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Abstract

This paper asks whether frequency misspeci�cation of a New Keynesian model re-

sults in temporal aggregation bias of the Calvo parameter. First, when a New Keyne-

sian model is estimated at a quarterly frequency while the true data generating process

is the same but at a monthly frequency, the Calvo parameter is upward biased and

hence implies longer average price duration. This suggests estimating a New Keyne-

sian model at a monthly frequency may yield di¤erent results. However, due to mixed

frequency datasets in macro time series recorded at quarterly and monthly intervals,

an estimation methodology is not straightforward. To accommodate mixed frequency

datasets, this paper proposes a data augmentation method borrowed from Bayesian

estimation literature by extending MCMC algorithm with "Rao-Blackwellization" of

the posterior density. Compared to two alternative estimation methods in context of

Bayesian estimation of DSGE models, this augmentation method delivers lower root

mean squared errors for parameters of interest in New Keynesian model. Lastly, a

medium scale New Keynesian model is brought to the actual data, and the benchmark

estimation, i.e. the data augmentation method, �nds that the average price duration

implied by the monthly model is 5 months while that by the quarterly model is 20.7

months.

�Economics Department, Duke University
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1 Introduction

The key feature of New Keynesian models is Calvo type of price friction which is central

to understand the propagation mechanism of real activities in response to monetary policy

shock. The degree of this price friction is parameterized by a probability in which a �rm

cannot reoptimize within one period. Due to its quantitative importance, Calvo parameter

has been extensively studied from both micro-dataset and macro models but its estimates

are widely dispersed. From micro dataset, Bils & Klenow (2003) �nds the median price

duration of �rms to be 4.3 months while Nakamura & Steisson (2008) argues 8.7 months

once irrelevant pricing behaviors such as temporary salescuts are controlled. On the other

hand, the average price duration implied by Calvo parameter in macro models ranges from

8 months to 24 months depending on the models and estimation strategies1.

This discrepancy between microevidence and macro model�s estimates is generally per-

ceived as a misspeci�cation of New Keynesian models. But this perception is neglecting

the fact that microevidence is based on monthly observations while macro models are es-

timated at a quarterly frequency. If a temporal aggregation bias in Calvo parameter is

present, modeling the pricing behavior at a coarse frequency while the true decision time

interval is shorter can in fact be misleading. Thus, this paper asks whether a frequency

misspeci�cation of a New Keynesian model results in a temporal aggregation bias of the

Calvo parameter. When a New Keynesian model is estimated at a quarterly frequency

while the true data generating process is the same model but at a monthly frequency, the

Calvo parameter is upward biased and hence implies longer average price duration. This

suggests estimating a New Keynesian model at a monthly frequency may yield di¤erent

results.

In order to resolve the temporal aggregation bias caused by the frequency misspeci�ca-

tion in DSGE models, estimation of a model at the true frequency is necessary. However,

when a monthly speci�ed DSGE model brought to an estimation, a technical challenge

emerges since data is available at di¤erent frequencies. For example, interest rate, in�a-

tion rate, wage rate and consumption are available at monthly frequency while GDP and

investment are only at quarterly. One way is to identify the analytical mapping from a

monthly speci�cation of a model to a quarterly speci�cation. In this way, the converted

model at the quarterly frequency can be estimated with quarterly data. This conversion

1Christiano, Eichenbaum & Evans (2005), Smets & Wouters(2007), and Del Negro & Schorfeheide (2008)
are only a few of many other examples.
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is well known with simple statistical models, for example, monthly AR(1) is equivalent to

quarterly ARMA(1,1)2. However, it is not clear how to convert a monthly speci�ed DSGE

model to a quarterly speci�cation in general due to the forward looking nature of decision

variables. Therefore, a standard estimation procedure needs to be modi�ed to estimate

monthly speci�ed DSGE models.

To accommodate mixed frequency dataset, the quarterly data can be treated as an

observable variable that has missing observations. Then, "imputing some values" to these

missing observations makes a complete dataset that facilitates the standard procedure

of estimation. This is called a data augmentation and this paper proposes an estimation

strategy using this data augmentation technique that is borrowed from Bayesian estimation

literature in which "imputing some values" to missing observations is based on simulations.

The simulation of missing observations is by a direct sampling from a distribution of missing

observations. This distribution in general can be expressed by a marginal distribution

of a joint distribution that is de�ned not only in terms of model�s parameters but also

jointly in terms of an auxiliary variable for missing observations conditional on the available

data. Accordingly, MCMC algorithm can be extended to sample both parameters and

missing observations similar to sampling a mixture model. MCMC theories have proven this

modi�ed algorithm converges at the geometric rate and thus central limit theorem ensures

the consistency of marginal sampled estimates for parameters3. Gelfand & Smith(1990)

refers this joint distribution as "Rao-Blackwellization" of an original target distribution of

parameters since this is a form of a generalization of the distribution and thus incorporates

richer information by allowing "imputing values" into missing observations which is in

some sense an example of Rao-Blackwell Theorem. And they show theoretically that the

advantage of the data augmentation is e¢ ciency gains of parameters�estimates and this

was further generalized by Liu, Wong & Kong(1994).

A sampling scheme for the data augmentation procedure is not unique at least in

the context of estimating DSGE models since missing observations are multiple periods.

However, due to the general structure of DSGE models, it is not feasible to sample the whole

missing observations in one step which would have been the most e¢ cient method. Instead,

this paper chooses to sample missing observations sequentially period by period using

information from adjacent periods since an analytical distribution of missing observations

2To my knowledge, Working(1960) is an early paper that illustrates this example and a more compre-
hensive study of temporal aggregation with various statistical models is shown in Marcellino (1999).

3Diebolt & Robert (1994)
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for each period can be derived from marginal distributions used in Kalman Filter updating

step. This sampling scheme is similar to Elerian, Chib and Shephard (2001) in which

missing observations are sampled from a marginal distribution conditioning on observations

of two closest periods back and forth. Alternative to the data augmentation, Kalman Filter

can be modi�ed in two ways to evaluate the likelihood of proposed values for parameters

under mixed frequency dataset without the data augmentation procedure. Thus, in order

to demonstrate the advantage of the data augmentation over these alternatives, a Monte

Carlo experiment on a medium scale New Keynesian model is presented. The second main

�nding of this paper is that data augmentation estimation delivers lower root mean squared

errors for parameters of interest in a medium scale New Keynesian model.

Lastly, the medium scale New Keynesian model is brought to the actual data, and

with the benchmark estimation method the average price duration implied by the monthly

model is 5 months while that by the quarterly model is 20.7 months.

The paper proceeds as follows. Section 2 demonstrates the time aggregation bias of

AR(1) process and a simple New Keynesian model to serve as a motivation. Section

3 presents mixed frequency estimation strategies after some preliminary introduction of

notations. Section 4 brie�y discusses a medium scale New Keynesian model following FV-

GQ-RR(2010). Section 5 presents estimation results from MC experiments on the medium

scale New Keynesian model across three methodologies and also estimation exercise with

actual data. Section 6 concludes.

2 Temporal Aggregation Bias

This section shows the temporal aggregation bias issue with AR(1) model and with 3

equation New Keynesian model due to a frequency misspeci�cation.

2.1 AR(1)

A monthly AR(1) process is converted into an ARMA(1,1) process when aggregated into

quarterly frequency4. Given this conversion, this section demonstrates Monte-Carlo sim-

ulation results and also the time aggregation bias when this conversion is ignored and

4Derivation of a quarterly speci�cation from aggregation of monthly AR(1) model is shown in the
appendix.
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estimated simply with quarterly AR(1) speci�cation. Assume that the true model is

at = �at�1 + �"t;8t = 1; 2; :::; T

"t � iid N (0; 1)

Monthly observations are simulated from this model for T = 300 and with 10; 000 MC

simulations. And suppose an econometrician observes the aggregated data at quarterly

frequency with following aggregation scheme.

~at = at + at�1 + at�2

For each dataset of 10; 000 simulations, the econometrician can estimate quarterly AR(1),

i.e. a misspeci�ed model, or quarterly ARMA(1,1) if the true model is known to the

econometrician. So

~at = ~�q~at�3 + ~�1~�t

or

~at = �q~at�3 + �1�t + �2�t�3

Thus, given the exact conversion, the persistence parameter shoud be �q � �3. The next

table shows the estimation results of this persistence parameter. Assume � = 0:9 is the

true value with the monthly model. ~�q is an estimate with quarterly AR(1) while ~�q is an

estimate with quarterly ARMA(1,1). These estimates are an average of point estimates over

MC simulations. And the value below is the standard deviation of those point estimates.

� �3 ~�q �q

0:9 0:7290 0:8011
0:0285

0:7236
0:0469

It clearly shows upward bias on �q with AR(1) speci�cation and this is due to the mis-

speci�cation. When estimated with a correct model, ARMA(1,1), it gives a value close

to the truth. With this simple statistical model that has backward looking variable, the

true model can be retrieved even when data is aggregated over time because the exact con-

version from a monthly speci�cation to a quarterly speci�cation is known. However, this

exact conversion will not be apparent with DSGE models where forward looking variables

are present and thus aggregation of variables with expectations into coarser time interval

is not clear.
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2.2 Simple New Keynesian model

A parsimonious New Keynesian model with Calvo pricing feature is as follows in log-

linearized form.

�t = �Et�t+1 + �yt + "�;t

Etyt+1 = yt +Rt � Et�t+1
Rt = 
��t + 
y (yt � yt�1) + "m;t

where

"m;t = �m�m;t

"�;t = ��"�;t�1 + ����;t

� � (1� ��) (1� �)
�

For simplicity, log-utility and inelastic labor supply are assumed and the monetary author-

ity targets the interest rate following Taylor rule that responds to in�ation and to growth

rate of output. And the source of uncertainty is price markup shock "�;t with AR(1) and

monetary shock "m;t with iid process. The monetary policy in this model is no longer

neutral due to the price friction and thus causes a reaction of real activities. And it is well

known that the degree of Calvo parameter, �, determines the length of propagation of the

real activities in response to the monetary policy shock. The observables are interest rate,

in�ation rate and quarterly growth rate of output. The reason why quarterly measure for

output is used is to mimic the estimation with real data in which monthly growth rate of

output is not observed but only quarterly. Suppose for now the quarterly growth rate of

output is yQt � yQt�3. Two measurement errors are added to observables so that stochastic

singularity is avoided5. So the observation equation of this model can be expressed as264 Rt

�t

yQt � y
Q
t�3

375 = H 0�t +

264 0

��1�1t

��2�2t

375
5To avoid stochastic singularity, only one measurement error is needed but I added one more because

on rare cases a numerical singularity could arise.
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where H is derived from a solution of the model and state variable, �t � [xt; "�;t; "m;t]
0

with xt being a vector of predetermined variables6. Calibrated parameters are shown in

the next table7,
� � 
y 
� �� ��; �m; ��

0:9992 0:9 0:15 1:5 0:9 0:01

and simulated this model with T = 100 and with 100 MC simulations.

In order to estimate the model at quarterly frequency, aggregation schemes for each

observable is necessary and they generally di¤er depending on whether the variable is �ow

or stock. Interest rate and in�ation rate are growth rates of stock variables and thus it

is relatively easier to aggregate compared to �ow variables such as GDP. Since quarterly

interest rate is a three months of compounded monthly interest rates,

RQt = Rt +Rt�1 +Rt�2

Similarly, quarterly in�ation rate is in�ation rate from three months prior to current month
8 so,

�Qt = �t + �t�1 + �t�2

And I follow NIPA convention of GDP aggregation which sums monthly nominal GDPs.

So in log-linearized form, the real output would be

yQt �
1

3
[yt + (yt�1 � �t) + (yt�2 � �t � �t�1)]

Since the original monthly model has already generated quarterly growth rate for output,

observations from every last month of quarters can simply be collected to construct the

quarterly dataset. Given these aggregation scheme, the quarterly observables are264 RQt
�Qt

yQt � y
Q
t�3

375
6Given the aggregation scheme explained in the following paragraph xt �

[yt�1; yt�2; yt�3; yt�4; yt�5; �t�1; �t�2; �t�3; �t�4]
0

7 I also checked with di¤erent degree of calibrated Calvo parameter, � 2 f0:85; 0:75g and �nd temporal
aggregation biases. Also di¤erent values of Taylor rule parameters have not a¤ected these �ndings with
Calvo parameters.

8 I also experimented having simply �Qt � 1
3
[(�t + �t�1 + �t�2) + (�t�1 + �t�2 + �t�3) + (�t�2 + �t�3 + �t�4)]

which did not a¤ect the results.
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Measurement errors are attached to all three observables re�ecting the fact that this

quarterly speci�ed model might be potentially misspeci�ed. Following the standard Bayesian

technique (An & Schorfeheide(2006)), New Keynesian model which is analytically same as

above is estimated based on those aggregated observables. The discount factor is cali-

brated by having ~�q = �3 so that the steady states of interest rates are consistent across

two frequencies. The di¤use priors are set including Calvo parameters except Taylor rule

parameters9 are set to have reasonable acceptance rate and desirable convergence of MC

chains.

~�q ~
y ~
� ~�� ~�m; ~��; ~��

Unif (0; 1) N (0:15; 0:1) N (1:5; 0:2) Unif (0; 1) IG (0:02; 2)

In addition to the standard quarterly model, a quarterly model in which price markup shock

has ARMA(1,1) process and monetary policy shock has MA(1) process is also estimated.

Although this does not necessarily have a theoretical justi�cation, it is worth to examine

whether additional MA terms can correct the biases following Smets & Wouters (2005).

For the comparison of Calvo parameter speci�ed at di¤erent time frequencies, an envelope

calculation is needed. Because this parameter is a probability that the monopolistic com-

petitive �rm cannot reoptimize their prices within its speci�ed decision time interval, the

average price duration for those �rms can be computed and further the implied probability

under di¤erent decision time interval, say coarser interval, can be backed out from this

price duration. For example, suppose � = 0:9 in the monthly model, then the average

price duration of �rms is 10 months10 which is equivalent to 10
3 quarters. So the implied

probability11 at quarterly frequency would then be �q = 0:7. In principle, if there were

no temporal aggregation bias on this parameter, the quarterly estimation results would be

9Under various calibration schemes, Taylor rule parameters had generally bad identi�cations in quarterly
estimation but this anamoly did not a¤ect Calvo estimates.
10average price duration =

1P
j=0

�j = 1
1��

11~� = 1� 1
avg:price dura:
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expected to have �q = 0:7. The results are shown in the following table.

methods � 
y 
� �� log��2 log�� log�m

True 0:9 (0:7) 0:15 1:5 0:9 (0:729) NA �4:6052 �4:6052
Q-AR 0:8977

0:0173
0:0784
0:0154

1:4997
0:0221

0:6771
0:0142

NA �2:5082
0:1540

�3:3380
0:3725

Q-ARMA 0:8642
0:0529

0:1207
0:0182

1:5273
0:0279

0:5959
0:0274

�0:2306
0:3832

�2:8447
0:2802

�3:0052
0:2671

The values in the parenthesis next to true values in the �rst row are the quarterly parameter

values that are implied by our conversion schemes with Calvo parameter and persistence

of AR(1). The second row shows substantial upward aggregation bias with respect to both

Calvo parameter and persistence parameter of markup shock. Including moving average

terms to the exogenous processes mitigates the bias on persistence parameter but does not

eliminate the bias completely and moreover does not improve Calvo parameter estimate.

This is quite a surprising outcome relative to AR(1) example but can lead to an inter-

esting conclusion that specifying a rational expectation model at di¤erent frequencies can

produce a di¤erent estimates of certain structural parameters which cannot be resolved by

simply adding MA terms. Hence, this di¤erence is d¢ cult to be reconciled when rational

expectation models are speci�ed at di¤erent frequencies unless the model is estimated at

its true frequency. So if a research believes in a model that is at higher frequency than

he or she observes, this results show that modeling at the lower frequency due to data

availability can be problematic.

3 Mixed Frequency Estimation Strategies

This section shifts the focus to an estimation strategy under a mixed frequency dataset

without specifying DSGE model at a lower frequency that gives rise to a time aggregation

bias. This section provides three di¤erent alternatives of mixed frequency esimtation.

Although these strategies are all correct in a sense of the convergence of the markov chains

and the asymptotic consistency of estimates but the data augmentation shows advantage

in the e¢ ciency of parameter estimates. The detailed algorithms are explained in this

section and the e¢ ciency performance of estimation methodologies are compared by root

mean squared errors of parameter estimates of a medium scale New Keynesian model.
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3.1 Preliminary Setup

Given equilibrium conditions of a model, those conditions are log-linearized around a de-

terministic steady state and can be summarized by state-space representation that allows

Bayesian estimation framework to be implemented.

�t+1 = F (�) �t + vt+1; vt � N (0; Q (�))

�t = H (�)0 �t + ut; ut � N (0; R (�))

where the �rst equation is the state equation and the second one is the measurement

equation describing the evolution of the observables as functions of the endogenous and

exogenous states. �t+1 is an nx � 1 vector of a latent state and �t is an observed variable
with ny�1. Bayesian estimation is to maximize a posterior density function of state-space
equations constructed by setting priors on parameters of a model and by the likelihood

function.

p
�
�jyT

�
= � (�)L

�
�jyT

�
Prediction error decompostion (Harvey(1980)) facilitates the evaluation of the likelihood

function period by period using Kalman Filter that optimally estimates latent variables.

L
�
�;yT

�
=

TY
t=1

`
�
�; yt; x̂tjt�1

�
Since the parameters of a DSGE model are highly nonlinear, Metropolis-Hastings algorithm

is applied to numerically explore the shape of the posterior with parameter values. How-

ever, when data are available at multiple frequencies, this standard procedure of Bayesian

estimation is not straightforward. For the observation variable, �t, is incomplete and has

missing observations which prevents from evaluating likelihood function with standard

Kalman Filter.

An example with more notations need to be introduced to accommodate this mixed

frequency dataset. As a practical purpose12, this paper is restricting to a case where data

is combined with monthly and quarterly time series and estimating monthly model. Hence,

12At least two of the following methods can also deal a situation where dataset is constructed by more than
two frequencies in principle. However, practicality of estimating under this circumstance is questionable.
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�t can be partitioned into two variables,

�t =

"
zt

wt

#

where wt is a monthly observable while zt is a quarterly observable. Then, the state space

representation can be rewritten

�t+1 = F�t + vt+1"
zt

wt

#
=

"
H 0
z

H 0
w

#
�t +

"
uzt

uwt

#

and note that t = 1; 2; 3:::; T is a sequence of months13. In order to disentangle zt into one

that is observed and one missing, subsequence notations for time is necessary. Let qi be

the last month of every quarter in which data for both variables, zt and wt, are collected

and qi�1 and qi�2 be the months in which only data for wt are available. So when Q � T
3

fqigQi=1 � f3; 6; 9; ::::T � 3; Tg

fqi � 1gQi=1 � f2; 5; ::::; T � 1g

fqi � 2gQi=1 � f1; 4; ::::; T � 2g

The history notations are as follows, the monthly variables will be

wt = fw�gt�=0

while the quarterly observed variable is

zt = ~zqi [ ~zqi�1 [ ~zqi�2

where

i 2 fi : qi � tg

tildes denote the collection of only one months from each quarter. Given above notations,

13For the consistency of notations, let T be the last month of the last quarter.
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the posterior density function of interest under mixed frequency dataset becomes

p
�
�jwT ;~zqQ

�
In principle, the mixed frequency estimation strategies will di¤er by how to evaluate like-

lihood function that constitutes this posterior density. In short, the stacking method will

rede�ne the state space representation at quarterly frequency while the underlying model

is monthly, Durbin-Koopman method will modify Kalman Filter in which the dimension of

Kalman Filter gain changes consistent with the dimension of available data in each period,

and the data augmentation method simulates the missing observations to �ll the gap by

demarginalizing the above posterior density so that it transforms into a joint density which

is in terms of not only parameters but also of missing observations.

3.2 Data Augmentation Method

Data augmentation method is based on sampling from a joint posterior density that is con-

structed by "Rao-Blackwellization" or "demarginalization" of an original posterior density.

In other words, an auxiliary variable that stands for missing observations is introduced

and �lling this variable with a proxy value can complete the mixed frequency dataset and

thus allows to evaluate the posterior density under a complete dataset. And this proxy will

be simulated at every iteration of MCMC algorithm from a tractable distribution that is

derived from the model under certain parameter values. So the joint density is

p
�
�jwT ;~zqQ

�
=

Z
Z
~p
�
�;~zqQ�1;~zqQ�2jwT ;~zqQ

�
dz

~p
�
�;~zqQ�1;~zqQ�2jwT ;~zqQ

�
= `

�
�;~zqQ�1;~zqQ�2jwT ;~zqQ

�
� (�)

The original posterior density is a marginal density of this joint density by integrating out

the auxiliary variable, missing observations. Thus, this arti�cial extension of a posterior

density function is only for the computational device and does not invalidate the inference

on the structural parameters, �, as will be shown below. So the objective is to sample the

parameters and missing observations14 jointly but this would be feasible by separating this

14Whenever a hat, ^, is labeled, it means sampled values for the variables.
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joint density function into two stage samplings.

�
ẑqQ�1; ẑqQ�2

	(m) � f
�
~zqQ�1;~zqQ�2jwT ;~zqQ ; �̂(m)

�
�̂
(m+1) � p

�
�jwT ;~zqQ ;

�
ẑqQ�1; ẑqQ�2

	(m)�
This is a well known strategy in statistics when the joint density function of two variables

is complicated. In this scheme, one variable can be easily sampled by having other variable

as a condition and vice versa. The simplest example would be a mixture model of two

normally distributed random variable conditional on the other variable. The bivariate

distribution of this example is hardly tractable which makes di¢ cult to sample two variables

in one step but becomes much easier with two stage Gibbs sampler algorithm. And this

alternating samplings will eventually converge to the desired joint distribution of interest.

This convergence is proved for more general cases by Diebolt & Robert(1990, 1994) and

here it merely repeats the theorem of convergence.

Corollary 1 The sequences
n�
ẑqQ�1; ẑqQ�2

�(m)o and n�̂(m)o are ergodic Markov chains
with respective invariant distributions

R
� ~p
�
�;~zqQ�1;~zqQ�2jwT ;~zqQ

�
d� and

R
Z ~p
�
�;~zqQ�1;~zqQ�2jwT ;~zqQ

�
dz.

Moreover, the convergence is uniformly geometric, i.e. there exists 0 < � < 1 and C > 0

such that Z
�

��pm ��jwT ;~zqQ�� p ��jwT ;~zqQ��� d� � C�m

where

p(m)
�
�jwT ;~zqQ

�
�
Z
�
KT

�
�(m)j�(m�1)

�
p(m�1)

�
�jwT ;~zqQ

�
d�

and

KT

�
�(m)j�(m�1)

�
�
Z
Z
p
�
�(m)jwT ;~zqQ ;

�
ẑqQ�1; ẑqQ�2

	(m�1)�
f
�
~zqQ�1;~zqQ�2jwT ;~zqQ ; �̂(m�1)

�
dz

and

p
�
�jwT ; zqQ

�
=

Z
Z
~p
�
�;~zqQ�1;~zqQ�2jwT ;~zqQ

�
dz

Given this geometric convergence and additionally a �nite variance of �, the Central

Limit Theorem can be applied to ensure the asymptotic consistency of parameter estimates

which is an average of �̂. So

Corollary 2 The Central Limit Theorem holds, i.e. the sample estimates are consistent
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with �nite variance,

�� =
1p
M

MX
m=1

�
�(m) � Ep

�
�jwT ;~zqQ

�� L�! N (0; V )

where

V = varp
�
�jwT ;~zqQ

�
<1

3.2.1 Sampling Scheme for Data Augmentation

The data augmentation step,
n�
ẑqi�1; ẑqi�2

	Q
i=1

o(m)
� f

��
zqi�1; zqi�2

	Q
i=1
jwT ; zqQ ; �̂(m)

�
,

in general can be implemented in di¤erent ways. One way is to simulate the whole set of

missing observations at once from a distribution implied by a model. This was shown in

Chiu, Eraker, Foerster, Kim & Seoane(2008) with VAR(1) model. However, this was only

feasible when the target distribution from which missing observations are drawn can be

derived analytically in terms of observed data and parameters of a model. But in DSGE

model�s estimation in which prediction errors are estimated sequentially period by period

due to existence of latent variables, simulating missing observations in one step is not

feasible15 since the target distribution of a whole set of missing observations cannot be

derived in general. But similar to a conditional distribution of a state variable in Kalman

Filter, a target distribution for missing observation in one period can be derived in terms

of parameters and observed data. Hence, data augmentation can be done by Gibbs sam-

pling from a target distribution sequentially period by period in the �rst stage of MCMC

algorithm. However, since data augmentation typically involves observations not only of

past but also of future, a predictive distribution from Kalman Filter cannot simply used

in this context. Instead, the state space form is rede�ned into a companion form and

this facilitates derivation of distribution of missing observations in terms of observations

in adjacent periods including both past and future. To illustrate this point, the standard

Kalman Filter is demonstrated �rst and then the target distribution of data augmentation

is discussed.
15There are some cases when DSGE model can be transformed into VAR(2) model under certain cir-

cumstances and therefore this method could be feasible. See Ravenna(2006) for more detail with this
transformation. However, this paper focuses on mixed frequency estimation of DSGE models in a general
framework.
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De�ne the prediction error variance-covariance of �t and that of �t:

�tjt�1 � E
�
�t � �tjt�1

��
�t � �tjt�1

�0

tjt�1 � E

�
�t � �tjt�1

��
�t � �tjt�1

�0
Kalman Filter gain, Kt, minimizes �tjt so that �tjt is optimally estimated. So Kalman

Filter is

1. Starting with given �tjt�1 and �tjt�1

2. 
tjt�1 = H 0�tjt�1H +R

3. �tjt�1 = H 0�tjt�1

4. Kt = �tjt�1H
�
H 0�tjt�1H +R

��1
5. �tjt = �tjt�1 �KtH

0�tjt�1

6. �tjt = �tjt�1 +Kt

�
�t � �tjt�1

�
7. �t+1jt = F�tjtF

0 +Q

8. �t+1jt = F�tjt

The probabilistic interpretation of Kalman Filter, complemetary to the minimizing

variance of prediction errors of the state variables, says that the state variable, �t, is

updated by the conditional normal distribution with a new observation �t. Hence,

N

 "
�t

�t

#
j�t�1

!
! N

 
�tj
"
�t�1

�t

#!

The normality is due to the assumption on normally distributed structural shocks and mea-

surement errors. Hence, given the history of observations up to period t, �tjt is optimally

estimated by a conditional mean of the latter distribution. The missing observation can be

treated like �t and a conditional distribution can be similarly derived but instead a proxy

value is sampled from this distribution instead of the conditional mean. But since obser-

vations of periods ahead are necessary in the conditional information, a trick is necessary

to derive the desired distribution.
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Now, rede�ne the state space representation in a companion form.

~�qi =
~H~�qi + ~uqi

~�qi =
~F~�qi�1 + ~vqi

where

~�qi =

26666666664

zqi�2

zqi�1

zqi
wqi�2

wqi�1

wqi

37777777775
; ~�qi =

264 �qi
�qi�1
�qi�2

375

This form naturally entails a joint distribution of three periods observations, so if �qi
is fully observed the updating would have been

N

0BBBBBBBBBBB@

2666666666664

~�qi
zqi�2

zqi�1

zqi
wqi�2

wqi�1

wqi

3777777777775
j~�qi�1

1CCCCCCCCCCCA
! N

0BBBBBBBBBBB@
~�qi j

2666666666664

~�qi�1

zqi�2

zqi�1

zqi
wqi�2

wqi�1

wqi

3777777777775

1CCCCCCCCCCCA
(a)

But since ~�qi is not fully observed, i.e. fzqi�2; zqi�1g is not observed, the updating the
distribution of state variables and missing observations conditioning on all observed data

in a quarter qi can be

N

0BBBBBBBBBBB@

2666666666664

~�qi
zqi�2

zqi�1

zqi
wqi�2

wqi�1

wqi

3777777777775
j~�qi�1

1CCCCCCCCCCCA
! N

0BBBBBB@
~�qi
zqi�2

zqi�1

j

26666664
~�qi�1

zqi
wqi�2

wqi�1

wqi

37777775

1CCCCCCA (b)
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Hence, missing observations can be simulated from this conditional density. This distri-

bution will still be normal and can be derived analytically16. So the standard Kalman

Filter would have estimated state variables as in (a) when ~�qi is fully observed, but data

augmentation by simulating this target distribution as in (b) is taken since fzqi�2; zqi�1g
is not observed. Note that fzqi�2; zqi�1g jointly sampled every quarter and can only be
sampled marginally from ~�qi because DSGE models typically have many predetermined

state variables and thus have variance singular which prevents from jointly sampling with

missing observations. Thus, the distribution from which missing observations fzqi�2; zqi�1g
are drawn is the marginal normal distribution. De�ne this distribution as fqi

fqi � N (zqi�2; zqi�1j~�qi�1 ; zqi ; wqi�2; wqi�1; wqi)

This sampling scheme for data augmentation is similar to Elerian, Chib and Shephard

(2001) in a sense that observations adjacent to missing observations are used. wqi�2; wqi�1
are contemporaneous observations coming from relationships of DSGE models between

endogenous variables and f~�qi�1 ; wqi ; zqig are two periods observations adjacent to missing
observations. Then, all the missing observations are drawn sequentially quarter by quarter

and thus this constitutes the �rst stage of the sampling scheme.

f
�
~zqQ�1;~zqQ�2jwT ;~zqQ ; �̂(m)

�
=

QY
i=1

fqi (zqi�2; zqi�1j~�qi�1 ; zqi ; wqi�2; wqi�1; wqi)

Obviously in principle the most e¢ cient sampling scheme would be using the whole dataset

as the conditional information, but there is a numerical issue that has to be confronted. The

distribution for missing observations for each quarter can also be derived from smoothing

Kalman Filter and thus incorporates more information from future observations. However,

the variance of the distribution for missing observations, i.e. the analogue of variance

fqi , involves inverting a covariance matrix of state variables which are normally singular

due to presence of predetermined variables. Computational trick is to use a generalized

inverse17 of this matrix, but this yields numerically unstable matrix to use it as variance

of the target distribution. Because of this computational obstable with using smoothing

Kalman Filter which is potentially most e¢ cient, the sampling scheme of this paper resorts

to using information adjacent to missing observations which is also reasonably gaining

16Derivation is shown in appendix.
17 In Matlab, "pinv.m" is used for generalized inverse.
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e¢ ciency compared to alternative estimation strategies as will be shown below18. The

data augmenting Kalman Filter can be summarized by following.

1. Starting with given ~�qijqi�1 and
~�qijqi�1

2. ~
qijqi�1 = ~H 0 ~�qijqi�1
~H + ~R

3. Simulate fẑqi�2; ẑqi�1g � fqi (zqi�2; zqi�1j~�qi�1 ; wqi�2; wqi�1; wqi ; zqi)

4. ~�qijqi�1 = Ĥ 0~�qijqi�1

5. Kt = ~�qijqi�1
~H
�
~H 0 ~�qijqi�1

~H + ~R
��1

6. ~�qijqi = ~�qijqi�1 � ~Kt
~H 0 ~�qijqi�1

7. ~�qijqi =
~�qijqi�1 +

~Kt

�
�̂t � ~�qijqi�1

�
where �̂t =

26666666664

ẑqi�2

ẑqi�1

zqi
wqi�2

wqi�1

wqi

37777777775
8. ~�qi+1jqi = ~F ~�qijqi

~F 0 + ~Q

9. ~�qi+1jqi =
~F~�qijqi

3.2.2 Multi-Block Gibbs Sampler Algorithm

After the missing observations are sampled sequentially from distributions conditioning on

parameters, sampling parameters of a model in second stage takes place conditioning on

this augmented dataset. The second stage is no di¤erent than the standard Metropolis-

Hasting algorithm for sampling parameters conditioning on this complete dataset. Pseudo-

algorithm is summarized in the following.

Pseudo-Algorithm

1. Initialize �(0)

18Sampling scheme for choice of conditional information can further be relaxed for a case of randomly
missing observations. See Kim(2009).
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2. Draw
�
~zqQ�1;~zqQ�2

	(m) � f
��
~zqQ�1;~zqQ�2

	
jwT ;~zqQ ; �̂(m)

�
3. Evaluate p1

�
�(m)jwT ;~zqQ ;

�
~zqQ�1;~zqQ�2

	(m)�
4. Draw ��

5. Evaluate p2
�
��jwT ;~zqQ ;

�
~zqQ�1;~zqQ�2

	(m)�
6. posterior odds � Unif (0; 1)

7. If accept, record �(m+1) = �� else �(m+1) = �(m)

8. Repeat step 2~6 for m = 1; :::;M

Gibbs sampling stage is in step 2. It is important to save the augmented dataset in this

stage to be used in both step 3 and step 5. In short, this algorithm explores the shape of

the joint density function

~p
�
�;~zqQ�1;~zqQ�2jwT ; zqQ

�
= `

�
�;~zqQ�1;~zqQ�2jwT ;~zqQ

�
� (�)

and the likelihood function is evaluated via Kalman Filter with augmented dataset

`
�
�; ẑqQ�1; ẑqQ�2jwT ;~zqQ

�
�

TY
t=1

�
`
�
�; ẑtjwt; zt�1

�1�I(t2fqigQi=1) ` ��jwt; zt; zt�1�I(t2fqigQi=1)�

where the missing observations are sequentially drawn from

�
~zqQ�1;~zqQ�2

	(m) � f
��
~zqQ�1;~zqQ�2

	
jwT ;~zqQ ; �̂(m)

�
and I

�
t 2 fqigQi=1

�
denotes an indicator function which is one if period belongs to last

month of each quarter. Finally, the samples of
n
�(m)

oM
m=1

are considered as the posterior

distribution of parameters, and this is the marginal density function with integrating out

the missing observations so that p
�
�jwT ;~zqQ

�
=
R
Z `
�
�;~zqQ�1;~zqQ�2jwT ;~zqQ

�
� (�) dz.

3.3 Stacking Method

The stacking method is simply rede�ning the state space representation so that the obser-

vation variable is fully observed by stacking three months of observations into a one vector.
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Hence, the observables are transformed into

~�qi �

266664
zqi
wqi
wqi�1

wqi�2

377775
for 8 fqigQi=1 so that it is always observed withouth missing observations. Accordingly, the
state vector can be expressed as

~�qi �

264 �qi
�qi�1
�qi�2

375
Then the observation equations becomes

~�qi =
~H~�qi + ~uqi

where

~H �

266664
Hz 0 0

Hw 0 0

0 Hw 0

0 0 Hw

377775 ; ~uqi �

266664
uzqi
uwqi
uwqi�1
uwqi�2

377775
and state equation is

~�qi =
~F~�qi�1 + ~vqi

where

~F �

264 F 3 0 0

F 2 0 0

F 0 0

375 ; ~vqi �

264 Inx F F 2

0 Inx F

0 0 Inx

375
264 vqi
vqi�1

vqi�2

375
So the posterior density in this method e¤ectively is evaluated by assuming

p
�
�jwT ;~zqQ

�
=

QY
i=1

`
�
�jwqi ;wqi�1;wqi�2;~zqi

�
� (�)

However, notice that the time interval for state space equations is quarterly which im-

plies Kalman Filter gain for optimal estimates of state variables will be updated at quar-
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terly frequency. �qi�2 will be updated conditional on the history of observations up to

qi�1 (= qi � 3) which is still e¢ cient, while �qi�1 and �qi are not updated with the new
observation at qi�2 and at qi�1,respectively. Thus, if a monthly model is to be estimated

in which the monthly observations are heavily in�uenced by the latent variables of the

same months, this method will su¤er from losing e¢ ciency of state variable�s estimates

and will potentially lead to biases of parameters� estimates of the model. Furthermore,

this method in general can only be applied to the case where mixed frequency data set has

consistent frequency of missing observations within the same time series, i.e. it cannot be

applied to the randomly missing observation case. For example, due to possibly the less

sophisticated method of data collection in earlier years of a sample which is common with

emerging markets, one time series can have multiple mixed frequency observations. So if

an econometrician is to estimate using this type of dataset with this method, one either

has to synchronize the frequency of that particular time series by aggregating into coarser

frequency or has to curtail the earlier part of the sample.

3.4 Durbin-Koopman Method

Durbin-Koopman method in this paper is an extension of an example with missing ob-

servation originally shown in Durbin & Koopman�s Time Series Analysis by State Space

Methods (2001). They showed whenever �t is all missing for that particular period as

opposed to only observing partially in the case of mixed frequency dataset, they simply

estimate the state variable using the optimal estimate from the previous period which

was updated up to using available observations. So �t+1jt = �t+1jt�1 = F�tjt�1 instead of

�t+1jt = F�tjt. In this case Kalman Filter gain is zero in period t since there is no extra

information to be exploited to estimate state variables. However, in the example in which

at least some observations are partially available, Kalman Filter gain can be constructed

with this available information at period t. Hence, in a standard case

Kt = �tjt�1H
�
H 0�tjt�1H +R

��1
and the state variable is updated with �t by

�tjt = �tjt�1 +Kt

�
�t �H 0�tjt�1

�
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Hence when only wt is available, Kt can be a partitioned accordingly to be consistent with

mixed frequency observations so that

Kt =
h
Kz
t Kw

t

i
then the state variable can be updated by using this submatrix Kw

t ,

�tjt = �tjt�1 +K
w
t

�
wt �H 0

w�tjt�1

�
and when �t is fully observed at the last month of each quarter, Kalman Filter gain is back

to the standard one with a full dimension. Hence the posterior density is evaluated with

p
�
�jwT ;~zqQ

�
=

TY
t=1

24 `
�
�jwt;~zt�1

�1�I(t2fqigQi=1)
`
�
�jwt;~zt

�I(t2fqigQi=1)
35� (�)

So the period likelihood is evaluated based on full observations when t 2 fqigQi=1 while
it is based on only partial observations when t =2 fqigQi=1. This method still retains the
original state space representation at monthly frequency and thus updates state variables

monthly. However, there is still a limitation of gaining e¢ ciency since periods in which only

wt are available su¤ers lack of information from missing observations on zt. In contrast to

the stacking method, this method in principle is not restricted to monthly and quarterly

frequency dataset but can also be applied to randomly missing observations within time

series and also possibly the dimension of those time series observed can be time varying.

3.5 E¢ ciency

All of above estimation strategies are equivalent in a sense that the estimates from the

markov chains of �(m) are consistent. However, in reality any estimation strategy will be

in�uenced by the potential biases due to �nite sample and thus an e¢ ciency of estimation

methods is signi�cant from the methodological point of view. Data augmentation litera-

ture has emphasized the advantage of e¢ ciency gain from both theoretical and empirical

perspectives. Gelfand & Smith (1990) and Liu, Wong & Kong(1994) have theoretically

shown the smaller variance of sampled estimates with data augmentations. As such, nu-

merous empirical works have shown the e¢ ciency gain of data augmentation estimates by
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presenting root mean squared errors19. Hence, in the following section a comparison of

estimation methods is based on root mean squared errors of parameters of interest in a

New Keynesian model.

4 Medium Scale New Keynesian Model

This model closely follows Fernandez-Villaverde, Guerron-Quintana and Rubio-Ramirez

(2010) which is similar to Christiano, Eichenbaum and Evans (2005) and Smets and

Wouters (2005). I adopt this model for both Monte Carlo experiment and estimation

with data since it is well known and widely studied. Following paragraphs summarize this

medium scale New Keynesian model and the details can be found in technical appendix of

this paper.

There is a continuum of households who consumes �nal good, supplies di¤erentiated

labor to labor packer in monopolistic competitive labor market, invests on capital good,

saves by purchasing risk free bonds, and also has access to a complete set of Arrow securities.

Calvo wage setting with partial indexation is applied in intermediate labor market. Labor

packer integrates the intermediate labor supply into homogenous �nal labor and supply it to

the intermediate good producers. While di¤erentiated labor supply induces heterogeneity

of households, the complete asset market equalizes the lagrangian multipliers of households

and thus yields symmetric equilibrium conditions with respect to all household�s decision

variables except labor supply. The utility of household is the standard separable utility

between consumption and labor hours and exogenously in�uenced by two preference shocks

that in�uences the wedges in the intertemporal condition and intratemporal condition.

Households also earn rental income from capital management with capacity utilization

cost incurred. Another source of uncertainty is coming from the marginal e¢ ciency of

investment which creates the inverse of relative price of investment good to �uctuate over

time.

Intermediate good producers use rental capital and homogenous labor to produce dif-

ferentiated goods with Cobb-Douglas technology and earn pro�ts facing monopolistic com-

petitive market with Calvo pricing. Production technology faces total factor productivity

shocks. Final good producer transforms intermediate goods into a homogenous �nal good

to be demanded by households. Government follows Taylor rule in which risk free interest

19RMSE =

r
Bias

�
�̂; �
�2
+ var

�
�̂
�
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rate is set to respond to in�ation gap and to deviation of growth rate of output from trend

with its own persistence. Monetary policy shock is incorporated in Taylor rule. Aggre-

gate demand is consumption, investment and capacity utilization cost while the aggregate

supply is dictated by industry wide Cobb-Douglas production which is implicity derived

from aggregating Cobb-Douglas production of intermediate good producers. And due to

Calvo pricing, price dispersion across intermediate good sector creates wedge betwee these

aggregate demand and aggregate supply. Same applies to the labor market due to wage

dispersion. In summary, there are �ve exogenous processes, namely two preference shocks,

investment technology shock, total factor productivity shock, and monetary shocks. And

risk free interest rates, wage, in�ation and consumption are used as monthly observations

while output and investment series as quarterly observations. Also growth rates of wage,

consumption, output and investment are used as observables which is the standard practice

in this literature. Thus the observables vector20 is

obst =

26666666664

logRt � logR
log �t � log �
� logwt

� log ct�
1� L3

�
log ~yQt�

1� L3
�
log~{Qt

37777777775
Note that the quarterly aggregates for output and investment are taken into account that

corresponds the available data source and this aggregation scheme follows NIPA convention

as shown earlier with Simple New Keynesian model.

5 Estimation Exercise

First, the economy under this model is simulated with a set of calibrated parameters, and

then estimate parameters of interest in the model across alternative estimation methods

under mixed frequency data. Following subsection "Monte-Carlo Experiment" shows the

results of this exercise. Second, raw data are imported from NIPA and BLS, and time series

in real terms are constructed following Whelan(2002), and the model is brought to this

actual dataset to be estimated which is shown in "Estimation Results". Throughout the

20The variables are in terms of real valued levels.
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estimations in the following, I �x a small set of parameters and set priors for parameters

of interest in estimation to get reasonable identi�cation.

� " � � �2

0:025=3 10 10 0 0:001

� is depreciation rate of capital and �xed the one third of 0:025 which is standard in

quarterly model. Elasticity of substitutions for di¤erentiated labor supply and intermediate

goods are �xed to be 10. � is the �xed cost parameter of production technology and �2
is the parameter for capacity utilization cost function which pins down the rental rate of

capital in equilibrium condition.

5.0.1 Monte-Carlo Experiment

The medium scale New Keynesian model is simulated over 40 times and with sample size

of 100 each. Given from these original datasets, some of observations such as GDP and

investment are deleted to construct the mixed frequency dataset. Only subset of parame-

ters of this model is brought to estimation because the convergence properties for some

parameters, mostly preference parameters, generally were not desirable for this exercise.

Those parameters of choice for estimates are calibrated for the true model as follows

�p � �w �w 
R 
y 
� �' �d exp (�s)

0:85 0:5 0:8 0:5 0:85 0:25 1:5 0:75 0:75 0:01

�s denotes standard deviations of all the exogenous shocks. Priors are set for the estimation

to have a reasonable acceptance rate but as loose as possible.

�p � �w �w

Unif (0; 1) Be(0:5; 0:4) Unif (0; 1) Be(0:5; 0:4)


R 
y 
�

Unif (0; 1) N (0:25; 0:1) N (1:5; 0:25)

�' �d exp (�s)

N (0:75; 0:15) N (0:75; 0:15) InvGamma (0:01; 1)

For each estimation of one dataset, parameters are drawn 500,000 times and the pos-
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terior estimates are posterior modes based on the second half of these draws, i.e. 250,000

draws. E¢ ciency comparison results across estimation strategies are reported below.

�p = 0:85 � = 0:5 �w = 0:8 �w = 0:5

statistics ��p RMSE �� RMSE ��w RMSE ��w RMSE

M0 0:8500
0:0078

0:0078 0:4843
0:0636

0:0656 0:7998
0:0094

0:0094 0:4952
0:0557

0:0559

Augment 0:8518
0:0104

0:0106 0:4763
0:0775

0:0810 0:8012
0:0101

0:0102 0:4860
0:0680

0:0695

D �K 0:8511
0:0126

0:0127 0:4935
0:0831

0:0833 0:7996
0:0105

0:0105 0:5050
0:0730

0:0732

Stack 0:8506
0:0118

0:0118 0:4763
0:0796

0:0831 0:8010
0:0106

0:0107 0:4898
0:0777

0:0777

Top row has the parameters of interest with true values. The third row "M0" is the

estimation with original simulated dataset, i.e. no missing observations so that all of

observables are monthly and thus estimated with the standard procedure. This will serve

as a benchmark estimation for the comparison across three methodologies. "Augment"

is the estimation with the data augmentation, "D �K" is Durbin-Koopman method and

"Stack" is the stacking method. Each parameter has two statistics that are mean of point

estimates and root mean squared errors of these point estimates. Numbers below the

mean of point estimates are standard deviations of these point estimates. Hence, lower

RMSE represents more e¢ cient estimates compared to alternative methods. In Calvo

price parameter, �p, and the indexation parameter, �, show a clear advantage with the

data augmentation since it brings down RMSE closer to M0. Calvo wage parameter, �w,

shows only a small di¤erence while the indexation to wage, �w, shows more improvement

for data augmentation method. Next table shows the Taylor rule parameters.


R = 0:85 
y = 0:25 
� = 1:5

statistics �
R RMSE �
y RMSE �
� RMSE

M0 0:8499
0:0067

0:0067 0:2456
0:0575

0:0577 1:5136
0:0906

0:0916

Augment 0:8491
0:0080

0:0081 0:2458
0:0509

0:0511 1:5442
0:1084

0:1170

D �K 0:8500
0:0085

0:0085 0:2496
0:0512

0:0512 1:5239
0:1257

0:1279

Stack 0:8505
0:0083

0:0083 0:2652
0:0501

0:0524 1:5552
0:1225

0:1344

The �rst two parameters, 
R and 
y, show some mixed evidence. RMSE for the smoothing

parameter are close. 
y seems to show no di¤erence either but M0 results show higher
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RMSE. This was rather one of rare parameters that show ine¢ ciency with the benchmark

estimation21. The e¢ ciency ranking for 
� is consistent with most of parameters�results

and this implies data augmentation is preferrable and closer to the benchmark estimation

in terms of RMSE. The rest of parameters that are of less interest are reported in the

Appendix and similar conclusions can be drawn.

5.0.2 Data

US data covers from 1984:Q1 to 2010:Q2 for quarterly estimation and from 1984:M1 to

2010:M6 for monthly estimation. Interest rate is the e¤ective Federal Funds rates, and

quarterly interest rate is simply compounded over three months interest rates. In case of

growth rate of wage, the average wage rate for nonfarm business sector is used for quarterly

estimation. But the monthly frequency wage rate was available only for total private sector

which is the major subcategory of nonfarm business sector. Since using the average wage

rate for total private sector at quarterly frequency instead of nonfarm business didn�t show

di¤erent results and thus it can be safely deduced that the wage from di¤erent scope

of a sector do not play much role in monthly frequency as well. Also, this wage rates

are adjusted by the ratio between employment rate22 for the corresponding sectors and

population rate so that the wage data is consistent with what is implied by the model in

which there is no unemployment.

As for GDP components, the consumption is assumed to be the sum of nondurable

consumptions and services and the investment to be the sum of durable consumptions and

gross domestic private investments following FV-GQ-RR(2010) and output is the sum of

consumption and investment. Since those series are constructed aggregates from GDP

components in NIPA tables and thus do not have corresponding aggregate real variables

and price indices, I follow Whelan(2002)23 to derive real terms and price indices of those

series. And the price index for this constructed consumption series is used for price level of

the model by assuming consumption good as numeraire. In�ation rate is the growth rate of

2110 more parameters related to exogenous processes of the medium scale New Keynesian model are
estimated. Except for two parameters of these, the e¢ ciency with the benchmark estimation was overall
better.
22This adjustment has been also made in Smets and Wouters (2007) and Chang, Gomes and Schorfeheide

(2002). US data shows that there is higher growth rates of employment rates than the population growth and
thus the raw data on the growth rate of wage has a lower trend than those of per capita GDP components.
23Whelan(2002) discusses how Fisher�s chain-aggregated data in NIPA are computed and potential pitfalls

with simply adding and substracting real series from those chain aggregates.
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this CPI de�ator. Since consumption and output in the model are in terms of same units,

the output is normalized by this CPI de�ator. Quarterly ouput series used for monthly

estimation is normalized by CPI in the last month of each quarter. Due to the marginal

e¢ ciency of investment, investment good is in terms of its own unit in the model and thus

investment series are de�ated by it own de�ator and this helps to identify this investment

speci�c technological progress.

5.0.3 Estimation Results

Since the primary focus is to compare the temporal aggregation bias on Calvo parameters

without attributing the bias to the priors, except the Calvo parameters, the priors of the

rest of parameters are set equivalently for both monthly and quarterly model. Below is the

standard prior speci�cations following closely to FV-GQ-RR(2010).

Prior

B 
  � �

Be (0:75; 0:13) N (1; 0:25) N (9; 3) N (4; 1:5) N (0:3; 0:0125)

� �w 
R 
y 
�

Be (0:5; 0:142) Be (0:5; 0:102) Be (0:75; 0:13) N (0:15; 0:05) N (1:5; 0:1)

�d �' �s

Be (0:5; 0:142) Be (0:5; 0:142) InvGamma (0:1; 2)

The prior for Calvo parameters in each frequency is set to imply equivalent average price

durations. Quarterly model�s prior for Calvo parameter is set with mean ,0:5, implying 6

months price duration. Thus monthly model�s Calvo parameters are set with a mode of

the prior being 0:833.
�p,�w

Q M

Be (0:5; 0:28) Be (0:833; 0:25)
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The following table is the estimation results on Calvo parameters with two di¤erent fre-

quencies.

methods �p PriceDuration �w WageDuration

Q 0:8549
0:0163

20:67 0:7233
0:0518

10:84

Augment 0:7984
0:0259

4:96 0:8240
0:0308

5:68

As consistent with the simulation exercises with a parsimonious New Keynesian model,

the calvo parameters from quarterly model is 0:855 implying approximately 20:7 months of

average price duration while the monthly model when estimated with data augmentation

implies approximately 5 months price duration. The gap with Calvo wage is relatively

smaller than Calvo price. Wage duration for quarterly model implies 11:8 months while

5:7 months with the monthly model.

6 Conclusions

This paper investigates the temporal aggregation issue with a New Keynesian model and

�nds that Calvo parameter is upward biased in the sense that the quarterly model has a

stronger degree of price stickiness. Monte Carlo simulation result suggests that a frequency

misspeci�cation of a New Keynesian model generates this upward bias and the estimation

with data consistently con�rms this �nding. This paper also examines three estimation

strategies to accommodate mixed frequency dataset in DSGE model�s estimations and

shows methodological improvements with the data augmentation method borrowed from

Bayesian statistics literature.

The results and the method provided in this paper can potentially lead to another

research agenda since it can address various interesting questions in macroeconomic stud-

ies. For example, this data augmentation method can naturally conduct inferences on

unobserved movements of GDP at a monthly frequency and thus potentially can tune the

forecasts.

29



7 References

1. An, S. and F. Schorfheide (2006). "Bayesian Analysis of DSGE Models" Econometric

Reviews, 26(2-4), 2007, 113-172.

2. Bils, M. and P. Klenow (2004), "Some Evidence on the Importance of Sticky Prices",

Journal of Political Economy 112, 947-985.

3. Calvo, G. A. (1983), "Staggered prices in a utility maximizing framework", Journal

of Monetary Economics 12, 383-398.

4. Chib, S. (2001), "Markov Chain Monte Carlo Methods : Computation and Inference",

Handbook of Econometrics, Vol 5., Ch. 57.

5. Chiu, C., B. Eraker, A. Foerster, T. B. Kim, and H. Seoane (2008). "Bayesian Mixed

Frequency VAR�s". Mimeograph.

6. Christiano, L., M. Eichenbaum and C.L. Evans (2005), "Nominal Rigidities and the

Dynamic E¤ects of a Shock to a Monetary Policy", Journal of Political Economy 113,

1-45.

7. Del Negro, M. and F. Schorfheide, (2008), Forming Priors For DSGE Models (And

How It A¤ects The Assessment Of Nominal Rigidities)", NBER Working Paper No.

13741.

8. Diebolt, J. and C. Robert (1994), "Estimation of Finite Mixture distribution through

Bayesian Sampling", Journal of the Royal Statistical Society, Series B (Methodologi-

cal), Vol. 56, No. 2, 363-375.

9. Durbin, J. and S. J. Koopman, Time Series Analysis by State Space Methods, Oxford

Statistical Science Series, 24.

10. Elerian, O., S. Chip and N. Shephard (2001), "Likelihood Inference for discretely

observed Nonlinear Di¤usions", Econometrica, Vol. 69, No. 4, 959-993.

11. Fernandez-Villaverde, J. (2009), "The Econometrics of DSGE models", NBER Work-

ing Paper No. 14677.

30



12. Fernandez-Villaverde, J., P. Guerron-Quintana, J. F. Rubio-Ramirez (2010), "For-

tune or Virtue : Time Variant Volatilities versus Parameter Drifting in U.S. Data",

NBER Working Paper No. 15928.

13. Gelfand, A. E. and A. F. M. Smith (1990), "Sampling-Based Approaches to Calcu-

lating Marginal Densities", Journal of the American Statistical Association, Vol. 85,

No. 410(Jun. 1990), pp. 398-409.

14. Harvey, A. (1989), Forecasting, Structural Time Series models and the Kalman Filter,

Cambridge University Press.

15. Liu, J. S., W. H. Wong and A. Kong (1994), "Covariance structure of the Gibbs sam-

pler with applications to the comparisons of estimator and augmentation schemes",

Biometrika, 81, 1, pp. 27-40.

16. Marcellino, M. (1999), "Some Consequences of Temporal Aggregation in Empirical

Analysis", Journal of Business & Economic Statistics, Vol. 17, No. 1, January 1999.

17. Robert, C. and G. Casella (2004), Monte Carlo Statistical Method, Springer Texts in

Statistics.

18. Schmitt-Grohe, S., and M. Uribe (2004) "Solving Dynamic General Equilibrium

Models using a Second-Order Approximation to the Policy Function," Journal of

Economic Dynamics and Control 28, January 2004d, 755-775

19. Smets, F. and R. Wouters (2005), "Comparing shocks and frictions in US and euro

area business cycles: a Bayesian DSGE Approach," Journal of Applied Econometrics,

John Wiley & Sons, Ltd., vol. 20(2), 161-183.

20. Whelan, K. (2002), "A Guide to US Chain Aggregated NIPA Data", Review of

Income and Wealth, Series 48, No. 2, June 2002.

21. Woodford, M. (2003), Interest and Prices : Foundations of a Theory of Monetary

Policy, Princeton University Press, Princeton.

22. Working, H., (1960). "Note on the Correlation of First Di¤erences of Averages in a

Random Chain", Econometrica, Vol. 28, No. 4, 916-918.

31



8 Appendix

8.1 Converting monthly AR(1) into quarterly ARMA(1,1)

The true monthy model is

at = �mat�1 + �"t;8t = 1; 2; :::; T

"t � iid N (0; 1)

Then

at = �mat�1 + �"t

at�1 = �mat�2 + �"t�1

at�2 = �mat�3 + �"t�2

De�ne

~at � at + at�1 + at�2

~at = �m (at�1 + at�2 + at�3) + � ("t + "t�1 + "t�2)

= �2m (at�2 + at�3 + at�4) + �m� ("t�1 + "t�2 + "t�3) + � ("t + "t�1 + "t�2)

= �3m (at�3 + at�4 + at�5) + �
2
m� ("t�2 + "t�3 + "t�4)

+�m� ("t�1 + "t�2 + "t�3) + � ("t + "t�1 + "t�2)

Also de�ne

~"t � �2m� ("t�2 + "t�3 + "t�4) + �m� ("t�1 + "t�2 + "t�3) + � ("t + "t�1 + "t�2)

Then

~at = �3m~at�3 + ~"t;8t = 3; 6; :::; T

However,

Cov (~"t;~"t�3) = Cov
�
�2m� ("t�3 + "t�4) ; � ("t�3 + "t�4) + �m�"t�4

�
6= 0
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8.2 Derivation of Distribution fqi (zqi�2; zqi�1j~�qi�1 ; zqi ; wqi�2; wqi�1; wqi)

Derivation of the distribution of

0BBBBBB@
~�qi
zqi�2

zqi�1

j

26666664
~�qi�1

zqi
wqi�2

wqi�1

wqi

37777775

1CCCCCCA is not trivial. This section presents

the derivation from a general state space form of loglinearized DSGE model:

�t+1 = F�t + vt+1; vt � N (0; Q)

�t = H 0�t + ut; ut � N (0; R)

Suppose �t has some missing observations. In this case, it turns useful to partition �t into

two components

�t �
"
zt

wt

#
=

"
H 0
z

H 0
w

#
�t +

"
uzt

uwt

#
Now, stacking three months of variables into one vector transforms those equations to

~�qi =
~H~�qi + ~uqi

~�qi =
~F~�qi�1 + ~vqi

where

~�qi �

26666666664

zqi�2

zqi�1

zqi
wqi�2

wqi�1

wqi

37777777775
; ~uqi �

26666666664

uzqi�2
uzqi�1
uzqi
uwqi�2
uwqi�1
uwqi

37777777775

~�qi �

264 �qi
�qi�1
�qi�2

375 ; ~vqi =
264 �qi + F�qi�1 + F

2�qi�2

�qi�1 + F�qi�2

�qi�2

375
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with

~vqi � N
�
0; ~Q

�
~uqi � N

�
0; ~R

�
and

~H �

26666666664

0 0 H 0
w

0 H 0
w 0

H 0
w 0 0

0 0 H 0
z

0 H 0
z 0

H 0
z 0 0

37777777775

~F �

264 F 3 0 0

F 2 0 0

F 0 0

375
Given normality of errors, the joint distribution of states and data is normal with the

following mean and variance,"
~�qi
~�qi

#
j~�qi�1 � N

 "
~�qijqi�1
~H 0�qijqi�1

#
;

"
~Pqijqi�1

~Pqijqi�1
~H

~H 0 ~Pqijqi�1
~H 0 ~Pqijqi�1H + ~R

#!
De�ne

~H1 �
"
0 0 H 0

w

0 H 0
w 0

#

~H2 �

266664
H 0
w 0 0

0 0 H 0
z

0 H 0
z 0

H 0
z 0 0

377775
~R1 � V ar

 "
uzqi�2
uzqi�1

#!
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~R2 � V ar

0BBBB@
266664

uzqi
uwqi�2
uwqi�1
uwqi

377775
1CCCCA

Rewriting with partitioned matrices2666666666664

~�qi
zqi�2

zqi�1

zqi
wqi�2

wqi�1

wqi

3777777777775
j~�qi�1 � N

0B@
264 ~�qijqi�1
~H 0
1�qijqi�1
~H 0
2�qijqi�1

375 ;
264 ~Pqijqi�1

~Pqijqi�1
~H1 ~Pqijqi�1

~H2
~H 0
1
~Pqijqi�1

~H 0
1
~Pqijqi�1H1 +

~R1 ~H 0
1
~Pqijqi�1H2

~H 0
2
~Pqijqi�1

~H 0
2
~Pqijqi�1H1

~H 0
2
~Pqijqi�1H2 +

~R2

375
1CA

� N

0B@
264 ��

�1

�2

375 ;
264 �� ��;1 ��;2

�0�;1 �1 �1;2

�0�;2 �01;2 �2

375
1CA

So the desired normality with updated information is the following.0BBBBBB@
~�qi
zqi�2

zqi�1

j

26666664
~�qi�1

zqi
wqi�2

wqi�1

wqi

37777775

1CCCCCCA
24 � N

�
~�; ~V

�

24 In general, if X and Y conditional on w are jointly normal�
X 0jw Y 0jw

�0 � N �� x
y

�
;

�
�xx �xy
�yx �yy

��
then X0jy; w is also jointly normally distributed with the following distribution

Xjy; w � N
�
x+�xy�

�1
yy (y � y) ;�xx � �xy��1yy �yx

�
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~� �
"
��

�1

#
+

"
��;2

�1;2

#
��12

0BBBB@
266664

zqi
wqi�2

wqi�1

wqi

377775� �2
1CCCCA

~V �
"
�� ��;1

�0�;1 �1

#
�
"
��;2

�1;2

#
��12 �0�;2 �01;2

Since fqi (zqi�2; zqi�1j~�qi�1 ; zqi ; wqi�2; wqi�1; wqi) is the marginal distribution of the above
normal distribution

fqi � N

0BBBB@�1 +�1;2��12
0BBBB@
266664

zqi
wqi�2

wqi�1

wqi

377775� �2
1CCCCA ;�1 � �1;2��12 �01;2

1CCCCA
8.3 More Monte Carlo Results

To be updated

8.4 Medium Scale New Keynesian Model

8.4.1 Households Problem

There is a continuum of households in the economy index by i which maximizes the lifetime

utility function.

E0

1X
t=0

�tdt

(
log (cit � bcit�1) + � log

�
mit

pt

�
� 't 

l1+
it

1 + 


)

where b is the parameter that controls habit persistence, dt, is an intertemporal preference

shock and 't is a labor supply(intratemporal) shock :

log dt = �d log dt�1 + �d"d;t where "d;t � N (0; 1)

log't = �' log't�1 + �'"';t where "';t � N (0; 1)
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The ith household�s budget constraint is given by :

cit + iit +
mit

pt
+
Bit+1
pt

+

Z
qt+1;tait+1d!i;t+1jt

= witlit + (rtui;t � qta [uit]) �ki;t +
mit�1
pt

+Rt�1
Bit
pt
+ ait + Tt + Ft

where pt is price level of �nal good, wjt is the real wage, rt is the rental price of capital,

ujt > 0 is the intensity of use of capital, qta [ujt] is the physical cost of use of capital in

resource terms where

a [u] = 
1 (u� 1) + 
2 (u� 1)2

Here, we assume the household has technology that transforms the �nal good into invest-

ment good that faces this exogenous process. Thus the investment good is

Iit = �tiit

�t is an investment-speci�c technology shock or also its inverse is interpreted as the relative

price of investment good in �nal good unit. Its exogenous process is

�t = �t�1 exp (�� + ��"�;t)

where

"�;t � N (0; 1)

Later, I substitute with stationary variable ��;t �
�t
�t�1

so that

log��;t = �� + ��"�;t

And this investment good is newly installed to capital stock and thus the capital stock25

evolves with
�kit+1 = (1� �) �kit +

�
1� S

�
Iit
Iit�1

��
Iit

where

S

�
Iit
Iit�1

�
=
�

2

�
Iit
Iit�1

� �I
�2

25Here, we denote �kt as installed capital stock and kt as capital service.
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is the investment adjustment cost. For ease of notation, de�ne

F (Iit; Iit�1) �
�
1� S

�
Iit
Iit�1

��
Iit

and

F1t = 1� S
�

Iit
Iit�1

�
� S0

�
Iit
Iit�1

�
Iit
Iit�1

F2t+1 = S0
�
Iit+1
Iit

��
Iit+1
Iit

�2
Our lagrangian problem is summarized by choosing cit; Bit; uit; �kit+1; iit; Iit; ait+1;t; wit; lit
to maximize

maxE0

1X
t=0

�t

2666666664

dt

�
log (cit � bcit�1) + � log

�
mit
pt

�
� 't 

l1+
it
1+


�

��it

8>>>><>>>>:
cit + iit +

mit
pt
+ Bit+1

pt
+
R
qt+1;tait+1;td!i;t+1jt

�witlit � (rtui;t � qta [uit]) �ki;t � mit�1
pt

�Rt�1Bitpt � ait � Tt � Ft
�qit

�
�kit+1 � (1� �) �kit � F (Iit; Iit�1)

�
��it [Iit � �tiit]

9>>>>=>>>>;

3777777775
And HH will determine wit and lit by maximizing relevant part of the lagrangian under

Calvo wage setting which will be characterized separately.

Household Conditions FOCs of the above problem with respect to cit; Bit; uit; �kit+1; iit; Iit; ait+1jt
are

dt (cit � bcit�1)�1 � b�Etdt+1 (cit+1 � bcit)�1 = �it

�it = �Et�it+1
Rt
�t+1

rt = qta
0 [uit]

�itqit = �Et f�it+1 [(1� �) qit+1 + rt+1uit+1 � qt+1a (uit+1)]g

1 = �it�t

�it�it = �itqitF1;t + �Et�it+1qit+1F2;t+1

�it+1qt+1;t = �it
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Symmetric Equilibrium Since we consider a symmetric equilibrium due to complete

asset market(the complete set of state contingent Arrow securities and perfect risk sharing)

so that cit = ct; Bit = Bt; �it = �t; uit = ut; qit = qt; �it = �t; iit = it; Iit = It; �kit =
�kt; ait+1jt = at+1jt. After substituting �t =

1
�t
and rearranging,

dt (ct � bct�1)�1 � b�Etdt+1 (ct+1 � bct)�1 = �t

�t = �Et�t+1
Rt
�t+1

rt = qta
0 [ut]

�tqt = �Et f�t+1 [(1� �) qt+1 + rt+1ut+1 � qt+1a (ut+1)]g

1 = qt�tF1;t + �Et
�t+1
�t

qt+1�t+1
1

��;t+1
F2;t+1

Household labor problem Calvo wage problem for houshold

max
wjt

Et

1X
�=0

(��w)
�

(
�dt't 

l1+
jt+1

1 + 

+ �jt+1

�Y
s=1

�
�w
t+s�1
�t+s

wjtljt+�

)

subject to

ljt+� =

 
�Y
s=1

�
�w
t+s�1
�t+s

wjt
wt+�

!��
ldt+� 8j

This gives the law of motion

ft =
� � 1
�

(w�t )
1�� �tw

�
t l
d
t + ��wEt

�
�
�w
t

�t+1

�1�� �
w�t+1
w�t

���1
ft+1

ft =  dt't

�
wt
w�t

��(1+
) �
ldt

�1+

+ ��wEt

�
�
�w
t

�t+1

���(1+
)�w�t+1
w�t

��(1+
)
ft+1

The real wage index evolves :

w1��t = �w

 
�
�w
t�1
�t

!1��
w1��t�1 + (1� �w)w

�1��
t
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which can be rewritten

1 = �w

 
�
�w
t�1
�t

!1�� �
wt�1
wt

�1��
+ (1� �w) (��wt )

1��

where

�w
�

t =
w�t
wt

8.4.2 Firms

Final Good Producer Final good producer produces one �nal good in perfectly com-

petitive market using intermediate good with following technology.

ydt =

�Z 1

0
y
"�1
"

jt di

� "
"�1

where " controls the elasticity of substitution between intermediated goods. And thus the

intermediate good producers�markup is "
"�1 . The problem of �nal good producer is

max
yjt

pty
d
t �

Z 1

0
pjtyjtdj

subject to

ydt =

�Z 1

0
y
"�1
"

jt di

� "
"�1

gives input demand function

yjt =

�
pjt
pt

��"
ydt 8j

where the aggregate price level is

pt =

�Z 1

0
p1�"jt dj

� 1
1�"

Intermediate Good Producer Intermediate good producer�s technology is

yjt = Atk
�
jtl
1��
jt � �zt
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where kjt and ljt are capital services and homogenous labor and At follows

At = At�1 exp (�A + �A"A;t) "A;t � N (0; 1)

or de�ne �A;t � At
At�1

log�A;t = �A + �A"A;t

also

zt = A
1

1��
t �

�
1��
t

or de�ne �z;t � zt
zt�1

log
�z;t
�z

=
1

1� � log
�A;t
�A

+
�

1� � log
��;t
��

and

�z � �
1

1��
A �

�
1��
�

� is �xed cost parameter and usually calibrated either to zero or to guarantee zero pro�ts

in the economy at steady state.

Firms are competitive in factor markets where they confront rents, wt and rkt , from ldjt
and kdjt. Thus, the �rm solves the static cost minimization problem,

min
ldjt;kjt

wtl
d
jt + rtkjt

subject to the production

yjt = Atk
�
jtl
1��
jt � �zt

Assuming interior solution, FOCs are

wt = % (1� �)Atk�jt
�
ldjt

���
rt = %�Atk

1��
jt

�
ldjt

�1��
where % is the Lagrangian multiplier. Then we can �nd real marginal cost mct by setting
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Atk
�
jt

�
ldjt

�1��
= 1. This implies

1 = AtK
�
jt

�
ldjt

�1��
= At

 
Kjt

ldjt

!�
ldjt

= At

�
wt
rt

�

1� �

��
ldjt

ldjt =

�
�
1��

wt
rt

���
At

mct =

�
1

1� �

�
wtl

d
jt

=

�
1

1� �

�
wt

�
�
1��

wt
rt

���
At

=

�
1

1� �

�1��� 1
�

�� w1��t (rt)
�

At

Intermediate good producer price decision Calvo Pricing decision

max
pit

Et

1X
�=0

(��p)
� �t+�
�t

( 
�Y
s=1

��t+s�1
pit
pt+�

�mct+�

!
yit+�

)

subject to

yit+� =

 
�Y
s=1

��t+s�1
pit
pt+�

!�"
ydt+� 8i

The law of motion

g1t = �tmcty
d
t + ��pEt

�
��t
�t+1

��"
g1t+1

g2t = �t�
�
t y
d
t + ��pEt

�
��t
�t+1

�1�"�
��t
��t+1

�
g2t+1

"g1t = ("� 1) g2t
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Price level evolves

1 = �p

�
��t�1
�t

�1�"
+ (1� �p)��1�"t

8.4.3 Government

Gvernment sets the nominal interest rates according to the Taylor rule :

Rt
R
=

�
Rt�1
R

�
R0B@��t
�

�
�0B@ ydt
ydt�1

�yd

1CA

y
1CA
1�
R

exp (mt)

through open market operations that are �nanced through lump-sum transfers Tt such that

the de�cit are equal to zero :

Tt =

R 1
0 mitdi

pt
�
R 1
0 mit�1di

pt
+

R 1
0 Bit+1di

pt
�Rt�1

R 1
0 Bitdi

pt

� represents the target levels of in�ation (equal to in�ation in the steady state), R steady

state gross return of capital, and �yd the steady state gross growth rate of y
d
t . The term

mt is a random shock to monetary policy that follows mt = �m"mt where "mt is distributed

according to N (0; 1). Consequently, the HH aggregate budget constraint is reduced to

ct +
1

�t
It = wtlt + (rtut � qta [ut]) �kt +
t

8.4.4 Aggregation

The aggregate demand is

ydt = ct +
1

�t
It + qta [ut] �kt

Calvo pricing produces price dispersion in the economy, thus

ydt

Z 1

0

�
pjt
pt

��"
dj = AtK

�
t

�
ldt

�1��
� �zt
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By de�ning vpt �
R 1
0

�
pjt
pt

��"
dj, with the properties of indexation under Calvo pricing,

vpt = �p

�
��t�1
�t

��"
vpt�1 + (1� �p)�

��"
t

and we have

ydt =
Atk

�
t

�
ldt
�1�� � �zt
vpt

Similarly de�ne vwt �
R 1
0

�
wit
wt

���
di, then

ldt =
1

vwt
lst

Also

vwt = �w

 
wt�1
wt

�
�w
t�1
�t

!��
vwt�1 + (1� �w)

�
�w

�
t

���
Also in capital market Z 1

0
kjtdj = ut�kt

and thus

kjt = ut�kt

Also capital stock evolves

�kt+1 = (1� �) �kt +
�
1� S

�
It
It�1

��
It

8.4.5 Equilibrium Conditions

� Intermediate good producer
ut�kt

ldt
=

�

1� �
wt
rt

mct =

�
1

1� �

�1��� 1
�

�� w1��t (rt)
�

At
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g1t = �tmcty
d
t + ��pEt

�
��t
�t+1

��"
g1t+1

g2t = �t�
�
t y
d
t + ��pEt

�
��t
�t+1

�1�"�
��t
��t+1

�
g2t+1

"g1t = ("� 1) g2t

1 = �p

�
��t�1
�t

�1�"
+ (1� �p)��1�"t

� Households
dt (ct � bct�1)�1 � b�Etdt+1 (ct+1 � bct)�1 = �t

�t = �Et�t+1
Rt
�t+1

rt = qta
0 [ut]

�tqt = �Et f�t+1 [(1� �) qt+1 + rt+1ut+1 � qt+1a (ut+1)]g

1 = qt�tF1;t + �Et
�t+1
�t

qt+1�t+1
1

��;t+1
F2;t+1

ft =
� � 1
�

(w�t )
1�� �tw

�
t l
d
t + ��wEt

�
�
�w
t

�t+1

�1�� �w�t+1
w�t

���1
ft+1

ft =  dt't

�
wt
w�t

��(1+
) �
ldt

�1+

+ ��wEt

�
�
�w
t

�t+1

���(1+
)�
w�t+1
w�t

��(1+
)
ft+1

1 = �w

 
�
�w
t�1
�t

!1�� �
wt�1
wt

�1��
+ (1� �w) (��wt )

1��

�w
�

t =
w�t
wt

� Government

Rt
R
=

�
Rt�1
R

�
R0B@��t
�

�
�0B@ ydt
ydt�1

�yd

1CA

y
1CA
1�
R

exp (mt)

45



� Aggregation
ydt = ct +

1

�t
It + qta [ut] �kt

ydt =
Atk

�
t

�
ldt
�1�� � �zt
vpt

vpt = �p

�
��t�1
�t

��"
vpt�1 + (1� �p)�

��"
t

vwt = �w

 
wt�1
wt

�
�w
t�1
�t

!��
vwt�1 + (1� �w)

�
�w

�
t

���
�kt+1 = (1� �) �kt +

�
1� S

�
It
It�1

��
It

� Exogenous Process
At = At�1 exp (�A + �A"A;t)

�t = �t�1 exp (�� + ��"�t)

log dt = �d log dt�1 + �d"d;t

log't = �' log't�1 + �'"';t

mt = �m"mt

� De�nition for growth term
zt = A

1
1��
t �

�
1��
t

8.4.6 Stationary Equilibrium Conditions

Preliminaries

� Variables �kt; ldt ; wt; rkt ;mct; g1t ; g2t ;�t;��t ; �t; ydt ; It; qt; ut; Rt; ct; ft; w�t ;�w
�

t ; vpt ; v
w
t ; zt

� Stationary variables.

� ~ct = ct
zt
; ~wt =

wt
zt
; ~w�t =

w�t
zt
;~{t =

It
zt�t

; ~ydt =
ydt
zt

� ~rt = rt�t;
~kt+1 =

�kt+1
zt�t

; ~qt = qt�t;
~�t = �tzt;
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Stationarize I

� Intermediate good producer

ut�kt

ldt zt�1�t�1

zt�1�t�1
zt�t

=
�

1� �
wt
rt

1

zt�t

mct =

�
1

1� �

�1��� 1
�

�� �wt
zt

�1��
(rt�t)

�

At

z1��t

��t

g1t = �tztmct
ydt
zt
+ ��pEt

�
��t
�t+1

��"
g1t+1

g2t = �tzt�
�
t

ydt
zt
+ ��pEt

�
��t
�t+1

�1�"�
��t
��t+1

�
g2t+1

"g1t = ("� 1) g2t

1 = �p

�
��t�1
�t

�1�"
+ (1� �p)��1�"t

� Households

dt

�
ct
zt
� bct�1

zt�1

zt�1
zt

��1
� b�Etdt+1

�
ct+1
zt+1

zt+1
zt

� bct
zt

��1
= �tzt

�tzt = �Et�t+1zt+1
zt
zt+1

Rt
�t+1

rt�t = qt�ta
0 [ut]

�tztqt�t = �Et

(
�t+1zt+1

zt
zt+1

"
(1� �) qt+1�t+1

�t
�t+1

+ rt+1�t+1
�t
�t+1

ut+1

�qt+1�t+1
�t
�t+1

a (ut+1)

#)

1 = qt�tF1;t + �Et
�t+1zt+1
�tzt

zt
zt+1

qt+1�t+1
1

��;t+1
F2;t+1
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where

F1t = 1� S
�
~{t
~{t�1

zt�t
zt�1�t�1

�
� S0

�
~{t
~{t�1

zt�t
zt�1�t�1

�
~{t
~{t�1

zt�t
zt�1�t�1

F2t+1 = S0
�
~{t+1
~{t

zt+1�t+1
zt�t

��
~{t+1
~{t

zt+1�t+1
zt�t

�2

ft =
� � 1
�

�
w�t
zt

�1��
�tzt

�
wt
zt

��
ldt + ��wEt

�
�
�w
t

�t+1

�1�� �
w�t+1zt
w�t zt+1

zt+1
zt

���1
ft+1

ft =  dt't

�
wtzt
w�t zt

��(1+
) �
ldt

�1+

+��wEt

�
�
�w
t

�t+1

���(1+
)�
w�t+1zt
w�t zt+1

zt+1
zt

��(1+
)
ft+1

1 = �w

 
�
�w
t�1
�t

!1��  wt�1
zt�1
wt
zt

zt�1
zt

!1��
+ (1� �w) (��wt )

1��

�w
�

t =
w�t
wt

� Government

Rt
R
=

�
Rt�1
R

�
R0B@��t
�

�
�0B@ ydt
ydt�1

zt�1
zt

zt
zt�1

�yd

1CA

y
1CA
1�
R

exp (mt)

� Aggregation
ydt
zt
=
ct
zt
+

1

zt�t
It +

qt�ta [ut]
�kt

zt�1�t�1

zt�1�t�1
zt�t

ydt
zt
=

At
zt

�
kt

�t�1zt�1

�� � �t�1zt�1
�tzt

��
(�tzt)

� �ldt �1�� � �
vpt

vpt = �p

�
��t�1
�t

��"
vpt�1 + (1� �p)�

��"
t

vwt = �w

 
wt�1
wt

zt
zt�1

zt�1
zt

�
�w
t�1
�t

!��
vwt�1 + (1� �w)

�
�w

�
t

���
�kt+1
zt�t

= (1� �)
�kt

zt�1�t�1

zt�1�t�1
zt�t

+

�
1� S

�
~{t
~{t�1

zt�t
zt�1�t�1

��
it
zt�t
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� Exogenous Process
At = At�1 exp (�A + �A"A;t)

�t = �t�1 exp (�� + ��"�t)

log dt = �d log dt�1 + �d"d;t

log't = �' log't�1 + �'"';t

mt = �m"mt

� De�nition for growth term
zt = A

1
1��
t �

�
1��
t

Stationarize II

� Intermediate good producer

ut~kt

ldt

1

�z;t��;t
=

�

1� �
~wt
~rt

mct =

�
1

1� �

�1��� 1
�

��
( ~wt)

1�� (~rt)
�

g1t =
~�tmct~y

d
t + ��pEt

�
��t
�t+1

��"
g1t+1

g2t =
~�t�

�
t ~y
d
t + ��pEt

�
��t
�t+1

�1�"�
��t
��t+1

�
g2t+1

"g1t = ("� 1) g2t

1 = �p

�
��t�1
�t

�1�"
+ (1� �p)��1�"t

� Households

dt

�
~ct � b~ct�1

1

�z;t

��1
� b�Etdt+1

�
~ct+1�z;t+1 � b~ct

��1
= ~�t
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~�t = �Et~�t+1
1

�z;t+1

Rt
�t+1

~rt = ~qta
0 [ut]

~�t~qt = �Et

(
~�t+1

��;t+1�z;t+1

"
(1� �) ~qt+1 + ~rt+1ut+1

�~qt+1a (ut+1)

#)

1 = ~qtF1;t + �Et
~�t+1

~�t�z;t+1

~qt+1
��;t+1

F2;t+1

where

F1t = 1� S
�
~{t
~{t�1

�z;t��;t

�
� S0

�
~{t
~{t�1

�z;t��;t

�
~{t
~{t�1

�z;t��;t

F2t+1 = S0
�
~{t+1
~{t

�z;t+1��;t+1

��
~{t+1
~{t

�z;t+1��;t+1

�2

ft =
� � 1
�

( ~w�t )
1�� ~�t ( ~wt)

� ldt + ��wEt

�
�
�w
t

�t+1

~w�t
~w�t+1

1

�z;t+1

�1��
ft+1

ft =  dt't

�
~wt
~w�t

��(1+
) �
ldt

�1+

+ ��wEt

�
�
�w
t

�t+1

~w�t
~w�t+1

1

�z;t+1

���(1+
)
ft+1

1 = �w

 
�
�w
t�1
�t

!1�� �
~wt�1
~wt

1

�z;t

�1��
+ (1� �w) (��wt )

1��

�w
�

t =
~w�t
~wt

� Government

Rt
R
=

�
Rt�1
R

�
R0B@��t
�

�
�0B@ ~ydt
~ydt�1

�z;t

�yd

1CA

y
1CA
1�
R

exp (mt)

� Aggregation

~ydt = ~ct +~{t +
~qta [ut] ~kt
�z;t��;t
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~ydt =

�A;t
�z;t

�
ut~kt

�� �
ldt
�1�� � �

vpt

vpt = �p

�
��t�1
�t

��"
vpt�1 + (1� �p)�

��"
t

vwt = �w

 
~wt�1
~wt�z;t

�
�w
t�1
�t

!��
vwt�1 + (1� �w)

�
�w

�
t

���
~kt+1 = (1� �)

~kt
�z;t��;t

+

�
1� S

�
~{t
~{t�1

�z;t��;t

��
~{t

� Exogenous Process
log�A;t = �A + �A"A;t

log��;t = �� + �A"�;t

log dt = �d log dt�1 + �d"d;t

log't = �' log't�1 + �'"';t

mt = �m"mt

� De�nition for growth term

log
�z;t

exp (�z)
=

1

1� � log
�A;t

exp (�A)
+

�

1� � log
��;t

exp (��)

8.4.7 Steady State

Equilibrium Conditions Let �z � �z = �
1

1��
A �

�
1��
k where �A � �A and �k � �k.

Given the de�nitions, the mean growth rate of the economy is �c = �x = �w = �w� =

�yd = �z. ~u = 1 at steady state.

� Households satisfy �
~c� b~c

�z

��1
� b� (~c�z � b~c)�1 = ~�

1 =
�

�z�k
(~r + 1� �)
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�
1

�z

R

�
= 1

~r = 
1

1 = ~q

f =
� � 1
�

( ~w�)1�� (��w)�� ~� ( ~w�)� ld + ��w

�
��w

��z

�1��
f

f =  (��w)��(1+
)
�
ld
�1+


+ ��w

�
��w

��z

���(1+
)
f

� Firms that can change prices set them to satisfy (4 eqs)

g1 = ~�mc~yd + ��p

�
��

�

��"
g1

g2 = ~���~yd + ��p

�
��

�

�1�"
g2

"g1 = ("� 1) g2

where

��w =
~w�

�w

� They rent inputs to satisfy their static minimization problem(2 eqs)

~k

ld
=

�

�� 1
~w

~r
�z�k

mc =

�
1

1� �

�1��� 1
�

��
( ~w)1�� ~r�

� The wages evolve

1 = �w
�
��w�1

�1��
(�z)

�1+� + (1� �w) (��w)1��

� The price level evolve

1 = �p
�
���1

�1�"
+ (1� �p)��1�"
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� Markets clear

~yd = ~c+ ~x

vp~yd =
�A
�z
~k�
�
ld
�1��

� �

where

vp = �p
�
���1

��"
vp + (1� �p)���"

vw = �w

�
��w�1

�z

���
vw + (1� �w) (��w)��

and

~k = (1� �)
~k

�z��
+~{

� Exogeous processes evolve (6 eqs)

d = 1

' = 1

�k = �k

�A = �A

m = 0

where

�z = �
1

1��
A �

�
1��
k

Steady State computation

� Fixed Parameters

Table 1 : Fixed Parameters

� � " � � 
2

0:9992 0:025=3 10 10 0 0:001
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� Estimated parameters :

�
b; 
;  ; �; �; �p; �p; �w; �w;�k;�A; 
R; 
y; 
�;�; �d; �'; �K ; �a; �d; �'; �M

	
� Free parameters : set u = 1 so that 
1 = ~r.

� Parameters related to exogenous processes : d = 1; ' = 1; m = 0.

� Growth terms

�z = �
1

1��
A �

�
1��
k

�y = �z

�x = �z�k

� Interest rate

~r =
�z�k
�

� 1 + �


1 = ~r

R =
��z
�

� Prices

�� =

 
1� �p��(1�")(1��)

1� �p

! 1
1�"

mc =
"� 1
"

1� ��p�(1��)"

1� ��p��(1��)(1�")
��

vp =
1� �p

1� �p�(1��)"
���"
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� Wages

��w =

 
1� �w (�)(1��)(�w�1) (�z)�1+�

1� �w

! 1
1��

~w = (1� �)
�
mc
��
~r

��� 1
1��

~w� = ~w�w
�

vw =
1� �w

1� �w�(1��w)� (�z)�
(��w)��

� Capital/labor ratio
~k

ld
=

�

�� 1
~w

~r
�z�k

� Assuming � = 0 or � satisfying the zero pro�ts at steady state

~yd

ld
=

�A
�z

�
~k
ld

��
� �

vp

~k

ld

�
1� 1� �

�z��

�
=
~{

ld

~{

ld
=
~k

ld

�
�z�� � 1 + �

�z��

�
~c

ld
=
~yd

ld
� ~{

ld

� Labor demand

~�ld =

�
~c

ld
� b~c

�zld

��1
� b�

�
~c

ld
�z � b

~c

ld

��1
=

�
~c

ld

��1�
1� b

�z
�

��
1� b

�z

��1
=

�
~c

ld

��1 (�z � b�)
(�z � b)
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f =

��1
� ~w� (��w)�� ~�ld�
1� ��w

�
��w
��z

�1���

ld =

2664f
�
1� ��w

�
��w
��z

���(1+
)�
 (��w)��(1+
)

3775
1

1+


56


