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Abstract

I provide a theoretical framework to study optimal insurance properties for players’

general utility forms in a continuous-time environment where an insurer can observe

neither the efforts nor the outcome of an insured firm. The insured may then cause

two problems: the intentional loss and the exaggerated claim. I show theoretically that,

using costly monitoring effectively, the two problems can be differentiated in an optimal

insurance contract. Furthermore, if the insured is not downward-risk averse highly and

if the participation constraint is not too tight, then the monitoring can mitigate the

two problems. This model is tractable for numerical work.
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1 Introduction

As it is well known, insurers are exposed to information problems in most corporate insurance

practices (e.g., MacMinn and Garven [12]). Specifically, the insurer can observe directly neither

the efforts nor the outcome of an insured firm without a cost. The insured may then cause purposely

the loss and/or the exaggerated claim. Call the former the problem of moral hazard and the latter

the problem of ex-post informational asymmetry.

The ex-post informational asymmetry problem distorts the insured’s effort incentives. In stan-

dard moral hazard models, it is assumed that the insurer can observe the insured’s outcome ex post

(e.g., Rogerson [15]). The insurer then faces only the incentive problem of inducing the insured

to make desired efforts. In practice, by contrast, because of the ex-post informational asymmetry,

the insurer needs to provide additionally the insured with the incentive to induce him to tell the

truth ex post. In general, it is difficult to write appropriate insurance contracts to distinguish

the problem of moral hazard and the problem of ex-post informational asymmetry. To identify

and reduce the two information problems, the insurer routinely investigates a claim via a costly

monitoring technology after it is filed (Harrington and Niehaus [9]).

The purpose of this paper is to provide a theoretical framework to study optimal insurance

properties with monitoring under moral hazard and ex-post informational asymmetry by exploring

a continuous-time optimal contracting model with costly monitoring. In this paper, I consider an

environment in which an insurer can observe neither the efforts nor the outcome of an insured firm

but can monitor the outcome only when incurring a monitoring cost. The insurer writes an optimal

contract to maximize her own expected utility, inducing the insured to tell the truth while trying

to reduce the expected monitoring cost. I examine optimal insurance properties, in particular,

dynamic equilibrium interaction between the problem of moral hazard and the problem of ex-post

informational asymmetry.

In relationships to previous literatures, the paper of Cvitanić and Zhang [5] is close to this

paper, in that it studies optimal contracting in an environment in which there exist both hidden

actions and hidden information in a continuous-time principal-agent model. Due to mathematical

tractability, the continuous-time framework is useful for characterizing optimal contract properties

in complex, dynamic environments.

Still, this present paper departs from Cvitanić and Zhang [5] mainly in two respects. First,
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regarding the problem of hidden information, this paper looks at ex-post informational asymmetry

in the sense that the insurer cannot observe the insured’s outcome ex post, whereas their paper

looks at ex-ante adverse selection in the sense that the principal cannot observe the agent’s ex ante

production ability. Second, Cvitanić and Zhang [5] assume only costless reporting as a communi-

cation method, as usual in contract theory.1 Their paper shows that, in general, it is very hard

to distinguish the moral hard problem and the ex-ante adverse selection problem from a dynamic

viewpoint as well as from a static viewpoint, because it is often difficult to compute dynamically

the Lagrangian multipliers associated with the two information problems.2 On the other hand,

as it is mentioned above, in insurance practices, insurance companies routinely verify the reports

of insured firms via costly monitoring after claims are filed. Thus monitoring is another crucial

communication method in insurance contracts. In this paper, I incorporate costly monitoring in

the model in order to study a crucial role to distinguish moral hazard and ex-post informational

asymmetry in optimal insurance contracts.

Main results are as follows. If optimal efforts are attained, the insurer can write the optimal

insurance contract that differentiates the problem of moral hazard and the problem of ex-post

informational asymmetry, by using the costly monitoring effectively. In particular, because of

the monitoring technology, the ex-post informational asymmetry problem is reduced, although

the insured can still enjoy an information advantage only while in good shape. If the insured

is not downward-risk averse highly and if the participation constraint of the insured is not too

tight with respect to the monitoring cost, then a higher level of the monitoring technology (i.e.,

a lower monitoring cost) can mitigate the problem of moral hazard. This model is very tractable

for numerical work. For example, consider the case that the insured has a log utility and the

insurer is risk-neutral. When the monitoring cost is an immediate level, the monitoring action is

undertaken only for poor cash flows, while the contract is deductible for very low outcomes. I.e.,

1In much of the literature on contract theory, communication games with costless reporting have
been studied a lot in finite-horizon (typically, two or three period) discrete-time models. There are a
few exceptions in a literature on insurance fraud (e.g., Dionne, Giuliano and Picard [6], Picard [14]).

2In a static model, in both cases, more comprehensive coverage is associated with high risk
(Chiappori [4]). Accordingly, when observing the agent’s poor outcome in a static way, it is
difficult to identify whether it would be due to their ability or to their laziness. To overcome
this difficulty, much empirical insurance literature has differentiated moral hazard and ex-ante
adverse selection by making use of some different dynamic properties of the incentive structures
between the two information problems in insurance contracts for various exogenous cases (typically,
a reform of regulatory framework), without using dynamic optimal (i.e., endogenous) insurance
properties (e.g., Abbring et al. [1]).
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the optimal contract takes the form of an insurance contract with deductibles. Furthermore, The

insurance premium (the compensation trigger, respectively) is slightly increasing (decreasing) in the

monitoring cost. For very low monitoring costs, the monitoring action is undertaken for all feasible

cash flows, and the allocations are state-dependent. On the other hand, for very high monitoring

costs, the monitoring action is necessarily avoided in equilibrium. The optimal contract is then of a

state-independent debt type for all feasible cash flows. The insured is then given no compensation

for low cash flows.

This paper is organized as follows. Next section defines an environment. Section 3 studies

optimal insurance properties. Section 4 obtains numerical results. Final section concludes.

2 Environment

I consider an optimal contracting problem between two players: an insurer (i.e., insurance company)

and an insured (i.e., firm) on a time interval [0, T ] for a finite time T > 0. There exists a single

consumption good. Ui : R 7→ R is player i’s utility function of his or her own consumption γi ∈ R

at time T (i = 1, 2), where i = 1 denotes the insured and i = 2 denotes the insurer. The utility

function Ui (i = 1, 2) is three times continuously differentiable. U ′i > 0 for each i = 1, 2 and U ′′1 < 0

and U ′′2 ≤ 0. Let a real-valued u denote instantaneous expected return of the insured’s production.

As it will be shown shortly below, the insured can control it – call it the insured’s effort. Also,

GT :=
∫ T
0 g(ut) dt := 1

2

∫ T
0 (ut)

2 dt denotes the insured’s utility cost for controlling his effort u. The

insured is exogenously given a reservation utility at time 0, denoted by a constant r ∈ R. For

convenience, I will use female pronouns for the insurer, and male ones for the insured.

Fix a probability space (Ω,F , P ). Let B be a one-dimensional standard Brownian motion on

the probability space, and FB = {Ft}0≤t≤T be the filtration generated by B up to time T > 0.

The insured produces the process of cash flows (income) X, which is characterized by the following

stochastic differential equation: for a finite constant v > 0, Xt = x + vBt where v stands for

the riskiness of the cash-flow process. The insured’s effort processes u are FB-adapted. For any

FB-adapted real-valued processes u, let

Bu
t := Bt −

∫ t

0
us ds, Mu

t := exp

(∫ t

0
us dBs −

1

2

∫ t

0
u2s ds

)
,

dP u

dP
:= Mu

T .

Assume that u satisfies the conditions required by the Girsanov Theorem (e.g., the Novikov con-
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dition) under P . Then Mu
t is a martingale and P u is a probability measure. Moreover, Bu is a

P u-Brownian motion and

dXt = v dBt = utv dt+ v dBu
t , X0 = x.

The insured controls the effort u. In other words, a higher (lower) effort leads to a higher (lower)

expected return of the cash flows.

Assume that v is observable by the insurer, but X,u are not.3 The insured makes a report of

the trajectory of X at time T without a cost. The report may be a lie. Moreover, a monitoring

technology is available to the insurer at time T if she incurs a utility cost KM . The technology is

deterministic in the sense that, when demanded, it occurs with probability one, and delivers the

true information of the time path of the cash flows to the insurer with perfect accuracy.

The insured enters into a contract with the insurer for insuring against his income risk (typically,

liability risk). XT is shared between the two players at time T according to terms of the contract.

The insurer offers a menu of contract payoffs CT to the insured. At time T , the insurer makes a

report of time path of X, denoted by X̃. The report may be a lie. The insured’s allocation CT takes

the form of CT (X, X̃) as a functional of X, X̃. With small abuse of language, call CT a contract.

3 Optimal insurance design with costly monitoring

3.1 Insured’s problem

Define the admissible sets for the insured’s controls of the efforts and the reports First, with regard

to the efforts u,

Definition 3.1 A0 is the admissible set for the efforts u that satisfy:

(i) u is FB-adapted,

(ii) P
(∫ T

0 (ut)
2 dt <∞

)
= 1,

(iii) u satisfies the conditions required by the Girsanov Theorem,

(iv) E
[
|Mu

T |
4
]
<∞.

3Because of this assumption, I will be able to use several convenient properties of the Brownian
motion (e.g., see Musiela and Rutkowski [13]).
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Second, with regard to the reports,

Definition 3.2 A1 is the admissible set for FB-adapted real-valued processes ũ such that, for any

u ∈ A0, ũ− u ∈ A0 and

dX̃t = −(ũt − ut)v dt+ v dBt

= −(ũt − ut)v dt+ utv dt+ v dBu
t

= v dBũ−u
t = utv dt+ v dBũ

t , X̃0 = X0 = x

The term −(ũ− u) stands for a twisted part of the instantaneous expected return in the reported

cash-flow process. In other words, if u is known, the insured can twist the reported measure from

the true measure P u into P ũ. This is why there exists dynamic interaction between the problems

of moral hazard and ex-post informational asymmetry.

Define mathematical regularities for the contracts CT :

Definition 3.3 Define the admissible set, denoted by A′2, of the contracts CT that satisfy:

(i) CT (X, X̃) is FBT -measurable,

(ii) E
[
|U1(CT )|4 + e4U1(CT )

]
<∞,

(iii) For u ∈ A0, Eu
[
eU1(CT ) |U2(XT − CT )|

]
<∞

where Eu denotes the expectation operator under P u.

Note that I will later restrict the contract space A′2 to a further particular set, as usual in financial

contract theory.

Given the admissible sets, the insured’s problem is formulated as: for any CT that satisfies

Definition 3.3 (i),(ii),

V1 := sup
ũ∈A1

V (ũ) := sup
ũ∈A1

sup
u∈A0

Eu
[
U1

(
CT (X, X̃)

)
−GT

]
.

Now, I characterize the insured’s optimal effort û and V (ũ).

Proposition 3.1 For any CT that satisfies Definition 3.3 (i),(ii), and for any ũ ∈ A1, the optimal

effort û is obtained by solving the backward stochastic differential equation (henceforth, BSDE):

Ỹt = eU1(CT ) −
∫ T

t
ûsỸs dBs (3.1)
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and is in A0. Moreover, the insured’s expected utility before controlling ũ, namely V (ũ), is given by

V (ũ) = logE
[
eU1(CT )

]
. (3.2)

Proof: See appendix.

As a direct result from Proposition 3.1, I can check whether the contract CT induces the insured

to make the optimal efforts û. A contract CT is said to be implementable for the associated optimal

effort û (with ũ ∈ A1 given) if, with ũ ∈ A1 given, there exists a one-to-one function J(û; ũ) = CT .

Corollary 3.1 Any CT that satisfies Definition 3.3 (i),(ii) is implementable for the associated

optimal effort û ∈ A0, with ũ ∈ A1 given, such that

M û
T = e−V (ũ)eU1(CT (X,X̃)) (3.3)

Call Eq.(3.3) the implementability condition.

Proof: See appendix.

This corollary means that the choice of the probability measure associated with the optimal action û

has an explicit functional relationship with the insured’s allocation CT .

3.2 Insurer’s problem: optimal insurance design

Next, I move on to the insurer’s problem. First, as usual in contract theory, I will impose incentive

compatibility, participation constraint, and implementability on the contract space. Next, I will

solve an optimal insurance design problem. Finally, I will characterize the optimal insurance

contracts.

3.2.1 Incentive compatibility, participation constraint and implementability

As usual in financial contract theory, I restrict the above-defined contract space A′2 to a further

particular set, denoted by A2, in the following two respects. First, I impose the incentive compat-

ibility condition, i.e., the contracts are restricted to the ones that induce the insured to tell the

truth. Following standard discussions of costly monitoring, I try debt-type contracts to be incentive

compatible. Specifically, I divide the space of the reported X̃ into two strategically predetermined

regions: the region that the monitoring action is triggered and its complement. On the one hand,
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in the region where the monitoring action is not triggered (call this the non-monitoring region), the

insurer’s share XT −CT should be deterministic, independent of the report. This is because, other-

wise, while monitoring does not take place, the insured would have an incentive to tell a lie leading

to the minimum payment. Let F denote the insurer’s deterministic share in the no-monitoring

state. When the cash-flow level is high enough, the insured exploits an informational advantage by

enjoying the residual cash flow that exceeds the deterministic share F . As usual in contract theory,

I assume that, when the insured is indifferent between two actions, he will choose the one that is

better to the insurer.

On the other hand, in the region where the monitoring action is triggered (call this the mon-

itoring region), the insurer should monitor the insured’s cash flow. If the truth is verified, she

should provide the insured with some compensation to insure against the low income. Otherwise,

the insured should be penalized with a very large penalty (such as a legal penalty, a reputation loss,

etc.). For convenience, assume that, when the monitoring proves false reporting, the insured’s allo-

cation CT is −∞. This means a penalty for the false reporting, which leads to out-of-equilibrium.

Let CM (X) denote the time-T share (or, compensation) that the insured receives in case that

the monitoring action verifies the truth. I impose three assumptions on the set of CM (X). First,

CM (X) is assumed to be continuous The continuity could be justified if the contract needs to be

renegotiation-proof. Second, CM (X) is assumed to be non-decreasing in X, in that, for any cash

flows X,X ′ such that X ≤ X ′ (i.e., Xt ≤ X ′t ∀t), CM (X) ≤ CM (X ′). The no-decreasing structure

means a co-payment contractual relationship, which does not look quite restrictive in practice.

Third, I assume that CM (X) satisfies −U ′′1
U ′1
≤ U ′1. This means that the insured is not quite risk-

averse. If he is too risk-averse, the necessary, large compensation could negate the contracting

opportunity. These assumption will be used below for obtaining incentive compatibility and a

necessary and sufficient condition for optimality of CM .

Furthermore, due to the standard characteristics of the utility functions, there exists a con-

stant b, if feasible, such that, when X̃T is lower than b, a monitoring action is triggered, and the

compensation CM is paid. Call b the compensation trigger. In other words, if b is feasible, the in-

surer verifies the outcome only when the reported outcome is low (i.e., X̃T < b). The compensation

works as a put option. The infeasible b is categorized into the following three cases:

(1) b = −∞ if only the non-monitoring region exists (i.e., the monitoring region does not exist).
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(2) b = +∞ if only the monitoring region exists (i.e., the non-monitoring region does not exist).

When XT < b, the insured could have an incentive to tell a lie if he is better off behaving as if he

would be in the no-monitoring state. It would not be incentive compatible. Also, when XT ≥ b,

the insured should not request the monitoring action. Therefore, the compensation CM should be

less than XT − F . Note that, as I will discuss below, b − F may be negative, depending on the

players’ utility forms. Thus the incentive compatibility condition is written as:

CM (X)− (XT − F )
 (XT − b) ≤ 0 (3.4)

Note that, in standard costly monitoring models (e.g., Gale and Hellwig (1985)), due to the assump-

tion of risk neutrality, minimizing the probability of undertaking a monitoring action is equivalent

to maximizing the principal’s expected cash flows while providing the agent with no lower than his

reservation utility. To be incentive compatible, everything should be confiscated from the agent

when being monitored in those models. In contrast, in this present model, since the utility functions

are non-linear, the insured obtains some positive compensation in optimal risk-sharing allocations

when the monitoring action is made. The insured receives the compensation when XT is larger

than F . In other words, the monitoring action can be triggered when the insured is liquid.

In short, the incentive-compatible contract is characterized by a triplet {F, b, CM (X)}:

CT (X, X̃) =


XT − F = (XT − X̃T ) + (X̃T − F ) if X̃T ≥ b,

CM (X) if X̃T < b and if X = X̃,

−∞ if X̃T < b and if X 6= X̃

subject to Condition (3.4). In other words, F stands for an insurance premium.4 When XT <

b, CM (X) − (XT − F ) is the transfer to the insured who possesses XT − F . By the incentive

compatibility condition, ũ = û, i.e., the insured reports optimally the optimal effort.

Second, I look at the implementability condition and the participation constraint. As usual

in hidden action problems, the principal gives the smallest possible utility to the agent, i.e., the

participation condition of the insured holds binding: V1 = r. By the incentive compatibility

4For example, I can consider the case that the insured could not commit to the contract at
time T , even although that case is out of the scope of this paper. The insurer could then force the
insured to pay F at time 0 in order to avoid failure to collect F at time T .
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condition and Eq.(3.3) in Corollary 3.1,

M û
T = e−reU1(CT ). (3.5)

With the two constraints, define the admissible set A2 of the contracts CT , which is characterized

by {F, b, CM} as:

Definition 3.4 The admissible set A2 of the contracts CT is the subset of A′2 consisting of the

contracts satisfying

(i) CM is continuous and non-decreasing in X, and satisfies −U ′′1
U ′1
≤ U ′1.

(ii) CT satisfies Conditions (3.4),(3.5).

Note that, for some XT , the contract may be infeasible. This case corresponds to a policy limit or

a deductible in practice. Note also that I do not impose the assumption of positive consumption

for either player. Negative consumption may take place in equilibrium, depending on the utility

forms.

3.2.2 Optimal insurance design

Now, I formulate the insurer’s optimization problem:

sup
CT∈A2

Eû(CT )
[
U2(X̃T − CT (X, X̃))−KM1M

]

where 1M is an indicator function such that 1M = 1 when a monitoring action is undertaken

(otherwise, 0). By Definition 3.3 (iii), the integrability is ensured. Define the Lagrangian multipliers

associated with Conditions (3.4) and (3.5) as µ and λ, respectively. Due to V1 = r, λ > 0. The

constrained optimization problem is rewritten into:

sup
{F,b,CM}

 e−rE
[
eU1(CT )

(U2(X̃T − CT (X, X̃))−KM1M

)
+ λ

]
+µ
[CM − (XT − F )

 (b−XT )
]

 . (3.6)

From this equation, the incentive-compatible compensation CM should depend only on XT , not on

the trajectory X, i.e.,

CM (X) = CM (XT ).
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With regard to CM , a necessary condition for optimality is:

eU1(CM )U ′1(CM )

{
(λ−KM )−

(
U ′2(XT − CM )

U ′1(CM )
− U2(XT − CM )

)}
+ erµ (b−XT ) = 0. (3.7)

On the assumption that CM (XT ) is continuously non-decreasing in XT , by the incentive compati-

bility condition (3.4), if b is feasible,

CM (b) = b− F. (3.8)

Accordingly, when XT ≥ b, the incentive compatibility condition is necessarily slack. Therefore, I

can focus attention on the case of XT < b in the second term on the left-hand side of Eq.(3.7). For

notational convenience, define

D(y) := eU1(y)
U2(XT − y)−KM + λ

+ erµ
y − (XT − F )

 (b−XT ) ,

H(y) :=
U ′2(XT − y)

U ′1(y)
− U2(XT − y).

The necessary condition (3.7) for optimality is then rewritten as:

D′(y) = eU1(y)U ′1(y)
(λ−KM )−H(y)

+ erµ (b−XT ) = 0.

Furthermore,

D′′(y) = eU1(y)U ′1(y)

{
U ′1(y)

(λ−KM )−H(y)
(1 +

U ′′1 (y)

(U ′1(y))2

)
−H ′(y)

}
= eU1(y)U ′1(y)

{
−µ (b−XT ) er−U1(y)

U ′1(y)

(
U ′1(y) +

U ′′1 (y)

U ′1(y)

)
−H ′(y)

}
.

For CT ∈ A2, −
U ′′1
U ′1
≤ U ′1. Noting H ′(y) =

−U ′′2 (XT−y)U ′1(y)−U ′2(XT−y)U ′′1 (y)
(U ′1(y))

2 + U ′2(XT − y) > 0,

D′′(y) < 0.

Therefore, Eq.(3.7) is the necessary and sufficient condition for optimality.

For the reference, I examine the case that there exists moral hazard without ex-post informa-

tional asymmetry. It means that the incentive compatibility condition is slack, i.e., µ = 0. The
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insurer does not need to monitor. Thus CM can be rewritten as CT . Hence,

U ′2(XT − CT )

U ′1(CT )
− U2(XT − CT ) = λ. (3.9)

And,

0 <
dCT
dXT

= 1− U ′2U
′′
1

U ′′2U
′
1 + U ′2U

′′
1 − U ′2(U ′1)2

< 1. (3.10)

Furthermore, I examine the case that there are no moral hazard and no ex-post informational

asymmetry. The standard Borch rule is then obtained:

U ′2(XT − CT )

U ′1(CT )
= λ, (3.11)

0 ≤ dCT
dXT

= 1− U ′2U
′′
1

U ′′2U
′
1 + U ′2U

′′
1

< 1. (3.12)

Accordingly, from Eq.(3.9) and Eq.(3.11), we see that the term U2(XT −CT ) stands for the effect of

moral hazard, whereas the term µ (b−XT ) stands for the effect of ex-post informational asymmetry.

From Eq.(3.10) and Eq.(3.12), dCT
dXT

is less than one, either with or without moral hazard. In

addition, it is higher in Eq.(3.10) than in Eq.(3.12). I.e., when XT gets higher, larger compensation

is required in the moral hazard case due to the necessity to induce the insured to make the optimal

efforts. The effect of moral hazard on CT is represented by the difference between Eq.(3.10) and

Eq.(3.12):

∆

(
dCT
dXT

)
:=

(
1− U ′2U

′′
1

U ′′2U
′
1 + U ′2U

′′
1 − U ′2(U ′1)2

)
−
(

1− U ′2U
′′
1

U ′′2U
′
1 + U ′2U

′′
1

)
=

−U ′′1 (U ′1U
′
2)

2

(U ′′2U
′
1 + U ′2U

′′
1 ) (U ′′2U

′
1 + U ′2U

′′
1 − U ′2(U ′1)2)

> 0. (3.13)

3.2.3 Characterization

I characterize the optimal CM from Eq.(3.7). Assume that, in the monitoring region, it holds true

that

U ′2(XT − CM (XT ))

U ′1(CM (XT ))
− U2(XT − CM (XT )) = λ−KM . (3.14)
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Noting strict concavity of U1,

0 <
dCM
dXT

= 1− U ′2U
′′
1

U ′′2U
′
1 + U ′2U

′′
1 − U ′2(U ′1)2

< 1. (3.15)

By Eq.(3.8) and Eq.(3.15), CM ≥ XT − F in the monitoring region, i.e, the insured is better off

telling the truth when the payment rule CM as well as (F, b) are given. Also, by construction,

there is no informational asymmetry in the non-monitoring region. Hence, µ = 0. Accordingly,

if optimal efforts are attained as in Eq.(3.14), the problem of moral hazard and the problem of

ex-post informational asymmetry are differentiated in the monitoring region.

Implications are as follows. CT is non-linear in XT . Similarly to Cvitanić and Zhang [5], this

result is more general than Holmström and Milgrom [10] and Schättler and Sung [16]. Furthermore,

this present model draws richer implications of insurance than Cvitanić and Zhang [5]. First, if

optimal efforts are attained as in Eq.(3.14), the insurer can write explicitly the insurance contract

that differentiates the two information problems, by using the costly monitoring effectively. In con-

trast, Cvitanić and Zhang (2007) face difficulty with writing the optimal contract that differentiates

the informational problems, even by using dynamic data, because it is very hard to compute the

Lagrangian multipliers associated with the informational problems.

Second, I look at dynamic interaction between the problem of moral hazard and the problem

of the ex-post informational asymmetry in the optimal insurance contract. I focus on the case

that b is feasible. Especially, I compare this model with the case of moral hazard without ex-post

informational asymmetry characterized by Eq.(3.9). The ex-post informational asymmetry problem

is reduced, i.e., the insured can still enjoy an information advantage while in good shape. On the

other hand, in the monitoring region, there is no µ, i.e., informational asymmetry is removed there.

Eq.(3.14) looks equivalent to Eq.(3.9) except for KM . Let us examine the effect of the monitoring on

moral hazard, which is measured by the effect on dCT
dXT

, like ∆
(

dCT
dXT

)
in Eq.(3.13). From Eq.(3.15),
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when U ′′2 < 0, then

d

dKM

(
dCM
dXT

)
=

d

dCM

(
dCM
dXT

)
· dCM

d(λ−KM )
· d(λ−KM )

dKM

=
U ′2U

′
1U
′′
2U
′′
1

(U ′′2U
′
1 + U ′2U

′′
1 − U ′2(U ′1)2)

2︸ ︷︷ ︸
≥0



((
−U ′′′2
U ′′2

)
−
(
−U ′′2
U ′2

))
+
((
−U ′′′1
U ′′1

)
−
(
−U ′′1
U ′1

))
+

U ′1(
−
U′′2
U′2

) ((−U ′′′1
U ′′1

)
− 2

(
−U ′′1
U ′1

))


· 1
−U ′′2 U ′1−U ′2U ′′1

(U ′1)
2 + U ′2︸ ︷︷ ︸
>0

·d(λ−KM )

dKM
. (3.16)

To make clear some economic implications of insurance, I add two definitions as follows. For

i ∈ {1, 2}, player i is said to be not downward-risk averse highly if−U ′′′i
U ′′i
≤ −U ′′i

U ′i
, in that

d

(
−U
′′
i (x)

U′
i
(x)

)
dx =

U ′′i
U ′i

((
−U ′′′i
U ′′i

)
−
(
−U ′′i
U ′i

))
≥ 0. Note that −U ′′′1

U ′′1
≤ −U ′′1

U ′1
< −2

U ′′1
U ′1

. Also, I can guess that higher KM

leads to higher λ due to the tighter participation constraint. However, we are not sure if dλ
dKM

≷ 1.

The participation constraint is said to be not too tight (with respect to KM ) if dλ
dKM

< 1.

From Eq.(3.16), when U ′′2 < 0, if the insured and the insurer are not downward-risk averse

highly and if the participation constraint is not too tight, then a higher level of the monitoring

technology (i.e., lower KM ) mitigates the problem of moral hazard. Furthermore, regardless of

the insurer’s downward-risk aversion, if the insured is not downward-risk averse enough and if the

participation constraint is not too tight, then a higher level of the monitoring technology (i.e., lower

KM ) can mitigate the problem of moral hazard.

A logic behind this scene is as follows. When the insured is not downward-risk averse highly,

he does not demand excessively high compensation. Also, the tighter participation constraint is

not so tight as to negate the effect of higher KM on the right-hand side of Eq.(3.14). Under such

environments, the necessity to induce the insured to make the optimal efforts is reduced when the

monitoring technology is available. With higher (lower) KM , the monitoring technology is a less

(more) useful devise to verify the truth. A lower (higher) level of the monitoring technology (i.e.,

higher (lower) KM ) then leads to more (less) moral hazard.
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When U ′′2 = 0, then

d

dKM

(
dCM
dXT

)
=

− (U ′2)
2 (U ′1)

2 U ′′1
(U ′2U

′′
1 − U ′2(U ′1)2)

2︸ ︷︷ ︸
≥0

((
−U

′′′
1

U ′′1

)
− 2

(
−U

′′
1

U ′1

))
·

1
−U ′2U ′′1
(U ′1)

2 + U ′2︸ ︷︷ ︸
>0

·d(λ−KM )

dKM
(3.17)

From this, when U ′′2 = 0, if the insured is not downward-risk averse highly and if the participation

constraint is not too tight, then a lower level of the monitoring technology (i.e., higher KM )

mitigates the problem of moral hazard.

4 Numerical analysis of optimal insurance design

4.1 Numerical method

So far I have not obtained explicitly the effect of KM on λ, although I imposed the condition

regarding the tightness of the participation constraint for examining the effect of the monitoring on

the problem of moral hazard. In fact, λ is an endogenous variable. Also, I imposed other high-level

assumptions on the admissible set of the controls. Thus we are not certain whether there exist

plausible solutions to the above optimal insurance design problem, being given relevant structural

parameters To complete the study of the optimal insurance design, I will do numerical analyses

and draw quantitative implications in this section.

Based on the results in Section 3, a derivation method for the optimal values of b, F, CM , û, λ

consists of the following five steps.

(1) û is characterized by Eq.(3.5),

M û
T = e−reU1(CT ).

(2) Assume that Eq.(3.14) holds true. CM (XT ) can then be written as a function of λ, denoted

by CλM (XT ).
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(3) By Eq.(3.8), if b is feasible,

CλM (b) = b− F. (4.1)

Thus F can be written as a function of b and λ, denoted by F (b, λ).

(4) By Eq.(3.5), λ can be written as a function of b, denoted by λ(b), satisfying:

er = E
[
eU1(CT )

]
=

∫ +∞

b
eU1(XT−F (b,λ))Φ(dXT ) +

∫ b

−∞
eU1(CλM (XT ))Φ(dXT ) (4.2)

where Φ denotes the cumulative distribution function of XT under P at time 0. Following

standard finance textbooks (e.g., Musiela and Rutkowski [13]), it holds true that Φ(x) =

N
(

x
v
√
T

)
where N(·) denotes the standard normal cumulative distribution function, i.e., for

x ∈ R, N(x) := 1√
2π

∫ x
−∞ exp

(
−u2

2

)
du.

(5) By Eq.(3.6), with respect to b, the insurer optimizes his expected utility:

e−rE
[
eU1(CT )

(U2(XT − CT )−KM1M ) + λ(b)
]

= e−r


U2(F (b, λ(b))) + λ(b)

∫ +∞
b eU1(XT−F (b,λ(b)))Φ(dXT )

+
∫ b
−∞ e

U1(C
λ(b)
M (XT ))

U2(XT − Cλ(b)M (XT ))−KM + λ(b)
Φ(dXT ).

 (4.3)

Recall that b may be infeasible, i.e., b = −∞, +∞, or ∅.

4.2 Numerical results

As an example, let us see the case that U1(x) = log(x) and U2(x) = x. In fact, the financial

institution is thought to be more risk-tolerant than the insured firm. Note that−U ′′1 (x)
U ′1(x)

= 1
x = U ′1(x).

By Eq.(3.14),

CM =
XT + (λ−KM )

2
.
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For the positivity of CM , XT > −(λ−KM ). By Eq.(4.1), if b is feasible,

F =
b− (λ−KM )

2
.

Note that the insurer’s consumption takes negative values due to his risk-neutral utility form, while

the insured’s one is positive due to his log utility. By Eq.(4.2),

er =

∫ +∞

b

(
x− b− (λ−KM )

2

)
Φ(dx) +

∫ b

−(λ−KM )

(
x+ (λ−KM )

2

)
Φ(dx)

=

∫ +∞

b

(
x− b

2

)
1√
2π
e−

x2

2v2T dx+

∫ b

−(λ−KM )

(x
2

) 1√
2π

e−
x2

2v2T dx

+
(λ−KM )

2

1−N
(
−(λ−KM )

v
√
T

) (4.4)

Finally, by Eq.(4.3), the insurer optimizes his utility with respect to b and λ,

(F + λ)

∫ +∞

b
(x− F )Φ(dx) +

∫ b

−(λ−KM )
CM

(x− CM ) + (λ−KM )
Φ(dx)

=

(
b+ λ+KM

2

)∫ +∞

b

(
x− b− (λ−KM )

2

)
1√
2π

e−
x2

2v2T dx

+

∫ b

−(λ−KM )

(
x+ (λ−KM )

2

)2 1√
2π

e−
x2

2v2T dx

subject to Eq.(4.4).

Finally, let us look at optimal insurance properties in the cases of b = −∞ and b = +∞. First,

when b = −∞, the optimal b should degenerate to F in the above optimization procedure because

the payment rule is continuous. Hence, F = −(λ−KM ). Note that, regardless of the convergence,

I am using the notation b = −∞ in order to stress that there is no trigger to the compensation in

this case. From Eq.(4.4),

er =

∫ +∞

−(λ−KM )
(x+ (λ−KM )) Φ(dx) =

∫ +∞

0
zΦ
d(z − (λ−KM ))

 .

Therefore, so long as b = −∞ holds, F = −(λ −KM ) remains constant as KM is changed. Next,

when b = +∞, from Eq.(4.4),

er =

∫ +∞

−(λ−KM )

x+ (λ−KM )

2
Φ(dx) =

∫ +∞

0

z

2
Φ
d(z − (λ−KM ))

 .
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Therefore, similarly, so long as b = +∞ holds, −(λ−KM ) remains constant as KM is changed.

I set the cash-flow volatility at a conventional level v = 25%, based on previous empirical

results. With regard to the drift, Goldstein, Ju, and Leland [8] calibrate a slightly negative µ,

whereas Leland [11] chooses µ = 1%. I am taking a zero drift under P as in the above model.

Finally, with regard to the estimates of monitoring cost KM (relative to r), there is a controversy

in the previous empirical literature.5 Thus I cover a wide range of KM (relative to the insured’s

utility level r) in this present numerical analysis.6 To determine the scale of this model, set r = 1.

Parameterization and numerical results are shown in Table 1.

Table 1: Parameterization and numerical results

Parameters
Cash flows: Diffusion v 25% 25% 25% 25% 25% 25% 25%
Reservation utility r 1 1 1 1 1 1 1
Monitoring cost KM 0.01 ∼ 0.9 1.0 1.6 2.2 2.8 5.0 10.0

Optimal results
Insurance premium F n.a. −1.09 −0.95 −0.94 −0.93 −1.06 −1.06
Compensation trigger b +∞ −0.17 −0.32 −0.36 −0.45 −∞ −∞
Lagrangian multiplier λ 5.45 ∼ 6.34 3.00 3.19 3.72 4.21 6.06 11.06
Deductible −(λ−KM ), F −5.44 −2.00 −1.59 −1.52 −1.41 −1.06 −1.06
Monitoring region b+ (λ−KM ) > −5.44 1.83 1.27 1.16 0.96 0.00 0.00

When the monitoring cost KM is an immediate level, the monitoring action is undertaken only

for poor cash flows −(λ−KM ) < XT < b. The contract is deductible when the time-T cash flow is

less than −(λ−KM ). This is a typical insurance contract with deductibles. Since 0 < dλ
dKM

< 1, the

participation constraint is not too tight. However, −U ′′′1
U ′′1

= −2
U ′′1
U ′1

, i.e., the insured is downward-risk

averse highly. From Eq.(3.17), the problem of moral hazard is unchanged by a higher level of the

monitoring technology (i.e., lower KM ). As KM gets higher, the monitoring region gets smaller.

Also, the insurance premium F (the compensation trigger b, respectively) is slightly increasing

(decreasing) in KM . A logic behind this result is as follows. When KM becomes higher, the whole

5There are very few empirical studies of monitoring costs in insurance. Instead, for the reference,
let us look at empirical studies of default costs, including monitoring costs, under debt contracts.
Warner [17] estimates a bankruptcy cost at approximately 1.0% ∼ 5.3% of firm value, by using the
data of US railroad firms in 1933-1955. However, in his paper, the costs are only direct bankruptcy
costs such as legal fees. Altman [2] estimates the sum of direct and indirect bankruptcy costs at
about 11% ∼ 17% of firm value. Thus there is no agreement upon the empirical values. Further-
more, the monitoring costs may be bigger lately under tighter financial regulation on structured
finance than before.

6In this present model, monitoring costs KM are exogenous. On the contrary, based on the
numerical analysis, I could find optimal monitoring costs KM .

18



pie to be shared becomes smaller. Thus the probability of monitoring is reduced. As discussed

above, since the insured is not downward-risk averse highly, he does not demand excessively high

compensation. Also, the tighter participation constraint is not so tight as to negate the effect of

higher KM on the right-hand side of Eq.(3.14). Under such environments, the necessity to induce

the insured to make the optimal efforts is reduced due to the existence of KM . With a higher

cost KM , the monitoring technology is a less useful devise to verify the truth. A lower level of the

monitoring technology (i.e., higher KM ) then leads to larger moral hazard. To make up for the

high monitoring cost, the insurer demands the high insurance premium F .

For a very low KM (i.e., 0.01 ≤ KM < 1), the insurer necessarily prefers the truth, even by

incurring the monitoring cost (i.e., b = +∞). The monitoring action is then undertaken for all

feasible XT , and the allocations are state-dependent. As mentioned above, when b = +∞ holds, the

deductible −(λ−KM ) remains constant as KM is changed. On the other hand, for a very high KM ,

the monitoring action would shrink largely the whole income to be shared. The monitoring action

is necessarily avoided in equilibrium. The optimal contract is then of a state-independent debt-type

for all feasible XT , i.e., b = −∞. The insured is given no compensation for low XT . Note that, by

construction, in this case, F stands for a deductible threshold as well. Again, as mentioned above,

when b = −∞ holds, the insurance premium and the deductible remain constant as KM is changed.

5 Conclusion

I found the properties of optimal insurance in the model of continuous-time costly monitoring under

moral hazard and ex-post informational asymmetry. For future work, I will extend the model to

have (1) risk pooling in a model with multi-insureds and (2) securitized insurance contracts. Also,

I will do empirical work based on the above analytical results.
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