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Objective

Test monotonicity in scalar unobservables, a key identifying
assumption in nonparametric structural modeling

� Fully nonseparable structural relation

Y = m(X ,A)

� Endogeneity accommodated by control variables/covariates

X ? A j Z

� Monotonicity null hypothesis

Ho : 8x , m(x , �) is strictly increasing
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1. Introduction and Motivation

� Monotonicity has been used in labor economics, industrial
organization, auctions, and elsewhere

� Studied by Matzkin (2003), Chesher (2003), Altonji and
Matzkin (2005), Imbens and Newey (2009), others

� Powerful identifying assumption
� Identi�es structural function m, unobservables A, all e¤ects
� Allows interaction between observables and unobservables

� Weakness: may be too strong �without monotonicity
� Structural function, unobservables, and e¤ects not identi�ed
� Control variables for second stage may no longer be available
� Unobserved heterogeneity needs more careful modeling
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2. Identi�cation Under Monotonicity

Maintained Structure

� X , Z observed �nite-dimensioned random vectors

� A unobserved scalar random variable

� X ? A j Z , where Z is not measurable-σ(X )
� Y = m(X ,A) Y observed, m unknown

� G (y j x , z) � P [Y � y j X = x ,Z = z ] is invertible in y for
all (x , z)

Monotonicity

� m(x , � ) is strictly increasing for all x
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Identi�cation by Conditional Quantiles

Proposition 2.3 Suppose maintained structure and monotonicity
hold. Then with normalization a = m(x�, a), for all x , a, z ,

m(x , a) = G�1(G (a j x�, z) j x , z)
A = G�1(G (Y j X , z) j x�, z))

FAjX (a j x) = GY jX [ G
�1(G (a j x�, z) j x , z) j x ]

FAjZ (a j z) = FAjX ,Z (a j x , z) = G (a j x�, z)

Derivatives of m are similarly identi�ed
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3. Estimation and Speci�cation Testing �Heuristics

� All objects of interest are functionals of G and G�1

� Estimate G and G�1 nonparametrically: Ĝ and Ĝ�1

� Take Ĝ = Ĝp,b and Ĝ�1 = Ĝ�1p,b
p-th order local polynomial estimators with bandwidth b
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Estimating m

� Simple estimator of m

m̂z (x , a) = Ĝ�1(Ĝ (a j x�, z) j x , z))

� Smoothed estimator of m

m̂H (x , a) =
Z
m̂z (x , a) dH(z)

consistent for pseudo-true value

m�H (x , a) =
Z
G�1(G (a j x�, z) j x , z)) dH(z)

� Under correct speci�cation, m�H = m
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Estimating A

� Simple estimator of A

Âz = Ĝ�1(Ĝ (Y j X , z) j x�, z))

� Smoothed estimators of A

ÂH =
Z
Âz dH(z)

ÃH = m̂�1H (X ,Y ) � inf fa : m̂H (X , a) � Y g

consistent for pseudo-true values

A�H =
Z
G�1(G (Y j X , z) j x�, z)) dH(z)

A†
H = m��1H (X ,Y ) � inf fa : m�H (X , a) � Y g

� Under correct speci�cation, A�H = A
†
H = A
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Speci�cation Testing

� Basic idea: compare various estimators of A

� Let Âz ,i = Ĝ�1(Ĝ (Yi j Xi , z) j x�, z)), H1 6= H2,

Â1,i =
Z
Âz ,idH1(z) Â2,i =

Z
Âz ,idH2(z)

� Speci�cation test statistic

Ĵn � bdX
n

∑
i=1
(Â1,i � Â2,i )2π (Xi ,Yi )

bandwidth b = bn, weight function π
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4. Estimation and Speci�cation Testing �Asymptotics

Estimating m

Theorem 4.1 Suppose C.1-C.6 hold. Let x� 2 X0 and (x , a) 2
X0 �AH . Then

p
nbdX (m̂H (x , a)�m�H (x , a)� Bm (x , a; x�))

d! N
�
0, σ2m (x , a; x

�)
�

where Bm (x , a; x�) and σ2m (x , a; x
�) are speci�ed bias and

variance terms, and

sup
(x ,a)2X0�AH

jm̂H (x , a)�m�H (x , a) j

= OP (n
�1/2b�dX /2

p
log n+ bp+1)
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Estimating A

Corollary 4.2 Suppose C.1-C.6 hold, and let x� 2 X0 Then
conditional on (Xi ,Yi ) 2 X0 �Y0,

p
nbdX

�
ÂH ,i � A�H ,i � Bm (x�,Yi ;Xi )

�
d! N

�
0, σ2m (x

�,Yi ;Xi )
�

Further, for i such that (Xi ,Yi ) 2 X0 �Y0,

ÂH ,i � A�H ,i
= OP (n

�1/2b�dX /2 �
p
log n+ bp+1) uniformly in i
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Speci�cation Testing �Null

Theorem 5.1 Suppose Assumptions C.1-C.9 and C.11 hold. Then
under the maintained structure and monotonicity

Ĵn � BJn
d! N

�
0, σ2J

�
where σ2J is a speci�ed variance term, and

Tn �
�
Ĵn � B̂Jn

�
/
q

σ̂2Jn
d! N (0, 1)

where B̂Jn and σ̂2Jn are speci�ed consistent bias and variance
estimators
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Speci�cation Testing �Local Alternatives

Let γn ! 0 and let non-constant δn (X ,Y ) have

µ0 � limn!∞ E [ δn (X ,Y )
2 π (X ,Y ) ] < ∞.

Pitman local alternatives:

H1 (γn) :
Z
G�1n (Gn(y j x , z) j x�, z))d(H1�H2) (z) = γnδn (x , y)

Theorem 5.2 Suppose Assumptions C.1-C.9 and C.11 hold. Then
under H1 (γn) with γn = n

�1/2b�dX /2,

Tn
d! N (µ0/σJ , 1)
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Speci�cation Testing �Global Alternatives

De�ne

µA = Ef[
Z
G�1(G (Y j X , z) j x�, z))d(H1�H2) (z)]2 π (X ,Y )g

Theorem 5.3 Suppose Assumptions C.1-C.9 and C.11 hold. If
µA > 0, then for any sequence λn = o(

p
nbdX )

P (Tn > λn)! 1
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5. Estimation and Speci�cation Testing �Finite Samples

� Paper contains MC for estimation of m and its derivatives

� Speci�cation testing experiments

DGP 3: Yi = (0.5+ 0.1X 2i )Ai + 2δ0Xi/(0.1+ eA
2
i /2)

DGP 4: Yi = Φ ((Xi + 1)Ai/4) (Xi + 1)� 0.5δ0Ai/(1+ X 2i )

Φ (�) is standard normal CDF
Ai = 0.5Zi + η1i
Xi = 0.25+ Zi � 0.25Z 2i + η2i

η1i , η2i , and Zi are IID N (0, 1) , mutually independent

Ho : δ0 = 0 monotonicity
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Implementation Details for Ĝp,b and Ĝ�1p,b
� K = product of univariate standard normal PDFs

� p = 1; b = (c2SX n�1/5, c2SZ n�1/5) �undersmoothing

� H1 is CDF for U [ξε0,Z , ξ1�ε0,Z
]

H2 is scaled beta(3, 3) CDF on [ξε0,Z , ξ1�ε0,Z
]

ξε0,Z = ε0th sample quantile of fZigni=1, ε0 = 0.05

� N = 30 points for numerical integration over H1, H2
� π (Xi ,Yi ) =
1
�

ξε0,X � Xi � ξ1�ε0,X

	
� 1

�
ξε0,Y � Yi � ξ1�ε0,Y

	
ε0 = 0.0125

� Ĝp,b and Ĝ�1p,b trimmed in the tails by construction
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Smoothed Local Bootstrap

1. For i = 1, ..., n, compute Âi = (Â1,i + Â2,i )/2

Âj ,i =
Z
Ĝ�1p,b (Ĝp,b(Yi j Xi , z) j x�, z))dHj (z)

2. Draw bootstrap sample fZ �i g
n
i=1 from smoothed density

f̃Z (z) = n
�1

n

∑
i=1

φαz
(Zi � z)

where φα (z) = α�1φ (z/α) , αz > 0 is bandwidth

3. For i = 1, ..., n, given Z �i , draw X
�
i and A

�
i independently from

f̃X jZ (x jZ �i ) =
n

∑
j=1

φαx
(Xj � x) φαz

(Zj � Z �i ) /
n

∑
l=1

φαz
(Zl � Z �i )

f̃AjZ (ajZ �i ) =
n

∑
j=1

φαa
(Âj � a)φαz

(Zj � Z �i ) /
n

∑
l=1

φαz
(Zl � Z �i )
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Smoothed Local Bootstrap (cont)

4. For i = 1, ..., n, compute

Y �i = (m̂H1 (X
�
i ,A

�
i ) + m̂H2 (X

�
i ,A

�
i ))/2

5. Compute T �n with f(X �i ,Y �i ,Z �i )g
n
i=1 replacing

f(Xi ,Yi ,Zi )gni=1

6. Repeat B times, yielding
n
T �n,j

oB
j=1

7. Calculate bootstrap p-value: p� � B�1 ∑B
j=1 1

�
T �n,j � Tn

�
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Bootstrap Comments and Implementation Details

� Step 3 imposes conditional independence
� Step 4 imposes monotonicity
� Implementation details:

� αz = SZ n�1/6, αx = SX n�1/6, αa = SAn�1/6,
� n = 100, 200

� full bootstrap
� B = 100, # MC replications = 250

� warp-speed bootstrap (Giacomini, Politis, and White, 2007)

� select c2 = 1.5
� B = 1, # MC replications = 500
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6. Empirical Applications

� Labor Economics: Black-White Earnings Gap: Just Ability?

� Demand: Engel Curves in a Heterogeneous Population
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Engel Curves in a Heterogeneous Population

Y = m(X1,X2,A)

� Y = K�vector of budget shares
� X1 = LogExp (log total expenditure �wealth)

� X2 = nKids (# of kids �observable heterogeneity measure)

� A = unobservable preference heterogeneity

Objective: Test m for monotonicity in A
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Instrument for Endogenous X1 (Imbens and Newey, 2009)

X1 = φ(S ,X2,Z ),

� S = LogWage (log of labor income as in HBAI)

� Z = unobserved drivers of X1

� (S ,X2) ? (A,Z ) (exogeneity) implies

Z = F (X1 j S ,X2)

(X1,X2) ? A j Z
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Data

� 1995 British Family Expenditure Survey (FES) as in Lewbel
(1999)

� Two adults, married or cohabiting, one or both working, head
aged 20� 55

� Exclude households with 3 or more kids
� n = 1655
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Implementation Details

� Kernel: product of univariate standard normal pdfs
� Local polynomial order: p = 1
� Bandwidths: as in simulations
� Bootstrap replications: B = 200

� Estimate Z = F (X1 j S ,X2)
� Local quadratic regression, Silverman�s rule-of-thumb
bandwidth

� Asymptotic distribution una¤ected
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Results
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7. Conclusion

� Identi�cation and estimation of nonparametric structural
models with monotonicity in unobservables

� Based on exclusion restrictions and conditional independence
� Speci�cation test for monotonicity in scalar unobservables
� Standard normal asymptotics
� Smoothed local bootstrap performs reasonably well
� Applications to labor economics and demand

� Fail to reject monotonicity in Black-White earnings gap study
� Reject monotonicity in Engel curve study
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