Specification Testing for Nonparametric
Structural Models with Monotonicity in
Unobservables

Stefan Hoderlein, Liangjun Su, and Halbert White
Department of Economics
Boston College
Singapore Management University

Department of Economics
UC San Diego

1/28



Objective

Test monotonicity in scalar unobservables, a key identifying
assumption in nonparametric structural modeling

e Fully nonseparable structural relation
Y = m(X,A)
e Endogeneity accommodated by control variables/covariates
XL1LA|Z
e Monotonicity null hypothesis

H,: Vx, m(x,-) is strictly increasing
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1. Introduction and Motivation

Monotonicity has been used in labor economics, industrial
organization, auctions, and elsewhere

Studied by Matzkin (2003), Chesher (2003), Altonji and
Matzkin (2005), Imbens and Newey (2009), others

Powerful identifying assumption

e |dentifies structural function m, unobservables A, all effects
e Allows interaction between observables and unobservables

Weakness: may be too strong — without monotonicity

e Structural function, unobservables, and effects not identified
e Control variables for second stage may no longer be available
e Unobserved heterogeneity needs more careful modeling
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2. ldentification Under Monotonicity

Maintained Structure

e X, Z observed finite-dimensioned random vectors

e A unobserved scalar random variable

X L A|Z, where Z is not measurable-o(X)

Y = m(X,A) Y observed, m unknown

G(y|x,z) =PlY <y|X=x,Z=z| isinvertible in y for
all (x, z)

Monotonicity

e m(x, - ) is strictly increasing for all x
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Identification by Conditional Quantiles

Proposition 2.3 Suppose maintained structure and monotonicity
hold. Then with normalization a = m(x*, a), for all x, a, z,

m(x,a) = G YG(a|x* 2)]|x2)

A = GHG(Y|X, 2)|x*2)
Gyix[ G7H(G(a| x",2) | x,2) | x]
= FA|X,Z(3’XvZ):G(a’X*vZ)

Derivatives of m are similarly identified
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3. Estimation and Specification Testing — Heuristics

o All objects of interest are functionals of G and G~}
e Estimate G and G~! nonparametrically: G and Gt

o Take G = G, and G~ 1 = CF:;

p-th order local polynomial estimators with bandwidth b
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Estimating m

e Simple estimator of m
My (x,a) = G 1(G(a| x*,2) | x,2))
e Smoothed estimator of m
fny(x, a) = / i, (x, a) dH(z)
consistent for pseudo-true value
(x, a) /G G(a|x*,2) | x 2)) dH(z)

e Under correct specification, mj; = m
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Estimating A

e Simple estimator of A
A, = GUG(Y | X.2) | x'.2)
e Smoothed estimators of A
Ay = / A, dH(z)
Ay = m(X,Y)=inf{a: mu(X, a) > Y}
consistent for pseudo-true values
AL = /G G(Y | X,2) | x*,2)) dH(z)
Al = mi N (X, Y)=inf{a:mj(X, a) > Y}

e Under correct specification, Ay, = AL =A
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Specification Testing

e Basic idea: compare various estimators of A
o Let A,; =G HG(Yi| Xi,2) | x*,2)), Hi# Ha,

A= //z\z,idHl(Z) Ay = //z\z,ide(Z)

e Specification test statistic

_7,, = bdX Z(Alyf — A2',‘)277:<X,', Y,)
i=1

bandwidth b = b,,, weight function 7
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4. Estimation and Specification Testing — Asymptotics
Estimating m

Theorem 4.1 Suppose C.1-C.6 hold. Let x* € Xy and (x, a) €
Xo X Ay. Then

m(mH (x,a) — mj; (x,a) — Bm (x,a;x™))
4N (0,0’?n (x, a;x*))

where B, (x, a; x*) and o2, (x, a; x*) are specified bias and
variance terms, and

sup |y (x,a) — mj; (x,a) |

(x,a)eXox Ay
— OP(nfl/bedx/Q /|Ogn+bp+1)
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Estimating A

Corollary 4.2 Suppose C.1-C.6 hold, and let x* € Xy Then
conditional on (X,', Y,) e Xy X Wo,

Vnbdx (/2\H,i — A*H,,- — B (x7, Y,-;X,-))
2N (0,02 (x*, Yi X))

Further, for i such that (X;, Y;) € Xy x Mo,

A

*
Ani — A

= Op(nY2b79/2 x \/log n + bP*Y) uniformly in i
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Specification Testing — Null

Theorem 5.1 Suppose Assumptions C.1-C.9 and C.11 hold. Then
under the maintained structure and monotonicity

~ d
Jn - BJn — N (0,0'3)
where (73 is a specified variance term, and

7—n = (:]n - BJ,,) / &En i’ N (0, 1)

where B;, and (Afi are specified consistent bias and variance
estimators
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Specification Testing — Local Alternatives

Let v, — 0 and let non-constant &, (X, Y') have
Ho = limy oo E[ 6, (X, Y)? (X, Y) ] < c0.

Pitman local alternatives:

Hi (7,) Z/Gil(Gn(y | x,2) [ X%, 2))d(Hi = H2) (2) = 7,6n (x, )

Theorem 5.2 Suppose Assumptions C.1-C.9 and C.11 hold. Then
under Hy (v,,) with vy, = n~1/2p=d/2,

To S N (ug/0 s 1)
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Specification Testing — Global Alternatives

Define

ﬂA—E{/G G(Y | X,2) | x*,2))d(H — H) (2)]* T (X, Y)}
Theorem 5.3 Suppose Assumptions C.1-C.9 and C.11 hold. If
i, > 0, then for any sequence A, = o(V/ nbx)

P(Ty,>A,) —1
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5. Estimation and Specification Testing — Finite Samples

e Paper contains MC for estimation of m and its derivatives

e Specification testing experiments
DGP 3: Y; = (0.5 + 0.1X2)A; + 250X,/ (0.1 + e*?/2)
DGP 4: Y, =& ((X, + 1)A,‘/4) (X,‘ + 1) - 0.5(50/4,‘/(1 + Xiz)
® (-) is standard normal CDF

A, =057 + My;
Xi =0.25+ Z; — 0.2527% + 17,

H1; Mo and Zj are 1ID N (0,1), mutually independent

H,: 60 =0 monotonicity
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Implementation Details for G, and CF:;
e K = product of univariate standard normal PDFs
p=1, b= (cSxn"*> ©Szn"1/%) — undersmoothing
Hy is CDF for U(Ge) 7, G1-e, ,]
H, is scaled beta(3,3) CDF on [, 7,81 ¢, ]
Cep.z = €oth sample quantile of {Z;}]_,, €o = 0.05

N = 30 points for numerical integration over Hi, H

(X, Y) =

]‘ {Ceo,X S Xi S leeg,x} X ]‘ {Ceo,y S \/’ S 51760,\/}
€9 = 0.0125

@p,b and @;’g trimmed in the tails by construction
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Smoothed Local Bootstrap

1. For i =1,..., n, compute /A4,' = (’Z\Li —|—A2,)/2
_/I / pbY|XZ)|X Z))dH()

2. Draw bootstrap sample {Z*}_, from smoothed density

= n_l Z(szz (Zl -
i=1
where ¢, (z) = a~'¢ (z/a), a, > 0 is bandwidth

3. Fori=1,..,n, given Z*, draw X" and A independently from
F—X|Z (X|Zi*) = Z¢o¢ ¢a (Z Z* /Zq)a Z/

Faz (alZ7) = 24;% a), (Zi—Z2)/ Zcpa (Z -

Z7)

Z7)
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Smoothed Local Bootstrap (cont)

4. For i =1,...,n, compute
i

it = (A, (X7 A7) + i, (X7 A7) /2

5. Compute T; with {(X/, Y;*, Z*)}"_, replacing
{(Xi, Y1, 2}

B
6. Repeat B times, yielding {T,TJ}

j=1

7. Calculate bootstrap p-value: p* = B71 Zj‘-gzl 1 (T:J- > T,,)
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Bootstrap Comments and Implementation Details

e Step 3 imposes conditional independence
e Step 4 imposes monotonicity

e Implementation details:

6 6 6

° n, = Szn’l/ L Ny = SXn’l/ , Ky = SAn’l/ ,

e n =100, 200
e full bootstrap
e B =100, # MC replications = 250
e warp-speed bootstrap (Giacomini, Politis, and White, 2007)

® select o =1.5
e B =1, # MC replications = 500
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Table 3: Finite sample rejection frequency for DGPs 3-4

DGP n do Warp-speed bootstrap Full bootstrap
1% 5% 10% 1% 5% 10%
3 100 0 0.018 0.042 0124 0.008 0.080 0.140
1 0.320 0.388 0.420 0.316 0.404 0.456
200 0 0.020 0.060 0.148 0.020 0.076 0.140
1 0.392 0.442 0.474 0.408 0.464 0.508
4 100 0 0.014 0.032 0.068 0.016 0.032 0.056
1 0.288 0.576 0.660 0.456 0.656 0.724
200 0 0.004 0.014 0.036 0.008 0.012 0.056
1 0.356 0.564 0.688 0.476 0.712 0.792
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6. Empirical Applications

e Labor Economics: Black-White Earnings Gap: Just Ability?

e Demand: Engel Curves in a Heterogeneous Population
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Engel Curves in a Heterogeneous Population
Y = m(Xl, X2, A)

e Y = K-—vector of budget shares
e X; = LogExp (log total expenditure — wealth)
e X, = nKids (# of kids — observable heterogeneity measure)

e A = unobservable preference heterogeneity

Objective: Test m for monotonicity in A
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Instrument for Endogenous X; (Imbens and Newey, 2009)

X1 =¢(5 X2, 2),

e S = LogWage (log of labor income as in HBAI)

e 7 = unobserved drivers of X

e (5,X2) L (A Z) (exogeneity) implies

Z=F(X, |5 X)

(X1,X2) LA| Z
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Data
e 1995 British Family Expenditure Survey (FES) as in Lewbel
(1999)

e Two adults, married or cohabiting, one or both working, head
aged 20 — 55

e Exclude households with 3 or more kids
e n= 1655

Variable | Food Catering Alcohol Transport Leisure LogExp LogWage nKids
Mean 0.2074  0.0805  0.0578 0.2204 0.1297  5.4215 5.8581  0.6205
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Implementation Details

Kernel: product of univariate standard normal pdfs

Local polynomial order: p =1
Bandwidths: as in simulations

Bootstrap replications: B = 200

Estimate Z = F(X; | S, X2)

e Local quadratic regression, Silverman’s rule-of-thumb
bandwidth
e Asymptotic distribution unaffected
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Results

Food Catering Transportation Leisure
Value of Test Statistic 1.2895 0.7336 1.5905 1.1492
p-values < 0.005 < 0.005 < 0.005 0.010
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7. Conclusion

Identification and estimation of nonparametric structural
models with monotonicity in unobservables

Based on exclusion restrictions and conditional independence
Specification test for monotonicity in scalar unobservables
Standard normal asymptotics

Smoothed local bootstrap performs reasonably well
Applications to labor economics and demand

o Fail to reject monotonicity in Black-White earnings gap study
e Reject monotonicity in Engel curve study
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