United Kingdom Economic Accounts ;
Mortgage rate: sterling standard variable mortgage rate to households—1965.Q1-
2006.Q4, Bank of England ; Short rate: 3-month T-bill yield—1965.Q1-2006.Q4, Office
for National Statistics. United States. Real volumes: GDP, private fixed invest-
ment, private residential fixed investment—chained 2000 dollars, SA, 1958.Q1-2006.Q4,
FRED ; private fixed investment single family, private fixed investment multifamily, pri-
vate fixed investment equipment and software, private fixed investment structures, motor
vehicles and parts, furniture and household equipment, other durable goods, nondurable
goods—chained 2000 dollars, SA, 1958.Q1-2006.Q4, Bureau of Economic Analysis, Na-
tional Income and Product Accounts ;13 Assets: private nonresidential, equipment and
software, structures, residential, consumer durable goods—current cost, year-end esti-
mates, 1958-2006, Bureau of Economic Analysis, Fixed Assets Tables, Table 1.1 ; Mort-
gages: stocks outstanding—Federal Reserve Board, Z1 Release, Table L.217, flows—SA,
Federal Reserve Board, Z1 Release, Table F.217 ; loan to value ratio, share of adjustable

13Corresponding nominal values used to calculate various ratios are from Bureau of Economic Analysis,
National Income and Product Accounts, Tables 1.1.5 and 2.3.5.
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rate mortgages14—1963-2006 (1982-2006), Federal Housing Finance Agency, Monthly In-
terest Rate Survey, Table 10 ; Lending rates: 30-year conventional mortgage rate—
1971.Q1-2006.Q4, FRED ; Finance rate on consumer installment loans at commercial
banks - new autos (48-month loan), new car average finance rate at auto finance compa-
nies, weighted average maturity of new car loans at auto finance companies, finance rate
on personal loans at commercial banks—1972.Q1-2006.Q4, Federal Reserve Board, G19
Release; Short rate: 3-month T-bill yield—1958.Q1-2006.Q4, St. Louis FRED.

Appendix B: Further Benveniste-Scheinkman condi-

tions

For completeness, this Appendix provides the Benveniste-Scheinkman conditions for δDt
and Rt, respectively,

VδD,t = −u1tc1t

(
d̃t

1 + πt

)
+
θxHt(κ− δαDt) + α(1− δDt)δα−1Dt

(
1−δDt

1+πt
d̃t + θxHt

)
(

1−δDt

1+πt
d̃t + θxHt

)2
(

d̃t
1 + πt

)
βEtVδD,t+1

−

(
d̃t

1 + πt

)
βEtṼd,t+1 +

(
d̃t

1 + πt

)
θxHt(it −Rt)(

1−δDt

1+πt
d̃t + θxHt

)2βEtVR,t+1

and

VRt = −u1tc1t

(
d̃t

1 + πt

)
+

1−δDt

1+πt
d̃t

1−δDt

1+πt
d̃t + θxHt

βEtVR,t+1.

Appendix C: VAR estimates

[TABLE 4 HERE]

14Both for conventional single family newly built homes mortgages.
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Figure 1: Mortgage: model vs real-world calculator. Solid line=model,
dashed line=mortgage calculator. Here, l0 = $250, 000, 4 × i = 9.28%,
α = 0.9946, and κ = 0.00162.
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Table 1: Calibration

A. Parameters held fixed across countries

Symbol Value Definition

Preferences
β 0.988 Discount factor
ω 0.472 Consumption share in utility
ψ 0.692 Share of market good

in consumption
Home technology
δH 0.0115 Depreciation rate
η 0.305 Capital share in production
Time to build
J 4 Number of project periods
φj 0.25 Fraction of resources used at stage j
Market technology
δM 0.0248 Depreciation rate
λ 0.283 Capital share in production
σ 6.4 PPF curvature parameter
Tax rates
τw 0.243 Tax rate on labor income
τr 0.612 Tax rate on capital income

B. Country-specific parameters

AUS BEL CAN FRA UK US
θ 0.78
α 0.9946
κ 0.00162
i 0.0232
π 0.0113
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Table 2: Cyclical behavior of the model economy—U.S. calibrationa

Rel. Correlations of y in period t with variable υ in period t+ j:
υt+j st.dev.b j = -4 -3 -2 -1 0 1 2 3 4

y 1.01 -0.03 0.19 0.48 0.75 1.00 0.75 0.48 0.19 -0.03
hM 0.56 0.10 0.31 0.57 0.76 0.89 0.68 0.41 0.07 -0.21
cM 0.48 -0.21 -0.09 0.13 0.38 0.70 0.52 0.38 0.29 0.28
xH 8.45 0.19 0.34 0.50 0.55 0.51 0.31 0.11 -0.13 -0.32
xM 4.33 -0.12 0.03 0.25 0.50 0.78 0.70 0.52 0.31 0.12
x 4.42 0.07 0.29 0.56 0.78 0.93 0.71 0.43 0.10 -0.18
i 0.16 -0.22 -0.33 -0.42 -0.41 -0.29 -0.13 0.01 0.20 0.34
π 0.30 -0.24 -0.28 -0.34 -0.36 -0.20 0.14 0.25 0.22 0.25
τH 3.26 -0.21 -0.33 -0.43 -0.43 -0.32 -0.17 -0.02 0.18 0.34
a Calibration is as in Tables (1) and (4). The entries are averages for 200 runs of
the length of 187 periods each. All quantities are percentage deviations from steady
state; the interest and inflation rates, and the wedge, are percentage point deviations
from steady state. Before computing the statistics, the artificial series were filtered
with HP filter.
b Standard deviations are measured relative to that of y; the standard deviation of
y is in absolute terms.
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Figure 2: Investment dynamics—model vs data. Solid line=average cross-
correlations in simulated data; dashed lines=95% confidence bands for the
cross-correlations in actual data obtained by bootstrapping.
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Table 3: Inspecting the role of mortgages in investment dynamics

Rel. Correlations of y in period t with variable υ in period t+ j:
υt+j st.dev.a j = -4 -3 -2 -1 0 1 2 3 4

U.S. calibrationb

xH 8.45 0.19 0.34 0.50 0.55 0.51 0.31 0.11 -0.13 -0.32
xM 4.33 -0.12 0.03 0.25 0.50 0.78 0.70 0.52 0.31 0.12
τH 3.26 -0.21 -0.33 -0.43 -0.43 -0.32 -0.17 -0.02 0.18 0.34

No mortgage finance (θ = 0)c

xH 0.78 -0.07 0.06 0.30 0.55 0.84 0.55 0.37 0.28 0.34
xM 5.79 0.09 0.28 0.52 0.76 0.97 0.74 0.46 0.14 -0.14

No mortgage finance, linear PPF (θ = 0, σ = 0)c

xH 14.66 -0.19 -0.08 0.02 0.20 0.54 0.51 0.52 0.48 0.50
xM 6.32 0.36 0.41 0.54 0.59 0.52 0.22 -0.07 -0.29 -0.48

15-year FRM (α = 0.9913, κ = 0.0083)
xH 5.87 0.18 0.33 0.50 0.55 0.52 0.32 0.11 -0.14 -0.33
xM 4.56 -0.04 0.14 0.38 0.64 0.91 0.76 0.54 0.28 0.05
τH 2.25 -0.21 -0.32 -0.41 -0.40 -0.30 -0.16 -0.01 0.20 0.37

30-year ARMd

xH 2.55 0.35 0.28 0.09 -0.13 -0.42 -0.54 -0.61 -0.61 -0.55
xM 7.07 0.03 0.11 0.36 0.63 0.93 0.76 0.52 0.28 0.15
τH 1.11 -0.24 -0.17 0.07 0.34 0.69 0.65 0.65 0.59 0.58
a Standard deviations are measured relative to that of y; the standard deviation of
y is in absolute terms.
b 30-year FRM, calibration as in Tables (1) and (4).
c Here i and π do not distort decisions, but still form a part of the underlying
probability space as the household still faces the stochastic process (4). i and π are
thus still used to forecast AM .
d 3-month U.S. T-bill rate is used to proxy ARM interest rate. A VAR(4) process
for TFP, the T-bill rate, and the inflation rate is estimated and this process replaces
in the model the VAR(3) process for the FRM interest rate.
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Table 4: Vector autoregressions for exogenous variables—point estimates

United States

lag 1 lag 2 lag 3
—————————– —————————– —————————–

AMt 0.933 -0.543 -0.283 0.118 -0.070 0.183 -0.147 0.633 0.117
it 0.023 0.953 0.020 -0.016 -0.134 0.036 0.036 -0.011 0.043
πt 0.021 0.431 0.246 0.111 -0.249 0.164 -0.084 -0.197 0.187

Lower diagonal elements of B: B11 = 0.0049, B21 = 0.0002, B22 = 0.0009, B31 =
−0.0011, B32 = 0.0009, B33 = 0.0026.
Sample 1984.Q1-2006.Q4; AMt is in logs and linearly detrended, annual i and π are
divided by 400 and demeaned; number of lags determined by a multivariate AIC;

goodness of fit (R
2
): eq. 1 = 0.88, eq. 2 = 0.95, eq. 3 = 0.22.
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