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Abstract

This paper asks whether frequency misspecification of a New Keynesian model re-
sults in temporal aggregation bias of the Calvo parameter. First, when a New Keyne-
sian model is estimated at a quarterly frequency while the true data generating process
is the same but at a monthly frequency, the Calvo parameter is upward biased and
hence implies longer average price duration. This suggests estimating a New Keyne-
sian model at a monthly frequency may yield different results. However, due to mixed
frequency datasets in macro time series recorded at quarterly and monthly intervals,
an estimation methodology is not straightforward. To accommodate mixed frequency
datasets, this paper proposes a data augmentation method borrowed from Bayesian
estimation literature by extending MCMC algorithm with "Rao-Blackwellization" of
the posterior density. Compared to two alternative estimation methods in context of
Bayesian estimation of DSGE models, this augmentation method delivers lower root
mean squared errors for parameters of interest in New Keynesian model. Lastly, a
medium scale New Keynesian model is brought to the actual data, and the benchmark
estimation, i.e. the data augmentation method, finds that the average price duration
implied by the monthly model is 5 months while that by the quarterly model is 20.7

months.
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1 Introduction

The key feature of New Keynesian models is Calvo type of price friction which is central
to understand the propagation mechanism of real activities in response to monetary policy
shock. The degree of this price friction is parameterized by a probability in which a firm
cannot reoptimize within one period. Due to its quantitative importance, Calvo parameter
has been extensively studied from both micro-dataset and macro models but its estimates
are widely dispersed. From micro dataset, Bils & Klenow (2003) finds the median price
duration of firms to be 4.3 months while Nakamura & Steisson (2008) argues 8.7 months
once irrelevant pricing behaviors such as temporary salescuts are controlled. On the other
hand, the average price duration implied by Calvo parameter in macro models ranges from
8 months to 24 months depending on the models and estimation strategies'.

This discrepancy between microevidence and macro model’s estimates is generally per-
ceived as a misspecification of New Keynesian models. But this perception is neglecting
the fact that microevidence is based on monthly observations while macro models are es-
timated at a quarterly frequency. If a temporal aggregation bias in Calvo parameter is
present, modeling the pricing behavior at a coarse frequency while the true decision time
interval is shorter can in fact be misleading. Thus, this paper asks whether a frequency
misspecification of a New Keynesian model results in a temporal aggregation bias of the
Calvo parameter. When a New Keynesian model is estimated at a quarterly frequency
while the true data generating process is the same model but at a monthly frequency, the
Calvo parameter is upward biased and hence implies longer average price duration. This
suggests estimating a New Keynesian model at a monthly frequency may yield different
results.

In order to resolve the temporal aggregation bias caused by the frequency misspecifica-
tion in DSGE models, estimation of a model at the true frequency is necessary. However,
when a monthly specified DSGE model brought to an estimation, a technical challenge
emerges since data is available at different frequencies. For example, interest rate, infla-
tion rate, wage rate and consumption are available at monthly frequency while GDP and
investment are only at quarterly. One way is to identify the analytical mapping from a
monthly specification of a model to a quarterly specification. In this way, the converted

model at the quarterly frequency can be estimated with quarterly data. This conversion

! Christiano, Eichenbaum & Evans (2005), Smets & Wouters(2007), and Del Negro & Schorfeheide (2008)
are only a few of many other examples.



is well known with simple statistical models, for example, monthly AR(1) is equivalent to
quarterly ARMA(1,1)2. However, it is not clear how to convert a monthly specified DSGE
model to a quarterly specification in general due to the forward looking nature of decision
variables. Therefore, a standard estimation procedure needs to be modified to estimate
monthly specified DSGE models.

To accommodate mixed frequency dataset, the quarterly data can be treated as an
observable variable that has missing observations. Then, "imputing some values" to these
missing observations makes a complete dataset that facilitates the standard procedure
of estimation. This is called a data augmentation and this paper proposes an estimation
strategy using this data augmentation technique that is borrowed from Bayesian estimation
literature in which "imputing some values" to missing observations is based on simulations.
The simulation of missing observations is by a direct sampling from a distribution of missing
observations. This distribution in general can be expressed by a marginal distribution
of a joint distribution that is defined not only in terms of model’s parameters but also
jointly in terms of an auxiliary variable for missing observations conditional on the available
data. Accordingly, MCMC algorithm can be extended to sample both parameters and
missing observations similar to sampling a mixture model. MCMC theories have proven this
modified algorithm converges at the geometric rate and thus central limit theorem ensures
the consistency of marginal sampled estimates for parameters®. Gelfand & Smith(1990)
refers this joint distribution as "Rao-Blackwellization" of an original target distribution of
parameters since this is a form of a generalization of the distribution and thus incorporates
richer information by allowing "imputing values" into missing observations which is in
some sense an example of Rao-Blackwell Theorem. And they show theoretically that the
advantage of the data augmentation is efficiency gains of parameters’ estimates and this
was further generalized by Liu, Wong & Kong(1994).

A sampling scheme for the data augmentation procedure is not unique at least in
the context of estimating DSGE models since missing observations are multiple periods.
However, due to the general structure of DSGE models, it is not feasible to sample the whole
missing observations in one step which would have been the most efficient method. Instead,
this paper chooses to sample missing observations sequentially period by period using

information from adjacent periods since an analytical distribution of missing observations

?To my knowledge, Working(1960) is an early paper that illustrates this example and a more compre-
hensive study of temporal aggregation with various statistical models is shown in Marcellino (1999).
Diebolt & Robert (1994)



for each period can be derived from marginal distributions used in Kalman Filter updating
step. This sampling scheme is similar to Elerian, Chib and Shephard (2001) in which
missing observations are sampled from a marginal distribution conditioning on observations
of two closest periods back and forth. Alternative to the data augmentation, Kalman Filter
can be modified in two ways to evaluate the likelihood of proposed values for parameters
under mixed frequency dataset without the data augmentation procedure. Thus, in order
to demonstrate the advantage of the data augmentation over these alternatives, a Monte
Carlo experiment on a medium scale New Keynesian model is presented. The second main
finding of this paper is that data augmentation estimation delivers lower root mean squared
errors for parameters of interest in a medium scale New Keynesian model.

Lastly, the medium scale New Keynesian model is brought to the actual data, and
with the benchmark estimation method the average price duration implied by the monthly
model is 5 months while that by the quarterly model is 20.7 months.

The paper proceeds as follows. Section 2 demonstrates the time aggregation bias of
AR(1) process and a simple New Keynesian model to serve as a motivation. Section
3 presents mixed frequency estimation strategies after some preliminary introduction of
notations. Section 4 briefly discusses a medium scale New Keynesian model following FV-
GQ-RR(2010). Section 5 presents estimation results from MC experiments on the medium
scale New Keynesian model across three methodologies and also estimation exercise with

actual data. Section 6 concludes.

2 Temporal Aggregation Bias

This section shows the temporal aggregation bias issue with AR(1) model and with 3

equation New Keynesian model due to a frequency misspecification.

2.1 AR(1)

A monthly AR(1) process is converted into an ARMA(1,1) process when aggregated into
quarterly frequency®. Given this conversion, this section demonstrates Monte-Carlo sim-

ulation results and also the time aggregation bias when this conversion is ignored and

*Derivation of a quarterly specification from aggregation of monthly AR(1) model is shown in the
appendix.



estimated simply with quarterly AR(1) specification. Assume that the true model is

ag = pa—1 +oe,Vt=1,2,...T
e ~ wid N(0,1)

Monthly observations are simulated from this model for T" = 300 and with 10,000 MC
simulations. And suppose an econometrician observes the aggregated data at quarterly

frequency with following aggregation scheme.
at = ay + ai—1 + ap—2

For each dataset of 10,000 simulations, the econometrician can estimate quarterly AR(1),
i.e. a misspecified model, or quarterly ARMA(1,1) if the true model is known to the
econometrician. So

at = PyGt—3 + 0104
or

at = pyGt—3 + 01Vt + O2Vt-3

Thus, given the exact conversion, the persistence parameter shoud be p, = p3. The next
table shows the estimation results of this persistence parameter. Assume p = 0.9 is the
true value with the monthly model. p, is an estimate with quarterly AR(1) while g 1s an
estimate with quarterly ARMA(1,1). These estimates are an average of point estimates over

MC simulations. And the value below is the standard deviation of those point estimates.

p | P Dy Py

0.9 | 0.7290 | 0.8011 | 0.7236
0.0285 | 0.0469

It clearly shows upward bias on p, with AR(1) specification and this is due to the mis-
specification. When estimated with a correct model, ARMA(1,1), it gives a value close
to the truth. With this simple statistical model that has backward looking variable, the
true model can be retrieved even when data is aggregated over time because the exact con-
version from a monthly specification to a quarterly specification is known. However, this
exact conversion will not be apparent with DSGE models where forward looking variables
are present and thus aggregation of variables with expectations into coarser time interval

is not clear.



2.2 Simple New Keynesian model

A parsimonious New Keynesian model with Calvo pricing feature is as follows in log-

linearized form.

T = [Emi + Ky et
Ewirr1r = ye+ Ry — By
Ry = ynme+ 79, (Yt — Yi-1) + emt
where
Emit = Omlmt
Ept = PuEut—1 T Opulys
(1-60)(1-0)
= 0

For simplicity, log-utility and inelastic labor supply are assumed and the monetary author-
ity targets the interest rate following Taylor rule that responds to inflation and to growth
rate of output. And the source of uncertainty is price markup shock ¢,,; with AR(1) and
monetary shock €, with iid process. The monetary policy in this model is no longer
neutral due to the price friction and thus causes a reaction of real activities. And it is well
known that the degree of Calvo parameter, 0, determines the length of propagation of the
real activities in response to the monetary policy shock. The observables are interest rate,
inflation rate and quarterly growth rate of output. The reason why quarterly measure for
output is used is to mimic the estimation with real data in which monthly growth rate of
output is not observed but only quarterly. Suppose for now the quarterly growth rate of
output is th — yg 3. T'wo measurement errors are added to observables so that stochastic

singularity is avoided®. So the observation equation of this model can be expressed as

Ry 0
Tt :H,§t+ Uylylt
th - th—B OvyVot

>To avoid stochastic singularity, only one measurement error is needed but I added one more because
on rare cases a numerical singularity could arise.



where H is derived from a solution of the model and state variable, £, = [th7€u,t,€m7t]/
with z; being a vector of predetermined variables®. Calibrated parameters are shown in
the next table’,

ﬂ 0 ’Yy i pp Ou,Om, 0y
0.9992 | 0.9 1 0.15 ] 1.5 0.9 0.01

and simulated this model with 7" = 100 and with 100 MC simulations.

In order to estimate the model at quarterly frequency, aggregation schemes for each
observable is necessary and they generally differ depending on whether the variable is flow
or stock. Interest rate and inflation rate are growth rates of stock variables and thus it
is relatively easier to aggregate compared to flow variables such as GDP. Since quarterly

interest rate is a three months of compounded monthly interest rates,
RY =Ry + Ry + Ry—s

Similarly, quarterly inflation rate is inflation rate from three months prior to current month
8
S0,

775’2 =T+ Te—1 + T2

And T follow NIPA convention of GDP aggregation which sums monthly nominal GDPs.

So in log-linearized form, the real output would be

tQ [ + (ye—1 — 7)) + (Ys—2 — T — 1))

Lo =

Y

Since the original monthly model has already generated quarterly growth rate for output,
observations from every last month of quarters can simply be collected to construct the

quarterly dataset. Given these aggregation scheme, the quarterly observables are

Ry’

m

th - th—?:

6Given the aggregation scheme explained in the following paragraph @ =
[yt—l,yt—Z,yt—3,yt—47yt—s,ﬂ't—l,7Tt—2,7Tt—3,71't—4]l

T also checked with different degree of calibrated Calvo parameter, 6§ € {0.85,0.75} and find temporal
aggregation biases. Also different values of Taylor rule parameters have not affected these findings with
Calvo parameters.

81 also experimented having simply 7'('? = % (e + me—1 + Ti—2) + (M1 + T2 + Te—3) + (Te—2 + T3 + Te—4a)]
which did not affect the results.



Measurement errors are attached to all three observables reflecting the fact that this
quarterly specified model might be potentially misspecified. Following the standard Bayesian
technique (An & Schorfeheide(2006)), New Keynesian model which is analytically same as
above is estimated based on those aggregated observables. The discount factor is cali-
brated by having ,@q = 8% so that the steady states of interest rates are consistent across
two frequencies. The diffuse priors are set including Calvo parameters except Taylor rule
parameters” are set to have reasonable acceptance rate and desirable convergence of MC

chains.

Qq :Yy T ﬁ# 5m> 5/17 o
Unif (0,1) | N(0.15,0.1) | N (1.5,0.2) | Unif (0,1) | IG (0.02,2)

In addition to the standard quarterly model, a quarterly model in which price markup shock
has ARMA(1,1) process and monetary policy shock has MA(1) process is also estimated.
Although this does not necessarily have a theoretical justification, it is worth to examine
whether additional MA terms can correct the biases following Smets & Wouters (2005).
For the comparison of Calvo parameter specified at different time frequencies, an envelope
calculation is needed. Because this parameter is a probability that the monopolistic com-
petitive firm cannot reoptimize their prices within its specified decision time interval, the
average price duration for those firms can be computed and further the implied probability
under different decision time interval, say coarser interval, can be backed out from this
price duration. For example, suppose § = 0.9 in the monthly model, then the average
price duration of firms is 10 months!? which is equivalent to 13—0 quarters. So the implied
probability!! at quarterly frequency would then be 04 = 0.7. In principle, if there were

no temporal aggregation bias on this parameter, the quarterly estimation results would be

9Under various calibration schemes, Taylor rule parameters had generally bad identifications in quarterly
estimation but this anamoly did not affect Calvo estimates.

10 1

o
. S i
average price duration = Y ¢/ = =
i=0
g _q_ 1

avg.price dura.



expected to have 6, = 0.7. The results are shown in the following table.

methods 0 Yy sl P logo,, logo, logom,
True 0.9(0.7) 0.15 1.5 0.9 (0.729) NA —4.6052 —4.6052
Q-AR 0.8977  0.0784 1.4997 0.6771 NA —2.5082 —3.3380
0.0173 0.0154  0.0221 0.0142 0.1540 0.3725
Q-ARMA | 0.8642 0.1207 1.5273 0.5959 —0.2306 —2.8447 —3.0052
0.0529 0.0182  0.0279 0.0274 0.3832 0.2802 0.2671

The values in the parenthesis next to true values in the first row are the quarterly parameter
values that are implied by our conversion schemes with Calvo parameter and persistence
of AR(1). The second row shows substantial upward aggregation bias with respect to both
Calvo parameter and persistence parameter of markup shock. Including moving average
terms to the exogenous processes mitigates the bias on persistence parameter but does not
eliminate the bias completely and moreover does not improve Calvo parameter estimate.
This is quite a surprising outcome relative to AR(1) example but can lead to an inter-
esting conclusion that specifying a rational expectation model at different frequencies can
produce a different estimates of certain structural parameters which cannot be resolved by
simply adding MA terms. Hence, this difference is dfficult to be reconciled when rational
expectation models are specified at different frequencies unless the model is estimated at
its true frequency. So if a research believes in a model that is at higher frequency than
he or she observes, this results show that modeling at the lower frequency due to data

availability can be problematic.

3 Mixed Frequency Estimation Strategies

This section shifts the focus to an estimation strategy under a mixed frequency dataset
without specifying DSGE model at a lower frequency that gives rise to a time aggregation
bias. This section provides three different alternatives of mixed frequency esimtation.
Although these strategies are all correct in a sense of the convergence of the markov chains
and the asymptotic consistency of estimates but the data augmentation shows advantage
in the efficiency of parameter estimates. The detailed algorithms are explained in this
section and the efficiency performance of estimation methodologies are compared by root

mean squared errors of parameter estimates of a medium scale New Keynesian model.



3.1 Preliminary Setup

Given equilibrium conditions of a model, those conditions are log-linearized around a de-
terministic steady state and can be summarized by state-space representation that allows

Bayesian estimation framework to be implemented.

1 = F(O)§ + g1, ~N(0,Q(0))
n, = H(0)&+u,ue~N(0,R(0))

where the first equation is the state equation and the second one is the measurement
equation describing the evolution of the observables as functions of the endogenous and
exogenous states. £ is an n, X 1 vector of a latent state and 7, is an observed variable
with n, x 1. Bayesian estimation is to maximize a posterior density function of state-space
equations constructed by setting priors on parameters of a model and by the likelihood

function.
p(Oly") == (6) L (6ly")

Prediction error decompostion (Harvey(1980)) facilitates the evaluation of the likelihood

function period by period using Kalman Filter that optimally estimates latent variables.

T
L(6;y") =] ¢ (6; 90 d0-1)

t=1

Since the parameters of a DSGE model are highly nonlinear, Metropolis-Hastings algorithm
is applied to numerically explore the shape of the posterior with parameter values. How-
ever, when data are available at multiple frequencies, this standard procedure of Bayesian
estimation is not straightforward. For the observation variable, 7, is incomplete and has
missing observations which prevents from evaluating likelihood function with standard
Kalman Filter.

An example with more notations need to be introduced to accommodate this mixed
frequency dataset. As a practical purpose!?, this paper is restricting to a case where data,

is combined with monthly and quarterly time series and estimating monthly model. Hence,

12 At least two of the following methods can also deal a situation where dataset is constructed by more than
two frequencies in principle. However, practicality of estimating under this circumstance is questionable.

10



1, can be partitioned into two variables,

Zt
M =
wt

where w; is a monthly observable while z; is a quarterly observable. Then, the state space

representation can be rewritten

§ep1 = F&+un

z H, uf
wy H, uy

and note that ¢t = 1,2,3..., T is a sequence of months'. In order to disentangle z; into one

that is observed and one missing, subsequence notations for time is necessary. Let ¢; be

the last month of every quarter in which data for both variables, z; and w;, are collected

and ¢; — 1 and ¢; — 2 be the months in which only data for w; are available. So when ) = %

{¢}%, = {3,6,9,..T —3,T}
{a-1}9, = {2,5,...T -1}
{ei-212, = {1.4,..T -2}

The history notations are as follows, the monthly variables will be
w' = {wT}izo
while the quarterly observed variable is
7' =74 Uzt yze?

where
iefirg <t}

tildes denote the collection of only one months from each quarter. Given above notations,

13For the consistency of notations, let T be the last month of the last quarter.

11



the posterior density function of interest under mixed frequency dataset becomes
P (HIWT, 2‘1Q)

In principle, the mixed frequency estimation strategies will differ by how to evaluate like-
lihood function that constitutes this posterior density. In short, the stacking method will
redefine the state space representation at quarterly frequency while the underlying model
is monthly, Durbin-Koopman method will modify Kalman Filter in which the dimension of
Kalman Filter gain changes consistent with the dimension of available data in each period,
and the data augmentation method simulates the missing observations to fill the gap by
demarginalizing the above posterior density so that it transforms into a joint density which

is in terms of not only parameters but also of missing observations.

3.2 Data Augmentation Method

Data augmentation method is based on sampling from a joint posterior density that is con-
structed by "Rao-Blackwellization" or "demarginalization" of an original posterior density.
In other words, an auxiliary variable that stands for missing observations is introduced
and filling this variable with a proxy value can complete the mixed frequency dataset and
thus allows to evaluate the posterior density under a complete dataset. And this proxy will
be simulated at every iteration of MCMC algorithm from a tractable distribution that is

derived from the model under certain parameter values. So the joint density is

p (0w’ Z99) :/ﬁ(e,zm—l,zq@—2|wT,qu)dz
Z

p (0,291 799 2wl 799) = ¢ (9,791, 7902 |wT,299) 7 (0)

The original posterior density is a marginal density of this joint density by integrating out
the auxiliary variable, missing observations. Thus, this artificial extension of a posterior
density function is only for the computational device and does not invalidate the inference
on the structural parameters, 6, as will be shown below. So the objective is to sample the

parameters and missing observations'* jointly but this would be feasible by separating this

Whenever a hat, “, is labeled, it means sampled values for the variables.

12



joint density function into two stage samplings.

{ZQQ*172‘JQ*2}(m) ~ f(QQQ*17ZQQ*2‘WT7ZQQ7é(m))

9(m+1) ~ p (9|WTa tiv {ti_lv ti_2}(m)>

This is a well known strategy in statistics when the joint density function of two variables
is complicated. In this scheme, one variable can be easily sampled by having other variable
as a condition and vice versa. The simplest example would be a mixture model of two
normally distributed random variable conditional on the other variable. The bivariate
distribution of this example is hardly tractable which makes difficult to sample two variables
in one step but becomes much easier with two stage Gibbs sampler algorithm. And this
alternating samplings will eventually converge to the desired joint distribution of interest.
This convergence is proved for more general cases by Diebolt & Robert(1990, 1994) and

here it merely repeats the theorem of convergence.

Corollary 1 The sequences {(tifl,ti*Q)(m)} and @(m) are ergodic Markov chains
with respective invariant distributions [,p (0,291,290 2|w’,29Q) d and [, p (0,291, 29 2w’ 29Q) dz.
Moreover, the convergence is uniformly geometric, i.e. there exists 0 < p <1 and C > 0
such that
/e\pm (0w, 7%9) —p (O|w",2%)| do < Cp™

where
™ (8w, 79 = / K (6091900 p ) (9w 272) do
6

and
Ky (9(m)|9(m—1)) = / p <9(m)|WT’ 749, {qu—quQ—?}(m*l)) f (zm-qucz—? wl z9e, @(m_l)) dz
z

and

p (0w’ z9Q) = / p (0,297 790 2w 792) dz
Z

Given this geometric convergence and additionally a finite variance of @, the Central
Limit Theorem can be applied to ensure the asymptotic consistency of parameter estimates

which is an average of 6. So

Corollary 2 The Central Limit Theorem holds, i.e. the sample estimates are consistent

13



with finite variance,

M
- 1 - L
- (m) _ T
b= mmz; (9 B, [0jw ,quD LN (0,V)
where
V =war, (9|WT,'z'qQ) < 00

3.2.1 Sampling Scheme for Data Augmentation

The data augmentation step, {{2%’*1, iqi*2}i@:1}(m) ~ f ({zqi*l7 zqi*2}f?:1 |w?' zt2, é(m))
in general can be implemented in different ways. One way is to simulate the whole set of
missing observations at once from a distribution implied by a model. This was shown in
Chiu, Eraker, Foerster, Kim & Seoane(2008) with VAR(1) model. However, this was only
feasible when the target distribution from which missing observations are drawn can be
derived analytically in terms of observed data and parameters of a model. But in DSGE
model’s estimation in which prediction errors are estimated sequentially period by period
due to existence of latent variables, simulating missing observations in one step is not
feasible!® since the target distribution of a whole set of missing observations cannot be
derived in general. But similar to a conditional distribution of a state variable in Kalman
Filter, a target distribution for missing observation in one period can be derived in terms
of parameters and observed data. Hence, data augmentation can be done by Gibbs sam-
pling from a target distribution sequentially period by period in the first stage of MCMC
algorithm. However, since data augmentation typically involves observations not only of
past but also of future, a predictive distribution from Kalman Filter cannot simply used
in this context. Instead, the state space form is redefined into a companion form and
this facilitates derivation of distribution of missing observations in terms of observations
in adjacent periods including both past and future. To illustrate this point, the standard
Kalman Filter is demonstrated first and then the target distribution of data augmentation

is discussed.

'There are some cases when DSGE model can be transformed into VAR(2) model under certain cir-
cumstances and therefore this method could be feasible. See Ravenna(2006) for more detail with this
transformation. However, this paper focuses on mixed frequency estimation of DSGE models in a general
framework.

14



Define the prediction error variance-covariance of &, and that of n,.

Y1

B (&~ &) (& Egemr)

/
Qt\tfl =k (77t - 77t|t—1> (771: - 77t|t—1>

Kalman Filter gain, K}, minimizes X;; so that {,; is optimally estimated. So Kalman
Filter is

1. Starting with given &, _; and Xy 4
2. Qt‘t—l == H,Zt‘t—lH + R

3. Mt—1 = H,€t|t71
4 Ky =Sy 1H (H'Sy H+R)™

5. Ny = Byp1 — KeH'Sy 4

6. ft|t = §t|t71 + Ky (m - nt\tfl)

7. Y = P +Q
8. §t+1|t = Fft\t

The probabilistic interpretation of Kalman Filter, complemetary to the minimizing
variance of prediction errors of the state variables, says that the state variable, &,, is

updated by the conditional normal distribution with a new observation 7;. Hence,

()= el )

The normality is due to the assumption on normally distributed structural shocks and mea-
surement errors. Hence, given the history of observations up to period ¢, §;; is optimally
estimated by a conditional mean of the latter distribution. The missing observation can be
treated like &, and a conditional distribution can be similarly derived but instead a proxy
value is sampled from this distribution instead of the conditional mean. But since obser-
vations of periods ahead are necessary in the conditional information, a trick is necessary

to derive the desired distribution.
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Now, redefine the state space representation in a companion form.
Mg = H 5‘]1’ + g,

5%‘ = F§Qi—1 + rDQi

where ~ _
Zq;—2
Rgi—1 ¢
o B qi
ﬁqz‘ = v ’ng‘ = équ
Wq;—2 ¢
We;—1 qi—2
[ Yo

This form naturally entails a joint distribution of three periods observations, so if 7,,

is fully observed the updating would have been

i gqi fdi-1 T
Zq;i—2 Zqi—2
Zq;i—1 Zqi—1
N zg [T = N &l 2 (a)
Wq;—2 Wq;—2
Wq;—1 Wq;—1
L Wq L Wg

But since 7, is not fully observed, i.e. {242,241} is not observed, the updating the

distribution of state variables and missing observations conditioning on all observed data

in a quarter ¢; can be

€Qi
Zgi—2 i -1 )
Zg;—1 gqi Zg;
N Zq; |7~7qi71 — N Zq;—2 | Wgq,—2 (b)
Wg;—2 Zq;—1 Wq;—1
Wg;—1 L Wq
L Wq; |

16



Hence, missing observations can be simulated from this conditional density. This distri-
bution will still be normal and can be derived analytically'®. So the standard Kalman
Filter would have estimated state variables as in (a) when 7, is fully observed, but data
augmentation by simulating this target distribution as in (b) is taken since {zq_2,2¢,—1}
is not observed. Note that {zg_2,24-1} jointly sampled every quarter and can only be
sampled marginally from éqi because DSGE models typically have many predetermined
state variables and thus have variance singular which prevents from jointly sampling with
missing observations. Thus, the distribution from which missing observations {zq, 2, z¢,—1}

are drawn is the marginal normal distribution. Define this distribution as f,
e 74di—1
f(h: =N (Zqi_27 Zqz-—lm ' 7zqz'>wq1:—27wq1'—17qu'>

This sampling scheme for data augmentation is similar to Elerian, Chib and Shephard
(2001) in a sense that observations adjacent to missing observations are used. wg, 2, Wq,—1
are contemporaneous observations coming from relationships of DSGE models between
endogenous variables and {7%~1, wy,, 24, } are two periods observations adjacent to missing
observations. Then, all the missing observations are drawn sequentially quarter by quarter

and thus this constitutes the first stage of the sampling scheme.

Q
=a0—-1 za0-21w.T za0 A™Y _ i1
f (Z @7,z w279, 0 - fai (zqi_27zqi_1‘n ’ 7ZQi7in—27w(Ii—1’in)
i=1

Obviously in principle the most efficient sampling scheme would be using the whole dataset
as the conditional information, but there is a numerical issue that has to be confronted. The
distribution for missing observations for each quarter can also be derived from smoothing
Kalman Filter and thus incorporates more information from future observations. However,
the variance of the distribution for missing observations, i.e. the analogue of variance
fq;» involves inverting a covariance matrix of state variables which are normally singular
due to presence of predetermined variables. Computational trick is to use a generalized
inverse!” of this matrix, but this yields numerically unstable matrix to use it as variance
of the target distribution. Because of this computational obstable with using smoothing
Kalman Filter which is potentially most efficient, the sampling scheme of this paper resorts

to using information adjacent to missing observations which is also reasonably gaining

Y Derivation is shown in appendix.
'"In Matlab, "pinv.m" is used for generalized inverse.
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efficiency compared to alternative estimation strategies as will be shown below'®. The

data augmenting Kalman Filter can be summarized by following.

1. Starting with given éq”ql__l and iq”qFI

2. Q) =%, H+R

qilgi—1

3. Simulate {éqz‘*% éqz'*l} ~ fqi (zqz'*Zv Zqz‘*1|7~7qi71aqu‘*2v Weq;—1, Wey zQi)

4. ’F/qi|qul = H,ng‘|q¢71
~ ~ ~ o~ - -\ —1

5. Ky = Ygjq, H <H/Zqi|qi71H + R>

6. ZQH% = qu‘|qi71 - KtHIEQHQifl
'ng'—Q
2611‘*1

~ ~ ~ . B R Zg;

7 Eqilg = Sqplasn T K <77t - 77%'“11’—1) where 7, = !
Wq;—2
Wq;—1

L Yo ]
. Sy = Sy '+ 0

9. €Qi+1‘Qi = Féqi‘qi

3.2.2 Multi-Block Gibbs Sampler Algorithm

After the missing observations are sampled sequentially from distributions conditioning on
parameters, sampling parameters of a model in second stage takes place conditioning on
this augmented dataset. The second stage is no different than the standard Metropolis-
Hasting algorithm for sampling parameters conditioning on this complete dataset. Pseudo-

algorithm is summarized in the following.
Pseudo-Algorithm

1. Initialize

18Sampling scheme for choice of conditional information can further be relaxed for a case of randomly
missing observations. See Kim(2009).
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2. Draw {700, 5002} o £ ({700 G002} jwT, 502,9™"))
3. Evaluate p; <H(m)]wT, 799, {ti—17ti—2}(m)>

4. Draw 6*

5. Evaluate po (9*|WT, 799 {ti—l,ZqQ_z}(m))

6. posterior odds ~ Unif (0,1)

7. If accept, record (™) = g* else H D) = ()

8. Repeat step 276 for m=1,..., M

Gibbs sampling stage is in step 2. It is important to save the augmented dataset in this
stage to be used in both step 3 and step 5. In short, this algorithm explores the shape of

the joint density function
p (0,291 799 2 wT 299) = ¢ (9,291, 7902 |wT,299) 1 (0)

and the likelihood function is evaluated via Kalman Filter with augmented dataset

X 1-1(te{a}2) I(te{ai}?,)
l (H,ZqQ_l,ti_zle,ti) = H [€ (0,2 |w', 2" 1) @hi=1) g (Q\Wt,zt,zt_l) fidi=1
t=1

where the missing observations are sequentially drawn from
{ti—l’qu—2}(m) ~ f ({Z‘IQ—17ZQQ_2} |WT,qu,@(m))

and [ (t € {qz}lQ:l) denotes an indicator function which is one if period belongs to last

M
p(m)
m=1
distribution of parameters, and this is the marginal density function with integrating out

the missing observations so that p (6lw’,z9) = [, ¢ (0,291,290 2|w',29Q) 7 (0) d=.

month of each quarter. Finally, the samples of { are considered as the posterior

3.3 Stacking Method

The stacking method is simply redefining the state space representation so that the obser-

vation variable is fully observed by stacking three months of observations into a one vector.

19



Hence, the observables are transformed into

for V {qi}?zl so that it is always observed withouth missing observations. Accordingly, the

state vector can be expressed as

Then the observation equations becomes

Mg = H g‘h’ + g,

where
H, 0 0 ug,
~ H, 0 0 $g
H = Y , Uy, = Ya;
0 H, O Ug_q
0 0 Hy Ug)_o
and state equation is
5‘]1’ = qui_l + @Qi
where
N F3 0 0 I,, F F? vy,
F=|F> 00|, 9%=| 0 I, F Vgi—1
F 00 0 0 I, Vg;—2

So the posterior density in this method effectively is evaluated by assuming

Q
P (0|WT, 2qQ) = HE (0|wqi,w%*1,wqi*2,2qi) 7 (0)
i=1

However, notice that the time interval for state space equations is quarterly which im-

plies Kalman Filter gain for optimal estimates of state variables will be updated at quar-
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terly frequency. £, _, will be updated conditional on the history of observations up to
¢i—1 (= ¢i — 3) which is still efficient, while £, _; and &, are not updated with the new
observation at ¢;_o and at g;_j,respectively. Thus, if a monthly model is to be estimated
in which the monthly observations are heavily influenced by the latent variables of the
same months, this method will suffer from losing efficiency of state variable’s estimates
and will potentially lead to biases of parameters’ estimates of the model. Furthermore,
this method in general can only be applied to the case where mixed frequency data set has
consistent frequency of missing observations within the same time series, i.e. it cannot be
applied to the randomly missing observation case. For example, due to possibly the less
sophisticated method of data collection in earlier years of a sample which is common with
emerging markets, one time series can have multiple mixed frequency observations. So if
an econometrician is to estimate using this type of dataset with this method, one either
has to synchronize the frequency of that particular time series by aggregating into coarser

frequency or has to curtail the earlier part of the sample.

3.4 Durbin-Koopman Method

Durbin-Koopman method in this paper is an extension of an example with missing ob-
servation originally shown in Durbin & Koopman’s Time Series Analysis by State Space
Methods (2001). They showed whenever 7, is all missing for that particular period as
opposed to only observing partially in the case of mixed frequency dataset, they simply
estimate the state variable using the optimal estimate from the previous period which
was updated up to using available observations. So §; 1)y = & q11p—1 = F'&;;—1 instead of
i1yt = F&);- In this case Kalman Filter gain is zero in period ¢ since there is no extra
information to be exploited to estimate state variables. However, in the example in which
at least some observations are partially available, Kalman Filter gain can be constructed

with this available information at period ¢t. Hence, in a standard case
-1
Ki =Yy H (H'Sy;_1H + R)
and the state variable is updated with n, by

§t|t = §t|t71 + Ky (Ut - Hl§t|t71)
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Hence when only w; is available, K; can be a partitioned accordingly to be consistent with

mixed frequency observations so that
Ki=| K; Ky |
then the state variable can be updated by using this submatrix K",

§t|t = £t|t71 + K’ (wt - Hq/ugt|tfl)

and when 7, is fully observed at the last month of each quarter, Kalman Filter gain is back

to the standard one with a full dimension. Hence the posterior density is evaluated with

/ (9|wt75t—1)1—1(t6{‘1i}?:1) )
™

p(0lw",z%9) =[]

Pl / (9|Wt, Zt)l(te{Qi}inl)
So the period likelihood is evaluated based on full observations when ¢ € {%‘}?;1 while
it is based on only partial observations when t ¢ {ql}lel This method still retains the
original state space representation at monthly frequency and thus updates state variables
monthly. However, there is still a limitation of gaining efficiency since periods in which only
wy are available suffers lack of information from missing observations on z;. In contrast to
the stacking method, this method in principle is not restricted to monthly and quarterly
frequency dataset but can also be applied to randomly missing observations within time

series and also possibly the dimension of those time series observed can be time varying.

3.5 Efficiency

All of above estimation strategies are equivalent in a sense that the estimates from the
markov chains of 8™ are consistent. However, in reality any estimation strategy will be
influenced by the potential biases due to finite sample and thus an efficiency of estimation
methods is significant from the methodological point of view. Data augmentation litera-
ture has emphasized the advantage of efficiency gain from both theoretical and empirical
perspectives. Gelfand & Smith (1990) and Liu, Wong & Kong(1994) have theoretically
shown the smaller variance of sampled estimates with data augmentations. As such, nu-

merous empirical works have shown the efficiency gain of data augmentation estimates by
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19 Hence, in the following section a comparison of

presenting root mean squared errors
estimation methods is based on root mean squared errors of parameters of interest in a

New Keynesian model.

4 Medium Scale New Keynesian Model

This model closely follows Fernandez-Villaverde, Guerron-Quintana and Rubio-Ramirez
(2010) which is similar to Christiano, Eichenbaum and Evans (2005) and Smets and
Wouters (2005). T adopt this model for both Monte Carlo experiment and estimation
with data since it is well known and widely studied. Following paragraphs summarize this
medium scale New Keynesian model and the details can be found in technical appendix of
this paper.

There is a continuum of households who consumes final good, supplies differentiated
labor to labor packer in monopolistic competitive labor market, invests on capital good,
saves by purchasing risk free bonds, and also has access to a complete set of Arrow securities.
Calvo wage setting with partial indexation is applied in intermediate labor market. Labor
packer integrates the intermediate labor supply into homogenous final labor and supply it to
the intermediate good producers. While differentiated labor supply induces heterogeneity
of households, the complete asset market equalizes the lagrangian multipliers of households
and thus yields symmetric equilibrium conditions with respect to all household’s decision
variables except labor supply. The utility of household is the standard separable utility
between consumption and labor hours and exogenously influenced by two preference shocks
that influences the wedges in the intertemporal condition and intratemporal condition.
Households also earn rental income from capital management with capacity utilization
cost incurred. Another source of uncertainty is coming from the marginal efficiency of
investment which creates the inverse of relative price of investment good to fluctuate over
time.

Intermediate good producers use rental capital and homogenous labor to produce dif-
ferentiated goods with Cobb-Douglas technology and earn profits facing monopolistic com-
petitive market with Calvo pricing. Production technology faces total factor productivity
shocks. Final good producer transforms intermediate goods into a homogenous final good

to be demanded by households. Government follows Taylor rule in which risk free interest

YRMSE = \/Bias (é,9)2 +wvar (9)
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rate is set to respond to inflation gap and to deviation of growth rate of output from trend
with its own persistence. Monetary policy shock is incorporated in Taylor rule. Aggre-
gate demand is consumption, investment and capacity utilization cost while the aggregate
supply is dictated by industry wide Cobb-Douglas production which is implicity derived
from aggregating Cobb-Douglas production of intermediate good producers. And due to
Calvo pricing, price dispersion across intermediate good sector creates wedge betwee these
aggregate demand and aggregate supply. Same applies to the labor market due to wage
dispersion. In summary, there are five exogenous processes, namely two preference shocks,
investment technology shock, total factor productivity shock, and monetary shocks. And
risk free interest rates, wage, inflation and consumption are used as monthly observations
while output and investment series as quarterly observations. Also growth rates of wage,
consumption, output and investment are used as observables which is the standard practice

in this literature. Thus the observables vector2? is

log Ry — log R
log 7 — log 11
Alog wy
obs; =

Alog ¢y
(1 - L?) log
(1 — L3) logi? |

Note that the quarterly aggregates for output and investment are taken into account that
corresponds the available data source and this aggregation scheme follows NIPA convention

as shown earlier with Simple New Keynesian model.

5 Estimation Exercise

First, the economy under this model is simulated with a set of calibrated parameters, and
then estimate parameters of interest in the model across alternative estimation methods
under mixed frequency data. Following subsection "Monte-Carlo Experiment" shows the
results of this exercise. Second, raw data are imported from NIPA and BLS, and time series
in real terms are constructed following Whelan(2002), and the model is brought to this

actual dataset to be estimated which is shown in "Estimation Results". Throughout the

20The variables are in terms of real valued levels.
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estimations in the following, I fix a small set of parameters and set priors for parameters

of interest in estimation to get reasonable identification.

0 el n|o| P
0.025/3 10 | 10 | O | 0.001

¢ is depreciation rate of capital and fixed the one third of 0.025 which is standard in
quarterly model. Elasticity of substitutions for differentiated labor supply and intermediate
goods are fixed to be 10. ¢ is the fixed cost parameter of production technology and ®o
is the parameter for capacity utilization cost function which pins down the rental rate of

capital in equilibrium condition.

5.0.1 Monte-Carlo Experiment

The medium scale New Keynesian model is simulated over 40 times and with sample size
of 100 each. Given from these original datasets, some of observations such as GDP and
investment are deleted to construct the mixed frequency dataset. Only subset of parame-
ters of this model is brought to estimation because the convergence properties for some
parameters, mostly preference parameters, generally were not desirable for this exercise.

Those parameters of choice for estimates are calibrated for the true model as follows

Op | X | Ow | Xw | Y& | Y | 70| Pp | Pa | exp(0os)
0.85 0.5 0.8 |05|085|025|15]0.75]075| 0.01

o5 denotes standard deviations of all the exogenous shocks. Priors are set for the estimation

to have a reasonable acceptance rate but as loose as possible.

917 X aw Xw
Unif (0,1) | Be(0.5,0.4) | Unif (0,1) | Be(0.5,0.4)

TR '7y Yo
Unif (0,1) | N (0.25,0.1) | N (1.5,0.25)

Py Pd exp (0s)
N (0.75,0.15) | N (0.75,0.15) | InvGamma (0.01,1)

For each estimation of one dataset, parameters are drawn 500,000 times and the pos-
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terior estimates are posterior modes based on the second half of these draws, i.e. 250,000

draws. Efficiency comparison results across estimation strategies are reported below.

0, = 0.85 x =05 0 = 0.8 Xy = 0.5

statistics 0, RMSE X RMSE O RMSE | Xy, RMSE

MO 0.8500 | 0.0078 | 0.4843 | 0.0656 | 0.7998 | 0.0094 | 0.4952 | 0.0559
0.0078 0.0636 0.0094 0.0557

Augment | 0.8518 | 0.0106 | 0.4763 | 0.0810 | 0.8012 | 0.0102 | 0.4860 | 0.0695
0.0104 0.0775 0.0101 0.0680

D—K ]0.8511 | 0.0127 | 0.4935 | 0.0833 | 0.7996 | 0.0105 | 0.5050 | 0.0732
0.0126 0.0831 0.0105 0.0730

Stack | 0.8506 | 0.0118 | 0.4763 | 0.0831 | 0.8010 | 0.0107 | 0.4898 | 0.0777
0.0118 0.0796 0.0106 0.0777

Top row has the parameters of interest with true values. The third row "AMO0" is the
estimation with original simulated dataset, i.e. no missing observations so that all of
observables are monthly and thus estimated with the standard procedure. This will serve
as a benchmark estimation for the comparison across three methodologies. "Augment"
is the estimation with the data augmentation, "D — K" is Durbin-Koopman method and
"Stack" is the stacking method. Each parameter has two statistics that are mean of point
estimates and root mean squared errors of these point estimates. Numbers below the
mean of point estimates are standard deviations of these point estimates. Hence, lower
RMSE represents more efficient estimates compared to alternative methods. In Calvo
price parameter, 0,, and the indexation parameter, x, show a clear advantage with the
data augmentation since it brings down RMSE closer to M0. Calvo wage parameter, 0,,,
shows only a small difference while the indexation to wage, x,,, shows more improvement

for data augmentation method. Next table shows the Taylor rule parameters.

vr = 0.85 vy = 0.25 g = 1.5
statistics TR RMSE Yy RMSFE i RMSE
MO 0.8499 | 0.0067 | 0.2456 | 0.0577 | 1.5136 | 0.0916

0.0067 0.0575 0.0906
Augment | 0.8491 | 0.0081 | 0.2458 | 0.0511 | 1.5442 | 0.1170
0.0080 0.0509 0.1084
D —K |0.8500 | 0.0085 | 0.2496 | 0.0512 | 1.5239 | 0.1279
0.0085 0.0512 0.1257
Stack 0.8505 | 0.0083 | 0.2652 | 0.0524 | 1.5552 | 0.1344
0.0083 0.0501 0.1225

The first two parameters, v and v, show some mixed evidence. RMSE for the smoothing

parameter are close. 7, seems to show no difference either but M0 results show higher
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RMSE. This was rather one of rare parameters that show inefficiency with the benchmark
estimation®'. The efficiency ranking for v, is consistent with most of parameters’ results
and this implies data augmentation is preferrable and closer to the benchmark estimation
in terms of RMSE. The rest of parameters that are of less interest are reported in the

Appendix and similar conclusions can be drawn.

5.0.2 Data

US data covers from 1984:Q1 to 2010:Q2 for quarterly estimation and from 1984:M1 to
2010:M6 for monthly estimation. Interest rate is the effective Federal Funds rates, and
quarterly interest rate is simply compounded over three months interest rates. In case of
growth rate of wage, the average wage rate for nonfarm business sector is used for quarterly
estimation. But the monthly frequency wage rate was available only for total private sector
which is the major subcategory of nonfarm business sector. Since using the average wage
rate for total private sector at quarterly frequency instead of nonfarm business didn’t show
different results and thus it can be safely deduced that the wage from different scope
of a sector do not play much role in monthly frequency as well. Also, this wage rates
are adjusted by the ratio between employment rate®? for the corresponding sectors and
population rate so that the wage data is consistent with what is implied by the model in
which there is no unemployment.

As for GDP components, the consumption is assumed to be the sum of nondurable
consumptions and services and the investment to be the sum of durable consumptions and
gross domestic private investments following FV-GQ-RR(2010) and output is the sum of
consumption and investment. Since those series are constructed aggregates from GDP
components in NIPA tables and thus do not have corresponding aggregate real variables
and price indices, I follow Whelan(2002)23 to derive real terms and price indices of those
series. And the price index for this constructed consumption series is used for price level of

the model by assuming consumption good as numeraire. Inflation rate is the growth rate of

2110 more parameters related to exogenous processes of the medium scale New Keynesian model are
estimated. Except for two parameters of these, the efficiency with the benchmark estimation was overall
better.

22This adjustment has been also made in Smets and Wouters (2007) and Chang, Gomes and Schorfeheide
(2002). US data shows that there is higher growth rates of employment rates than the population growth and
thus the raw data on the growth rate of wage has a lower trend than those of per capita GDP components.

23Whelan(2002) discusses how Fisher’s chain-aggregated data in NIPA are computed and potential pitfalls
with simply adding and substracting real series from those chain aggregates.
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this CPI deflator. Since consumption and output in the model are in terms of same units,
the output is normalized by this CPI deflator. Quarterly ouput series used for monthly
estimation is normalized by CPI in the last month of each quarter. Due to the marginal
efficiency of investment, investment good is in terms of its own unit in the model and thus
investment series are deflated by it own deflator and this helps to identify this investment

specific technological progress.

5.0.3 Estimation Results

Since the primary focus is to compare the temporal aggregation bias on Calvo parameters
without attributing the bias to the priors, except the Calvo parameters, the priors of the
rest of parameters are set equivalently for both monthly and quarterly model. Below is the
standard prior specifications following closely to FV-GQ-RR(2010).

’ Prior ‘
B 0% (0 K o
Be (0.75,0.13) | N (1,0.25) | N (9,3) | N (4,1.5) | N (0.3,0.0125)
X Xw TR ’Yy Vr
Be (0.5,0.142) | Be(0.5,0.102) | Be(0.75,0.13) | N (0.15,0.05) | N (1.5,0.1)
Pd pap Os

Be (0.5,0.142)

Be (0.5,0.142)

InvGamma (0.1, 2)

The prior for Calvo parameters in each frequency is set to imply equivalent average price
durations. Quarterly model’s prior for Calvo parameter is set with mean ,0.5, implying 6
months price duration. Thus monthly model’s Calvo parameters are set with a mode of
the prior being 0.833.

|

Op,0w

|

Q

M

Be (0.5,0.28)

Be (0.833,0.25)
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The following table is the estimation results on Calvo parameters with two different fre-

quencies.
methods ‘ 0, PriceDuration 0w WageDuration
Q 0.8549 20.67 0.7233 10.84
0.0163 0.0518
Augment | 0.7984 4.96 0.8240 5.68
0.0259 0.0308

As consistent with the simulation exercises with a parsimonious New Keynesian model,
the calvo parameters from quarterly model is 0.855 implying approximately 20.7 months of
average price duration while the monthly model when estimated with data augmentation
implies approximately 5 months price duration. The gap with Calvo wage is relatively
smaller than Calvo price. Wage duration for quarterly model implies 11.8 months while
5.7 months with the monthly model.

6 Conclusions

This paper investigates the temporal aggregation issue with a New Keynesian model and
finds that Calvo parameter is upward biased in the sense that the quarterly model has a
stronger degree of price stickiness. Monte Carlo simulation result suggests that a frequency
misspecification of a New Keynesian model generates this upward bias and the estimation
with data consistently confirms this finding. This paper also examines three estimation
strategies to accommodate mixed frequency dataset in DSGE model’s estimations and
shows methodological improvements with the data augmentation method borrowed from
Bayesian statistics literature.

The results and the method provided in this paper can potentially lead to another
research agenda since it can address various interesting questions in macroeconomic stud-
ies. For example, this data augmentation method can naturally conduct inferences on
unobserved movements of GDP at a monthly frequency and thus potentially can tune the

forecasts.
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8 Appendix
8.1 Converting monthly AR(1) into quarterly ARMA(1,1)

The true monthy model is

ar = ppoi—1+oe,Vt=1,2,..T
ey ~ did N(0,1)

Then

ar = Pp0i—1+ 0t
at—1 = Ppat—2+ 01

at—2 = Pp0t—3 T 012
Define

ar = ap + a1 + az—2

ar = ppla—1+ai—2+ar—3)+0o (et +er—1+e1-2)
= Pgn (at—2 + ap—3 + ar—a) + pyo (€4—1 + €12 + €1-3) + 0 (64 + €41 + £1-2)

= po (a3 + ar—s + as_5) + ppo (es—2 + €1—3 + €1—4)
+pn0 (et—1+ o+ er—3) + o (et + -1 +e1-2)

Also define

€ = Pgna (et—2+ -3+ €1—4) + P, 0 (-1 + €1—2 + €1-3) + 0 (€4 + €1—1 + €4—2)

Then
4y = p3as_3+&,Vt=3,6,..,T

However,

Cov (&t,&¢-3) = Cov (P%ﬁ (et—3 +€t—4),0 (e4—3 + €4—4) + PmUEt—4) #0
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8.2 Derivation of Distribution f,, (z,_2, 24—1|7%", 24, Wg,—2, Wy, —1, Wy;)

i i1 7
fqi Z‘]i
Derivation of the distribution of | 2z, _o | | wg,_2 is not trivial. This section presents
Zq;i—1 Wq;—1
L Wq

the derivation from a general state space form of lo_glinearized DSGE model:

§i1 = F& v, v~ N(0,Q)
ny = H,§t+ut7utNN(O7R)

Suppose 7, has some missing observations. In this case, it turns useful to partition 7, into

| a || H uf
= wy H], uy’

Now, stacking three months of variables into one vector transforms those equations to

two components

&+

ﬁQi = gng + ﬂqi

qu‘ = ngz'ﬂ + f}qz‘

where -~ ~ -~ _
Zq;i—2 UZ,L-—Q
Rg;i—1 Ufh.,l
z
Ty = 2qi g, = Z‘h‘
w‘]z‘—2 uq¢72
Wq; -1 Z;—l
| Wq | L U?IL;
€q; Vg, + Frg,—1 +F2l/€h‘*2
g% = €Qi_1 Vg = Vgi—1+ Frg,—2
fqi72 Vg,—2
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with

=
O
~——

and ~ _
0o 0 H,
0 H) 0
i H 0 0
0o 0 H
0 H 0
| H. 0 ]
F3 0 0
F=|F2 00
F 00

Given normality of errors, the joint distribution of states and data is normal with the

)

following mean and variance,

[ £q ] 7% ~ N ([ ~€qi|qifl ] 7
nqi HI&QH%—l

~Pqi|q¢,1 3 ~Pq¢|q¢71H R
H/PQ'L"Qi—l HIqu‘|qz'71H +R

Define

[0 o m,

o oH 0

H, 0 0
!
g=| 0 0

0o H 0

H 0 0

Ry =Var < uzi_Q ])
Ugi—1
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q;
. u?
Ry =Var 3;72
Ug;—1
Ug,
Rewriting with partitioned matrices
_ fqi _
Zqi—2
Zq;—1 ~§Qi|qi71 ~Pqi\qz'71 5 ~qu'\qz>1H1 ~ ~Pq1'|q¢71H2
Zq; |7~7Qi_1 ~N H{é-(h‘(h—l ’ Hipq”‘h—l Hqu”‘Ii—lHl + Ry H{PQi‘Qi—1H2
Wg;—2 Hégq”q'ifl Héqu‘|qz‘f1 Héqu'|qz'71H1 Héqu‘|qz>1H2 + Ry
Wg;—1
| Wq
i Yo Yen Yo
=N My | s 2,1 Y1 Y2
Mo 2,2 ,1,2 22

So the desired normality with updated information is the following.

ﬁqifl
24 ~ 1)
Zq;—2 ’ Wq;—2 ~ N (,U,, V>
Zgi—1 Wy, —1
| Wg

24In general, if X and Y conditional on w are jointly normal

x b)) b))
[ ‘ | } |7 Byz Zyy
then X/|y, w is also jointly normally distributed with the following distribution

Xly,w ~ N (T+ Ty Sy (4 =) s Dow — ey Ty Tya)
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_ I ¢ _ Wg;—2
H= [ S+ ¢ 2yt ! — Mg
2} Y12 Wg;—1
| We
5| Xe Xen Se2 | oo
V = [ 5 5 . 2, 2’572 2’172
el 1 1,2 ]

Since fg, (2¢,—25 Zgi—1|TT 1, 24, Wy, —2, Wg,—1, Wy, ) is the marginal distribution of the above

normal distribution

Jo ~ N |y + 21,22271

8.3 More Monte Carlo Results

To be updated

8.4 Medium Scale New Keynesian Model
8.4.1 Households Problem

There is a continuum of households in the economy index by ¢ which maximizes the lifetime

utility function.

= t mgt l'1t+,y
Ep B°dy < log (¢t — bejr—1 +Ulog< z>—<pq/;l
tz:; t (e 1) Dt P14

where b is the parameter that controls habit persistence, d;, is an intertemporal preference

shock and ¢, is a labor supply(intratemporal) shock :

logd; = pglogdi—1 + 04qeqs where eqy ~ N (0,1)
logp, = p,logp,_y + opeyt where e, ~ N (0,1)
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The i*" household’s budget constraint is given by :

Mt n Bit11
bt Dbt

cit + it + + /Qt+1,tait+1dwz‘,t+1|t
- mMit—1 B't

= witlit + (reuie — qea fuie]) kie + ; + Rt—l?Z taw+Ti+ 1y
t t

where p; is price level of final good, wj; is the real wage, r; is the rental price of capital,
ujy > 0 is the intensity of use of capital, gia[uj] is the physical cost of use of capital in

resource terms where
2
alu] =71 (u=1)+7; (u—-1)

Here, we assume the household has technology that transforms the final good into invest-

ment good that faces this exogenous process. Thus the investment good is
Iip = it

&, is an investment-specific technology shock or also its inverse is interpreted as the relative

price of investment good in final good unit. Its exogenous process is

§ = &1 exp (Ae + 0eeey)

where
5§,t ~ N (0, 1)

Later, I substitute with stationary variable pg, = éf—il so that
log pe y = Mg + o¢ey

And this investment good is newly installed to capital stock and thus the capital stock?

_ B I
kit+1:(1_5)kit+<1—s< ))Iz’t
Lit—1

Ii K I’it >2
S = — —A
<Iit1> 2 (Iitl !

%> Here, we denote k; as installed capital stock and k; as capital service.

evolves with

where
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is the investment adjustment cost. For ease of notation, define

I;
F (L, Iiy—1) = (1 -9 < >> I
Iit—1

L I I
o= () e ()
1 <Iit—1 Iit—1) Iit—1
It Lis1\?
mn = s (%2) (
241 7 7

Our lagrangian problem is summarized by choosing cii, Bit, Wit, Kit+1, Cits Lits Qit1,6, Wit, Lit

and

to maximize

e it ]
dy {log (cit — beig—1) +vlog < pzt> —putp fﬁrv}

. my Bit11
0 . Cit + it + T,;t + T): + f Qt-+1,tQit+1,6dW; 1 1)t
max Fy E 15} = M1 B,
—Witlit — (Tewir — qra |Wit]) kiy — —— — Ry—1=% — ay — Ty — F;
= Ay itlit ( tUit — gt [ zt]) it Pt t—1", it t t

—qit [Kit41 — (L = 0) kit — F (Lig, Lip—1)]
—Cir it — &4tit]

And HH will determine w;; and [;; by maximizing relevant part of the lagrangian under

Calvo wage setting which will be characterized separately.

Household Conditions FOCs of the above problem with respect to c;t, Bit, Uit, kit+1, Git, Lit; Gip 1)

are
di (cit — beir—1) " = bBEdi (ciry1 — bei) ™ = i

R
Ait = 5Et)\it+11_[7t
41

e = qea’ [ug)
NitQit = BE { Nitv1 [(1 = 0) Git1 + Te1%iry1 — qer10 (Uieg1)]}
1= Cu&s
NitCir = Nit Qi F1t + BENit+1Gier1F2,041

Nit41qt+1,¢ = it
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Symmetric Equilibrium Since we consider a symmetric equilibrium due to complete
asset market(the complete set of state contingent Arrow securities and perfect risk sharing)

so that ¢t = ¢, Byt = B, it = MsUit = U, Gt = ¢,Cip = Cpotiv = 9, Ly = I, kg =

ky, A1)t = Q1. After substituting ¢, = é—lt and rearranging,

dy (cy — bey—1) ™ — bBEdyyy (coqn — b)) L = Ny

Ry
Ii4q

At = BEiAi11
Tt = Qta/ [Ut]

At = BE: {1 [(1 = 0) g1 + Tep1tet1 — @ry1a (uet1)]}

Aty1 1

1= q& P+ BE——q 11811
At e 141

Fai+1

Household labor problem Calvo wage problem for houshold

0o l1~+7 T wa
B 0.3 _d Sty Tts=1
I?U?tx t ;) (/6 w) { t‘ptw 1+~ + Ajt+1 !Z[l Ht+s Witljt4r

subject to

T HXw _ W -
Liter = (Ht%‘l jt ngrT Vi

—1 Miys wegr

This gives the law of motion

-1, - e\ fwr 7!
ft = = (w))! " Aw I+ B0, Ey (Ht ) ( t+1) ft+1

n t+1 wy
w, \ 1) 14 6w \ 1Y) e N m(1+)

Jt = vdipy <i> (Qi) + 80w Ex (t > < tt1> Jea1
wy 41 wy

The real wage index evolves :

HXw 1777
wtlﬂ’ =0, < tl) wtljﬁ + (1 —06y) w:kn
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which can be rewritten

where

8.4.2 Firms

Final Good Producer Final good producer produces one final good in perfectly com-

petitive market using intermediate good with following technology.

d 1 . i
([
0

where ¢ controls the elasticity of substitution between intermediated goods. And thus the

intermediate good producers’ markup is -=;. The problem of final good producer is

1
maXptyg—/ Pty
Yjt 0

d 1 e—1 . e—1
= ([ 74
0

—E&
pjt> d .
yir=\|—1] v Vj
! (pt t

where the aggregate price level is

L T
bt = </ pjt_sdj>
0

Intermediate Good Producer Intermediate good producer’s technology is

subject to

gives input demand function

Yjt = Atkﬁl;t_a — 9z
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where kj; and [j; are capital services and homogenous labor and A; follows

Ay = A 1eXp(AA+UA€At) EA,tNN(O,l)

or define p14; = Aj?il
logpay = Aa+oacay

also

1 o
_ l—-a ¢l—a
2t = At ft

or define p , = -
? —

Fo ot 1 Mg He ¢
log B2t =~ log P log 1€
A T-a®A, 1-a A
and )
A=A Ag*a

¢ is fixed cost parameter and usually calibrated either to zero or to guarantee zero profits
in the economy at steady state.
Firms are competitive in factor markets where they confront rents, w; and rt , from ld

and k;lt. Thus, the firm solves the static cost minimization problem,

min wtl + ik

ljtv gt

subject to the production
At ]tl ¢Zt

Assuming interior solution, FOCs are

we = (1 —a) Ak}, (l}it)_

11—«
ry = QO&Atk}t—a (l;lt>

where g is the Lagrangian multiplier. Then we can find real marginal cost mc; by setting
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-«
Atkﬁ (l?t> = 1. This implies

1
mey = (1_ >wtl;'it
—a
o we
( 1 > (1 ozrt)
= 'LUt

1l -« Ay

- <1ia>1_a (24) = Zin)a

Intermediate good producer price decision Calvo Pricing decision

E 9 ”T X - N Y
max tZ(ﬁ {(H trs-1p, meet )Z/t+}

=0

Q

subject to

- —€
Yit+r = (H t4s— l ) ytd+7' Vi

The law of motion

HX ¢
9i = )‘tmctyt + B0, E; (H ) 9t+1

) ()

gt = AtH’{yt +59 E; (

egp =(e—1)g
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Price level evolves

8.4.3 Government

Gvernment sets the nominal interest rates according to the Taylor rule :

yi \ Vv 1-vr
& _ Rt—l TR & o yf—1 ex (m )
R \R T Ay b

through open market operations that are financed through lump-sum transfers 7; such that

the deficit are equal to zero :

. fol mitdi _ fol mit_ldz' 4 fol Bit_:,_ldi _R fol Bz‘tdi

Dt Dt Dt Dbt

Ty

IT represents the target levels of inflation (equal to inflation in the steady state), R steady
state gross return of capital, and A« the steady state gross growth rate of yd. The term
my is a random shock to monetary policy that follows m; = 0,6t Where g,,,; is distributed
according to N (0, 1). Consequently, the HH aggregate budget constraint is reduced to

1 _
¢t + gtft = wily + (reue — qra[ug]) ke +

8.4.4 Aggregation

The aggregate demand is

1 _
yf =c + g—lt + qra [ue] ky
t

Calvo pricing produces price dispersion in the economy, thus

1 L\ ¢ 11—«
d bjt - o (7d _
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N\ —€
By defining v, = fol (%) dj, with the properties of indexation under Calvo pricing,

X\ ¢
vf=9p< ) W (1= 6T

and we have

-1
Similarly define v}’ = fol (“’“) di, then

we

Also

Also in capital market

and thus

Also capital stock evolves

_ - I
ki1 = (1 —(5)]615—1— <1 - S <t>) I;
I 4

8.4.5 Equilibrium Conditions

e Intermediate good producer ~
utkt . o Wt

lf Cl-—amn

B 1 11—« l o] wtlfa (Tt)a
mee= 11—« « A
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d I\
9y = Amecryy + BepEt <H > Jt+1
t+1

) (i)

2 * t 2

= M\II 9 FE

in t tyt + 3 t <Ht+1 H?-i-l gi+1
1

egy = (e—1) 9t2
Hx 1—¢
1=9, < ﬁj) +(1—0,) Mt

dt (Ct — th_l)_l — bﬁEth_l (Ct—l—l — th)_l = )\t
Ry
I 1q

e Households

At = BEii+1

Tt = Qta, [Ut]

Mg = BE {1 [(1 = 6) @1 + o141 — G410 (ug1)] }

1=q&F1s+ /BEt Qt+1§t+1 Fyi1
Et+1
w \ 171 * n—1
o t+on (g5) (%)
= — Al + 0,F
Tt 7 (wy) 1wy ly + B0y By M, w fre1
w, \ 1) 14y e \ 1T N n(+)
Jt = Ydrp, <i> (lz(ti> + B0wEy < : ) <t+*1> Jt+1
w; I w;
1-n _
HXw w 1-n
1= == - 1—6,) (1)~
w(ﬂt> (M=) e
v = uﬁ
t w0,

e Government
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e Aggregation
1 _
yl =ci+ — I + qau k
¢
1—
a _ Adkg (1) ¢~z

Yt D
Ui

X —&
N P+ (11—,
Uy P Vi1 p) Ly

IL
_ HXw -n « —
UEU = ew (w;tl ﬁ;1> 'U;/lil + (1 - gw) <H;U ) !

_ - T
kit1 = (1—(5)]%4— (1—S <t>) I;
I

A=A qexp(Aa+ JA€A,t)

e Exogenous Process

§e = &1 exp (Ag + ogeet)
logd; = pglogdi—1 + ogcqy
logp; = pylogp, | +0pegy

m¢ = OmEmt

e Definition for growth term
1 o
2 = Atl—a é-tl—a
8.4.6 Stationary Equilibrium Conditions

Preliminaries
e Variables k;, ¢ k Log2 T I8, N,y 1 Ry, cq, frowi, TV 0P o
ariables R, by, Wi, Ty MCy Gy 5 Gy s Lty Ly s Aty Yp s Lt Gty Uty L0, Cy Jt, Wy, L7 5 Uy Vg5 2t

e Stationary variables.

* d
LA = Gt oah, Wi ek Wy s Iy ad _ Yp
Ct = Wt = /7wt - Zt’Zt_Zt§t7yt — Z

_ - Fer1 - <
= o= kepr = 25 G = @€ M= Moz,
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Stationarize 1

e Intermediate good producer

uky  z-1& _ @ wy 1
lfzt71ft_1 tht l—amr Zt&t
w 11—« a
LV e (B) )"
meg = —
t 11—« o Ay 5?
d X \ ¢
gtl = )\tztmctyft + B0, E; (t) 9t1+1
Zt Ht+1
d X 1—e k
2 « Yt Ht Ht 2
= Mzl = + B0, E < ) < " >
9t t2tlly 2 plt T M, Gt+1

egi =(e—1)g;

HX 1—¢
1=0, ( 1?;) + (16,1t

e Households

-1 —1
dy <Ct _ th1Zt1> — bBE,dy41 (Ct“’ztﬂ _ th) — A2

2t 2t—1 2t 241 Rt 2t
2z Ry
Mz = BE N 412441——
zg1 i

Ty = thta, (]

I

Azt qi€y = BEy § Ai1241—— ¢,
241 —qt+1&441 a0 (wig1)

Ai412t41 %t
1=q&Fiyg+ ﬁEt%i%—i—lgt—i—l
tZt 241 Het41

Fsi41
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where

Jt = Ydipy <

(

Wizt

*
Wy

Zt

*
t <t

1—S<
s

1-n
) )\tzt (w
z

> (l,fl) + 80 Ey (

Ry

R

(47 2y

-1 Zt—lftfl
>2

)
>—77(1+’Y) <

tht

Tt—1 Zt—1§t71

Ztét o

Tt—1 Zt—1§t71

U

)= ()

)(

n
) lfwewEt(

U1 Zt+1§t+1
it 2y

U1 Zt+1§t+1
1 Ztgt

w

t
IPAS}

*
Wiy12t 241
Wizi41 2%

t

n—1
> ft+1

n(147)
) Je1

t

Xw
t

I 41

*
Wir12t 241
*
Wy Zt+1 2t

1-n /w1 1-n
Hﬁﬁ zg—1 At—1 1
—— 1-6 vy ="
i oy, | T )
P
t W

oz \\ TR
1 TR E T ygl_l zt 2t—1 ox (m)
II Aya p (M
c 1 alug] ke ze—1&;_
yi:i+7lt+Qtft [t ke ze—1&_1
2zt 2z 2181 #
Qe 1z \ ¢ 1—
%t (gt,]fét,1> ( tgiz 1) (&2t)” (lg) -0
vi
e .\ °
d =0, () oo

w 2 zq I - —n
w _ g t—1 <t <t—114:-1 w 1-6 <H“’*>
Uy w ( w 21 % I, vty + ( w) (I}
ki (1—0) ke z-1€ n <1 _g <~5t 26y )> e
tht Zt—lgtfl tht -1 Zt—lgtfl tht
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e Exogenous Process

Ay =Ai 1exp(Aa+0oacar)
£ = &g exp (A + 0¢eer)
logd; = pglogdi—1 + ogcay
log oy = pylogp; 1 + 0yt

m¢ = OmEmt

e Definition for growth term
1l o
2 = Atlfa gtl—a
Stationarize I1

e Intermediate good producer

utift 1 B o W
1 Poghbey 1—ary

mei= (1) (2) o

L_ 3 5d 0. F Hii( T
gi = Memeyy + B0, Ey Gi+1

Iiiq
_ . HX 1—¢ H*
9;:2 = Athyf + B0, Ey <Ht> <H*t> 9t2+1
t+1 t+1

egi = (e—1)g7

X 1—¢
1=0 <H“> + (1 -0,
p Ht p t

e Households

1

Il
P
&

1\ N s
dt <Ct — bct_1> — bBEth_l (ct+1,uz7t+1 — bct)

Mz,t
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1 Ry
Pz g1 Hegr

At = BEN 1

7t = Gra [uy

M\, = BE A1 (1 =90) Geg1 + Trypr1ues
tqt = Py ——— -
He t+1H2 141 —Gi+10 (Ug41)
s i1 G
l=qgF,;+pEi~—————F2;11
thy g1 Hét+1
where
1 AT 1
Fl = 1-5 <~ 1% > -5 (~ > po—
t e Hoy e t zt*lﬂ;tﬂg,t zt,luz’t'u&’t
2 _ g Ui+1 41 2
2+1 = ?/Jzi—i-l:u&,t—i-l ?”MH”SJH
~ % 1-n
[/ 1 ~x\1—n Y ~ d Hi(w wt 1
fi=—— (U} ) n At (wt)”l + B0 E; < — ft+1
n ! ! b Wiy 034 g g
) n(1+7) 14 HXw WF 1 —n(1+7)
ft = Ydip, (i) (l§l> + 0., E; < bt ) fri1
W} i1 Wi pz
1-n _
HXw i , 1 1-n
1=0 t—1 t 1-0 v 1-n
w(ﬂt> (Setn) +u-mam)
v = @
¢ 0
o Government
Rt Rt—l TR Ht 061 Eﬂz,t ( )
v -t exp (m
R R il Ay A
e Aggregation ~
- S gra |u] k
G = o 7 Bolud ke
Koz tle t
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e (k)T -

~ kt it ~
kivi=(1-9 +<1—S<~pz,u ))z
t+1 = ( )Mz,tﬂg,t A t

e Exogenous Process

logpas=AA+0acay
log pe s = Ae + o aee
logd; = pglogdi—1 + ogcay
logp; = pylogp, | + 0pegy
Mt = OmEmt

e Definition for growth term

1
Hep KA «a lo He t

1 = 1
©8 exp(A,) 1-—a« ©8 exp (Aa) + 1-a ® exp (A¢)

8.4.7 Steady State

JE S
Equilibrium Conditions Let p* = A, = A} “A} " where p = Ay and p* = A
Given the definitions, the mean growth rate of the economy is A. = Ay, = Ay = Ay =
Aya = A, =1 at steady state.

e Households satisfy
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="
1=q
- - w\ 177
F="t @) ) A @ e 00 ()
B v —n(147) X\ ~7+7)
f = ey (1977 g, (m) /

e Firms that can change prices set them to satisfy (4 eqs)

~ B 11X —€
gl = )\mcyd + ,391, (H) gl
g—)\Hyd—l—,BQ <H) g>

et = (e~ 1) ¢
where

H*w — E
w
e They rent inputs to satisfy their static minimization problem(2 eqs)

k a
14~

tf)A Ay

o —

mc:<1_a> <> @

e The wages evolve

1=, (%) 77 (A) 77 4 (1 6,) (1)~

e The price level evolve

1= 6, ()75 4+ (1-0,) 11—
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e Markets clear

where
P = 0, () TP 4 (1—0,)IT*°
wa—l -n
A,
and -
k=(1-90) LI
- AAe !
e Exogeous processes evolve (6 eqs)
d =1
p =1
pto= Ay
A AA
m = 0

where

Steady State computation
e Fixed Parameters

Table 1 : Fixed Parameters

B 0 e N 9 7
0.9992 0.025/3 10 10 0 0.001
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Estimated parameters :
{b7 Vs wv K, Q, 01)7 Xp7 va Xw> Ak7 AA? TR> fYy? Y115 H7 Pd> pgpa OK;0a,0d, U<p7 UM}

e Free parameters : set u =1 so that v; = 7.

Parameters related to exogenous processes : d=1,p =1, m = 0.

Growth terms

1 o
_ e -«
A, =AT7A]

Ay=A,
e Interest rate
AzAk
T = —1+9
B
V=T
IIA,
R p—
B
e Prices
1 1 =
. 1— ng—( —&)(1-x)
1-0,

e—1 1-p6,111—¢

*

M= T T pe, -0
PR S
1 — 6,I1(0-x)e
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o Wages

1— 0,
o=t (e (§))
w* = oI
w o 1 -0y - (H*w)—n

e Capital/labor ratio )
k o W

— % TANA
d - a—17 =k

e Assuming ¢ = 0 or ¢ satisfying the zero profits at steady state

Tk (AA—146
AN

e Labor demand

ca (& be T INELAN
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n—1 ~x% *w\ =" Y7d
L (1) T Al

)

1
1A+ ] T
! (1 — 80w () )
d) (H*w)_n(l""“/)

ld_
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